
www.manaraa.com

SECUR ITY ANALYS I S OF
SYSTEM BEHAV IOUR

– FROM ’SECUR ITY BY DES IGN ’
TO ’ SECUR ITY AT RUNT IME ’ –

Dissertation
zur Erlangung des Doktorgrades der

Naturwissenschaften
(Dr. rer. nat.)

dem Fachbereich Mathematik und Informatik
der Philipps-Universität Marburg

(Hochschulkennziffer 1180)
vorgelegt von

Roland Rieke
geboren in Braunschweig

Marburg, 2014

www.manaraa.com

Vom Fachbereich Mathematik und Informatik der
Philipps-Universität Marburg als Dissertation am
12.12.2014 angenommen.

Erstgutachter: Prof. Dr. Bernd Freisleben

Zweitgutachter: Prof. Dr. Bernhard Seeger

Tag der mündlichen Prüfung: 12.12.2014.

www.manaraa.com

Dedicated to my family, my friends,
and my teachers.

many thanks to all who have contributed

First of all, I would like to thank my supervisors Bernd Freisleben
and Bernhard Seeger for supporting my thesis actively and for their
collaboration in paving the way to forthcoming research in this area.

This thesis would not have been possible without the cooperation
and exchange of ideas with my co-authors, specifically, Peter Ochsen-
schläger and Jürgen Repp have been involved in this research over
many years.

Peter Ochsenschläger and Carsten Rudolph have created an inspiring
and open-minded working atmosphere within the Fraunhofer SIT
department currently named ’Trust and Compliance’ and have sup-
ported my research interests in challenging times.

Furthermore, I like to thank the colleagues from the national and
international research projects that have provided the context for the
research in this thesis. In particular, my friends Hervé Debar, Igor
Kotenko, Andrew Hutchison, Elsa Prieto, Gunnar Björkman, Maria Zh-
danova, Zaharina Stoynova, Jörn Eichler, Julian Schütte, Michael Jäger,
Nicolai Kuntze, Andreas Fuchs, and Sigrid Gürgens supported my work
and encouraged me within the MASSIF project that eventually pro-
vided the proof of the applicability of my work.

www.manaraa.com

www.manaraa.com

A B S T R A C T

The Internet today provides the environment for novel applications
and processes which may evolve way beyond pre-planned scope and
purpose. Security analysis is growing in complexity with the increase
in functionality, connectivity, and dynamics of current electronic busi-
ness processes. Technical processes within critical infrastructures also
have to cope with these developments. To tackle the complexity of
the security analysis, the application of models is becoming standard
practice. However, model-based support for security analysis is not
only needed in pre-operational phases but also during process execu-
tion, in order to provide situational security awareness at runtime.

This cumulative thesis provides three major contributions to mod-
elling methodology.

Firstly, this thesis provides an approach for model-based analysis
and verification of security and safety properties in order to support
fault prevention and fault removal in system design or redesign. Further-
more, some construction principles for the design of well-behaved
scalable systems are given.

The second topic is the analysis of the exposition of vulnerabilities
in the software components of networked systems to exploitation by
internal or external threats. This kind of fault forecasting allows the
security assessment of alternative system configurations and security
policies. Validation and deployment of security policies that minimise
the attack surface can now improve fault tolerance and mitigate the
impact of successful attacks.

Thirdly, the approach is extended to runtime applicability. An ob-
serving system monitors an event stream from the observed system
with the aim to detect faults – deviations from the specified behaviour
or security compliance violations – at runtime. Furthermore, knowl-
edge about the expected behaviour given by an operational model
is used to predict faults in the near future. Building on this, a holis-
tic security management strategy is proposed. The architecture of the
observing system is described and the applicability of model-based
security analysis at runtime is demonstrated utilising processes from
several industrial scenarios.

The results of this cumulative thesis are provided by 19 selected
peer-reviewed papers.

v

www.manaraa.com

Z U S A M M E N FA S S U N G

Das Internet bietet heute das Umfeld für neue Anwendungen und
Prozesse, die sich weit über den im Voraus geplanten Zweck entwick-
eln können. Die Komplexität der Sicherheitsanalyse wächst mit der
Erhöhung der Funktionalität, Konnektivität und Dynamik der be-
trachteten Systeme. Die Verwendung von Modellen ist mittlerweile
etabliert, um die Komplexität der Sicherheitsanalyse zu bewältigen.
Modellbasierte Methoden für den Entwurf sicherer System werden
jedoch nicht nur während der Entwicklung von Systemen benötigt.
Wie diese Arbeit zeigt, können Modelle auch während der Laufzeit
helfen, sicherheitskritische Situationen zu erkennen und zu bewerten.

Diese kumulative Dissertation umfasst drei wichtige Beiträge zur
Modellierungsmethodik.

Zum einen wird ein modellbasiertes Konzept vorgestellt, um Sicher-
heitseigenschaften von Systemen zu verifizieren und so Fehler in
der Entwurfsphase zu vermeiden bzw. beim Redesign zu entfernen.
Darüber hinaus werden Konstruktionsprinzipien vorgestellt, die beim
Enwurf skalierbarer Systeme sicherstellen, dass die Sicherheitseigen-
schaften eines Systems bei der Erweiterung um gleichartige Kompo-
nenten erhalten bleiben.

Das zweite Thema ist die Analyse der Sicherheitslücken in den
Software-Komponenten vernetzter Systeme bezüglich der Exposition
für interne oder externe Bedrohungen. Diese Art der Fehlervorher-
sage ermöglicht die Bewertung von alternativen Systemkonfiguratio-
nen und Sicherheitsrichtlinien. Der Einsatz von validierten Sicher-
heitsrichtlinien soll die Angriffsfläche minimieren, die Fehlertoleranz
verbessern und Auswirkungen erfolgreicher Angriffe abschwächen.

Das dritte Thema ist die Erweiterung der Methoden, um die An-
wendbarkeit zur Laufzeit. Ein Beobachtungssystem überwacht einen
Ereignisstrom aus dem beobachteten System mit dem Ziel, Fehler – in
Form von Abweichungen vom festgelegten Verhalten oder Verstöße
gegen Sicherheitsanforderungen – zur Laufzeit zu erkennen. Darüber
hinaus wird das Wissen über das erwartete Verhalten, das durch ein
ausführbares Modell spezifiziert wird, verwendet, um Fehler in der
nahen Zukunft vorherzusagen. Darauf aufbauend wird eine Strate-
gie für ein ganzheitliches Sicherheitsmanagement vorgeschlagen. Die
Architektur des Beobachtungssystems wird beschrieben und die An-
wendbarkeit der modellbasierten Sicherheitsanalyse zur Laufzeit wird
anhand von Prozessen aus mehreren Industrieszenarien demonstri-
ert.

Die Ergebnisse dieser kumulativen Dissertation wurden in 19 aus-
gewählten Forschungsarbeiten (peer-reviewed) veröffentlicht.

vi

www.manaraa.com

A C K N O W L E D G M E N T S

copyright remarks

In reference to IEEE copyrighted material which is used with per-
mission in this thesis, the IEEE does not endorse any of Philipps-
Universität Marburg’s products or services. Internal or personal use
of this material is permitted. If interested in reprinting/republish-
ing IEEE copyrighted material for advertising or promotional pur-
poses or for creating new collective works for resale or redistribu-
tion, please go to http://www.ieee.org/publications_standards/

publications/rights/rights_link.html to learn how to obtain a Li-
cense from RightsLink.

acknowledgements

The author gratefully acknowledges the funding for parts of the
work presented in the papers in Part III that have been developed
in the context of the projects MASSIF (ID 257475) and EVITA (ID
224275) being co-funded by the European Commission in FP7, the
projects ACCEPT (ID 01BY1206D), ADiWa (ID 01IA08006F), VOGUE
(ID 01IS09032A), SicAri (ID 01AK062B), and SKe (ID 01AK953A and
01AK953B) being funded by the German Federal Ministry of Educa-
tion and Research, and the project ProOnline-VSDD being funded by
the German Federal Ministry of Health.

vii

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

www.manaraa.com

www.manaraa.com

C O N T E N T S

I preliminaries 1

1 thesis overview 3

1.1 Motivation and key research issues 3

1.1.1 Objectives with respect to security of cooperating
system design . 6

1.1.2 Objectives with respect to security of system con-
figurations . 9

1.1.3 Objectives with respect to predictive security anal-
ysis at runtime 11

1.1.4 Security topics in practice 13

1.2 Research contributions 14

1.2.1 Results with respect to security of cooperating sys-
tem design . 16

1.2.2 Results with respect to security of system configu-
rations . 20

1.2.3 Results with respect to predictive security analysis
at runtime . 23

1.3 Thesis organisation . 27

II introduction to the subject matter and summary

of the results 31

2 security of cooperating system design 33

2.1 Introduction . 33

2.2 Operational modelling approach 34

2.2.1 Modelling the dynamic behaviour of a system . . 35

2.2.2 Model checking . 39

2.2.3 Abstraction based verification concept 40

2.2.4 Simple homomorphism verification tool 44

2.3 Scalable verification of properties 44

2.4 Security requirements elicitation 47

2.5 Scalability for large-scale 51

2.5.1 Parameterised cooperations 52

2.5.2 Self-similarity . 56

2.6 Related work . 58

2.6.1 Formal methods and model checking 58

2.6.2 Characterisation of system properties 59

2.6.3 Security requirements engineering 60

2.6.4 Verification approaches for parameterised systems 62

2.7 Summary of results . 63

2.7.1 APA, TL and verification tool 63

2.7.2 Abstraction based verification 65

2.7.3 Authenticity requirements identification 65

ix

www.manaraa.com

contents

2.7.4 Parameterised verification problem reduced to fi-
nite state . 66

2.7.5 Conclusion . 67

3 security of system configurations 69

3.1 Introduction . 69

3.2 Configuration analysis approach 71

3.2.1 Network and vulnerability model 71

3.2.2 Attacker model . 73

3.2.3 Behaviour and properties of the model 74

3.2.4 Cost benefit analysis 76

3.3 Systematic risk identification 77

3.3.1 Countermeasure model and liveness properties . 81

3.4 Zero-day exploit assessment 81

3.5 Security policy validation 84

3.6 Related work . 86

3.6.1 Attack trees . 86

3.6.2 Attack graphs . 87

3.6.3 Security configuration metrics 88

3.6.4 Administration and validation of security policies 89

3.7 Summary of results . 90

3.7.1 Attack graph model 91

3.7.2 Abstraction based analysis method 92

3.7.3 Model of unknown vulnerabilities 93

3.7.4 Policy validation concept and tool 93

3.7.5 Conclusion . 94

4 predictive security analysis at runtime 97

4.1 Introduction . 97

4.2 Process monitoring and uncertainty management . . . 99

4.2.1 Process model . 100

4.2.2 Event model . 100

4.2.3 Prediction of close-future process actions 102

4.2.4 Observing system operation 103

4.3 Security compliance at runtime 106

4.4 Tool architecture and integration approach 108

4.4.1 The Predictive Security Analyser (PSA) prototype 108

4.4.2 Integration into security management architecture 109

4.5 Applicability and performance 111

4.5.1 Adaptation and evaluation in industrial scenarios 112

4.5.2 Adaptation to mobile money transfer scenario . . 113

4.5.3 Adaptation to critical infrastructure scenario . . . 114

4.6 Related work . 117

4.6.1 Process security analysis at runtime 117

4.6.2 Information security management 119

4.6.3 Security information and event management . . . 120

4.7 Summary of results . 122

4.7.1 Process monitoring and uncertainty management 122

x

www.manaraa.com

contents

4.7.2 Close-future security violation prediction 124

4.7.3 Security strategy management 125

4.7.4 Industrial use cases 126

4.7.5 Conclusion . 128

5 conclusion 131

5.1 Summary . 131

5.2 Application domains . 132

5.3 Lessons learnt . 136

bibliography 139

III peer-reviewed publications 165

P1 the sh-verification tool – abstraction-based

verification 167

P2 the sh-verification tool 195

P3 development of formal models for secure e-ser-
vices 203

P4 abstraction based verification 223

P5 identification of security requirements 239

P6 a trusted information agent for security in-
formation and event management 265

P7 security properties of uniformly parameterised

cooperations 273

P8 reliability aspects of uniformly parameterised

cooperations 281

P9 analysis of enterprise network vulnerabilities 293

P10 analysing network security policies 327

P11 abstraction-based analysis of known and un-
known vulnerabilities of critical information

infrastructures 341

P12 a holistic approach to security policies 361

P13 predictive security analysis for event-driven

processes 379

P14 model-based situational security analysis 389

P15 architecting a security strategy measurement

and management system 403

P16 massif : a promising solution to enhance olympic

games it security 411

P17 security and reliability requirements for ad-
vanced security event management 421

P18 fraud detection in mobile payment 433

P19 monitoring security compliance of critical pro-
cesses 443

xi

www.manaraa.com

contents

IV appendix 455

A declaration 457

xii

www.manaraa.com

L I S T O F F I G U R E S

1 The dependability and security tree by Avizienis, Laprie,
Randell, and Landwehr. 4

2 Topics of this thesis . 5

3 Research objectives . 13

4 Deming’s Plan-Do-Study-Act (PDSA) cycle adapted to secu-
rity analysis . 14

5 Security of cooperating system design: Objectives, research
questions, and results. 19

6 Security of system configurations: Objectives, research ques-
tions, and results. 22

7 Predictive security analysis at runtime: Objectives, research
questions, and results. 26

8 Graphical representation of an Asynchronous Product Au-
tomaton (APA) with two elementary automata
e1 and e2 and state components s1 and s2 . . . 35

9 Is it possible to change positions of the 8 and 7 37

10 The elementary automaton A_1_2 37

11 An APA model of the puzzle 38

12 Initial part of the representation of the possible behaviour 39

13 TL-frame . 41

14 Abstraction based verification approach 43

15 Simple Homomorphism Verification Tool 45

16 Verification concept for parameterised APA 47

17 Vehicle w receives warning from RoadSide Unit (RSU) . . . 49

18 Functional dependencies: On demand electric production . . 51

19 Automaton for 1-1-cooperation L 53

20 Automaton for 1-2-cooperation L{1}{1,2} 53

21 Automaton for the 2-1-cooperation L{1,2}{1} 54

22 Automata SF and SG for the schedules SF and SG 56

23 Schedule SG for the counterexample 56

24 Attack path in vulnerable ICT network 72

25 Computation of an attack graph 75

26 Subgraph of attack graph of simple example scenario . . . 75

27 Attack graph detail . 76

28 Cost benefit values . 77

29 Attack path with cost benefit annotations 77

30 Definition of an abstract representation of the attack graph 79

31 Abstract view on an attack graph 79

32 Details in the abstract view 80

33 Focus on attacks to the host db_server 81

xiii

www.manaraa.com

List of figures

34 Mapping for attacks against unknown vulnerabilities that
cross zones . 82

35 Abstract representation of attacks against unknown vulner-
abilities . 83

36 Policy administration and validation in policy architecture 84

37 Policy validation . 86

38 Predict close-future process behaviour 102

39 Uncertainty management algorithm 103

40 Event not expected in de-jure process model 104

41 Adapt de-jure process model to de-facto behaviour 105

42 Map event to future state . 105

43 Predictive security analysis at runtime 107

44 Architecture of the predictive security analyser 108

45 Conceptual components of the framework 111

46 Event model for fraud detection application 113

47 Subgraph of Event-driven Process Chain (EPC) for Mobile
Money Transfer Service (MMTS) 114

48 Event model for critical infrastructure scenario 115

49 Security reasoning example 116

50 Research contributions . 133

xiv

www.manaraa.com

L I S T O F TA B L E S

1 Publications contributing to Chapter 2 28

2 Publications contributing to Chapter 3 29

3 Publications contributing to Chapter 4 29

4 Dam actions . 50

5 Network security policy . 73

6 Fact Sheet Publication P1 . 167

7 Fact Sheet Publication P2 . 195

8 Fact Sheet Publication P3 . 203

9 Fact Sheet Publication P4 . 223

10 Fact Sheet Publication P5 . 239

11 Fact Sheet Publication P6 . 265

12 Fact Sheet Publication P7 . 273

13 Fact Sheet Publication P8 . 281

14 Fact Sheet Publication P9 . 293

15 Fact Sheet Publication P10 327

16 Fact Sheet Publication P11 341

17 Fact Sheet Publication P12 361

18 Fact Sheet Publication P13 379

19 Fact Sheet Publication P14 389

20 Fact Sheet Publication P15 403

21 Fact Sheet Publication P16 411

22 Fact Sheet Publication P17 421

23 Fact Sheet Publication P18 433

24 Fact Sheet Publication P19 443

xv

www.manaraa.com

A C R O N Y M S

ACCEPT Anomaliemanagement in Computersystemen durch
Complex Event Processing Technologie

ADAS Automated Data Acquisition System

ADiWa Alliance Digital Product Flow

AMSEC Attack Modelling and Security Evaluation Component

APA Asynchronous Product Automaton

ATM Air Traffic Management

BAM Business Activity Monitoring

BPEL Business Process Execution Language

BPM Business Process Management

CAPEC Common Attack Pattern Enumeration and Classification

CASENET Computer-Aided solutions to SEcure electroNic
commercE Transactions

CAST Competence Center for Applied Security Technology

CCE Common Configuration Enumeration

CPE Common Platform Enumeration

CEP Complex Event Processing

CIPC Critical Infrastructure Process Control

COPS Common Open Policy Service

CS Cooperating Systems

CU Communication Unit

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

CWSS Common Weakness Scoring System

DoS Denial of Service

eGK electronic health card

eHealth electronic health

EKB Engineering Knowledge Base

EPC Event-driven Process Chain

ESP Electronic Stability Protection

EVITA E-safety Vehicle Intrusion proTected Applications

GPS Global Positioning System

xvi

www.manaraa.com

acronyms

HMI Human Machine Interface

ICT Information and Communications Technology

IDMEF Intrusion Detection Message Exchange Format

IDS Intrusion Detection System

IFIP International Federation for Information Processing

SPIIRAS Institution of the Russian Academy of Sciences
St.Petersburg Institute for Informatics and Automation
of RAS

IoT Internet of Things

ISMM Information Security Measurement Model

IT Information Technology

LTL Linear Temporal Logic

LTS Labeled Transition System

MASSIF MAnagement of Security information and events in
Service InFrastructures

MESI Managed Enterprise Service Infrastructures

MMT Mobile Money Transfer

MMTS Mobile Money Transfer Service

NIST National Institute of Standard and Technologies

NoW Network-on-Wheels

NVD National Vulnerability Database

OOGG Olympic Games IT infrastructure

OrBAC Organization Based Access Control

OSVDB Open Sourced Vulnerability Database

PDP Policy Decision Point

PDSA Plan-Do-Study-Act

PEP Policy Enforcement Point

PLTL Propositional Linear Temporal Logic

PNML Petri Net Markup Language

PSA Predictive Security Analyser

PSA@R Predictive Security Analysis at Runtime

QoS Quality of Service

RBAC Role-Based Access Control

RFID Radio Frequency IDentification

RG Reachability Graph

RSVP Resource Reservation Protocol

RSU RoadSide Unit

xvii

www.manaraa.com

acronyms

RQ Research Question

SD Security Directive

SCADA Supervisory Control And Data Acquisition

SeMF Security Modelling Framework

SHVT Simple Homomorphism Verification Tool

SicAri A security architecture and its tools for ubiquitous
internet usage

SIEM Security Information and Event Management

SIMM Security Information Meta Model

SKe Durchgängige Sicherheitskonzeption mit dynamischen
Kontrollmechanismen für e-Service-Prozesse

SoS Systems of Systems

SPARQL SPARQL Protocol and RDF Query Language

SQUARE Security Quality Engineering Methodology

SREP Security Requirements Engineering Process

SSC Security Strategy Component

SSM Security Strategy Model

SSMM Security Strategy Meta Model

SSPC Security Strategy Processing Component

SWRL Semantic Web Rule Language

TC Trusted Computing

TL Temporal Logic

TS Transition System

VIKING Vital Infrastructure, Networks, Information and Control
Systems Management

WAVE Wireless Access in Vehicular Environments

XACML Xtensible Access Control Markup Language

xviii

www.manaraa.com

Part I

P R E L I M I N A R I E S

The first question in any scientific research is its subject matter:
What are we studying ? The most general answer is a certain
kind of system.

— Sunny Y. Auyang, Foundations of Complex-system
Theories [Auyang, 1998]

www.manaraa.com

www.manaraa.com

1
T H E S I S O V E RV I E W

The acts of the mind, wherein it exerts its power over its simple
ideas, are chiefly these three: (1) Combining several simple ideas
into one compound one; and thus all complex ideas are made.
(2) The second is bringing two ideas, whether simple or complex,
together, and setting them by one another, so as to take a view
of them at once, without uniting them into one; by which way
it gets all its ideas of relations. (3) The third is separating them
from all other ideas that accompany them in their real existence:
this is called abstraction: and thus all its general ideas are made.

— John Locke, An Essay Concerning Human Understanding
(1690)

aim of this chapter . This chapter provides an overview of the
research work presented in this thesis. It gives the background and
motivation for the work and describes in detail the research objectives.
Furthermore, it provides an overview of the approach taken and of
the main results obtained. Finally, it introduces the structure of the
thesis.

1.1 motivation and key research issues

The transition from systems composed of many isolated, small-scale
elements to large-scale, distributed and massively interconnected Sys-
tems of Systems (SoS) is a key challenge of modern Information and
Communications Technology (ICT). Despite this increased complex-
ity, these new SoS must still be dependable, which means they need
to be secure, robust and efficient [Bullock & Cliff, 2004]. The role of
information security in this context can be defined as follows.

“The protection of information and information systems
from unauthorized access, use, disclosure, disruption, mod-
ification, or destruction in order to provide confidentiality,
integrity, and availability. ”

— National Institute of Standard and Technologies (NIST),
2013 [Kissel, 2013]

Similar definitions are given in Avizienis et al. [2004], Iso Iec [2005]
and in Shirey [2007].

3

www.manaraa.com

1.1 motivation and key research issues

The overall aim of this thesis is to provide a modelling framework
that is suitable for security and - to some extent - dependability anal-
ysis throughout the life cycle of a system: for design, configuration,
and monitoring during operation as well as in the context of system
adaptations to changing requirements and application context. In this
thesis, those security requirements are of particular interest which are
strongly related to overall safety goals.

Following the taxonomy of Laprie [1995], the means to attain se-
curity and dependability can be grouped into four major categories;
namely, fault prevention, fault removal, fault tolerance, and fault forecast-
ing [Avizienis et al., 2004]. This is illustrated in Figure 1 that is taken
from Avizienis, Laprie, Randell & Landwehr [2004].

Dependability
and security

Means

Fault forecasting
Fault removal

Fault tolerance

Fault prevention

Threats

Failures

Errors

Faults

Attributes

Maintainability

Integrity

Confidentiality

Safety

Reliability

Availability

Figure 1: The dependability and security tree by Avizienis, Laprie, Randell,
and Landwehr.

In terms of the categories given in Figure 1, the first topic of this
thesis is model-based analysis and verification of security and safety
properties in order to support fault prevention and fault removal in sys-
tem design or redesign.

As the second topic, this thesis considers specific aspects of fault
forecasting and fault tolerance by analysis of networked system configu-
rations with respect to external exploitability of given vulnerabilities.

The third topic is security analysis by observing systems’ behaviour
at runtime. A given system may fail in the sense that some other sys-
tem makes a judgement that the activity or inactivity of the given sys-
tem constitutes failure [Randell, 2003]. Randell introduced the term
judgemental system for the second system. In this thesis the term ob-
served system will be used for the first system and observing system or
judgemental system for the second system. The term fault detection will
be used for the assessment of the behaviour of the observed system

4

www.manaraa.com

1.1 motivation and key research issues

by the judgemental system. The term fault prediction will be used to
express that the judgemental system forecasts a possible failure of the
observed system in the near future.

Observed systems

Judgemental system

Security anal-
ysis of system
behaviour

Predictive secu-
rity analysis at
runtime Fault detection

Fault prediction

Security of sys-
tem configura-
tions Fault tolerance

Fault forecasting

Security of coop-
erating system
design Fault removal

Fault prevention

Figure 2: Topics of this thesis

In summary, the thesis addresses the following three topics (cf. Fig-
ure 2).

security of cooperating system design

addresses fault prevention and fault removal by verification of se-
curity properties with regard to the design or redesign of a sys-
tem (cf. Section 1.1.1).

security of system configurations

addresses specific aspects of fault forecasting and fault tolerance
by analysis of system configurations (cf. Section 1.1.2).

predictive security analysis at runtime

addresses fault detection and fault prediction by analysis of pro-
cess specifications and compliance checks at runtime (cf. Sec-
tion 1.1.3).

Thus, this thesis covers security analysis in three life cycle phases
of a system: design time, configuration time, and runtime. The three top-
ics are overlapping to some extend because the configuration of a SoS

can be seen as part of the system specification which can be analysed
at design time. However, in many cases the combination of systems
which form the SoS at runtime is not known at design time. Further-
more, the configuration of SoS can be updated at runtime to match
changing fault knowledge and attack situations.

For each of these three topics, research motivations and objectives
will be presented in the following subsections. For each objective con-

5

www.manaraa.com

1.1 motivation and key research issues

crete Research Questions (RQs) will be given which are addressed by
this thesis.

1.1.1 Objectives with respect to security of cooperating system design

Architecting novel SoS requires early consideration of dependability
requirements in the system design process. Security engineering is
one important aspect of dependability [Avizienis et al., 2004]. This
is particularly the case when information security is the business-
enabling technology, for example, for electronic health (eHealth) sys-
tems. The security engineering process addresses issues such as how
to identify and mitigate risks resulting from connectivity and how
to integrate security measures into a SoS architecture [Bodeau, 1994].
This chapter addresses specific tasks in the security engineering pro-
cess.

A currently important example of such novel SoS are vehicular ad hoc
networks. They will provide a number of complex new features - such
as situational awareness - that enable vehicles to act autonomously
and intelligently. Because of the fundamental importance of the safety
of the users of these SoS - which may evolve to the largest ad hoc net-
works ever deployed - it is evident that this technology presents ma-
jor challenges in the secure design of the involved systems and their
communication protocols [Gerlach, 2005]. Similarly, future Air Traffic
Management (ATM) systems will become distributed and highly in-
terconnected SoS across organisational boundaries. ATM systems need
to collaborate for a common purpose - such as the smooth running of
an airport - and this includes continual update and improvement to
security [Hawley et al., 2013].

In this thesis, SoS that collaborate for a common purpose are called
Cooperating Systems (CS). CS are specific distributed SoS which are
characterised by freedom of decision and loose coupling of their com-
ponents [Ochsenschläger et al., 1998]. This causes a high degree of
nondeterminism which has to be handled by the analysis methods.
Typical examples of CS besides those mentioned above are telephone
systems, smartcard systems, electronic money, and contract systems.

There is an important dependability requirement for systems like
these: They must not only be secure, they must be demonstrably so.
Formal security models are thus needed to be able to convince others
of the security of a system [Landwehr, 1981]. Because of the success
of the Internet and embedded systems in vehicles, airplanes and other
safety critical systems, it will become even more important to develop
methods that increase the confidence in the correctness of such sys-
tems [Clarke et al., 1999].

Example 1. As an example for this line of argument, the formal analysis
of the security of the communication infrastructure for a specific application

6

www.manaraa.com

1.1 motivation and key research issues

of the German electronic health card (eGK) [Rieke, 2009b] underpins the
following press release.

“. . . Die begleitende Sicherheitsanalyse des Fraunhofer-Instituts
für Sichere Informationstechnologie (SIT) hat gezeigt, dass dem
Datenschutz und der Datensicherheit auf hohem technischem
Niveau Rechnung getragen wird. . . . ”

— gematik, 30.07.2009 - eGK besteht Online-Test [gematik,
2009]

These considerations led to the following four objectives for this
thesis with respect to security of cooperating system design.

Objective 1 (Provide a framework for model-based security analysis).
With respect to security at design time, the first objective of this thesis is
to provide means to prove that - in the context of CS - the components
work together in a desired manner. This is expressed by the following
research question.

RQ 1. How can it be proven that components of cooperating systems se-
curely work together?

In this thesis operational models are used to model CS since they are
executable and thus allow to analyse the behaviour of CS with re-
spect to security and dependability properties. An answer to RQ1 is
provided by the notion of approximate satisfaction of properties [Nitsche
& Ochsenschläger, 1996] for which an implementation has been pro-
vided by the author of this thesis.

Objective 2 (Enable scalable verification of properties).
Traditional model checking techniques allow a verification of the re-

quired behaviour only for systems with very few components. A secu-
rity analysis of the German eGK telematics infrastructure [Stroetmann
& Lilischkis, 2007; gematik, 2007b] which was carried out by the au-
thor of this thesis [Rieke, 2009a,b] showed the limits of explicit finite
state model checking methods (state space explosion). This leads to
the following question.

RQ 2. How can finite state verification techniques be extended to prove
properties independently of concrete parameters?

Usually only a few characteristic actions of the system are of inter-
est with respect to verification of security critical behaviour. So it is
evident to define abstractions with respect to the actions of interest.
For example, in context of business processes an operational model
can represent business operations at a granularity that is sufficient
for validating progress toward goals and to analyse the dependencies
between goals [Bhattacharya et al., 2007; Grimm & Ochsenschläger,
2001]. This thesis follows an abstraction-based approach, where the

7

www.manaraa.com

1.1 motivation and key research issues

key problem is the choice of an appropriate abstraction that, (a) is
property preserving, (b) results in identical abstract system behaviour
for any given parameter configuration, and, (c) is sufficiently precise
to express the required properties at the chosen abstraction level.

Objective 3 (Elicit security requirements systematically).
A typical application area for mobile CS are vehicular communica-

tion systems in which vehicles and roadside units communicate in
ad hoc manner to exchange information such as safety warnings and
traffic information. These mobile CS typically base decisions on infor-
mation from their own components as well as on input from other sys-
tems. Safety critical decisions based on cooperative reasoning, such
as automatic emergency braking of a vehicle, raise severe concerns to
security issues. Thus, security requirements need to be explicit, pre-
cise, adequate, non-conflicting with other requirements and complete
[van Lamsweerde, 2004]. Therefore, the following question has to be
answered.

RQ 3. How can security requirements for cooperating systems be elicited
systematically?

This thesis provides a partial solution which solves this question
for authenticity requirements.

Objective 4 (Identify principles for scalability).
Systems that need to be highly scalable comprise grid computing

architectures and cloud computing platforms [Bullock & Cliff, 2004;
Weinman, 2011]. Usually such systems consist of few different types
of components and for each such type a varying set of individual
components exists. Component types can be defined in such a gran-
ularity that individual components of the same type behave in the
same manner, which is characteristic for the type. For example, a
client-server system that is scalable consists of the component types
client and server and several sets of individual clients as well as sev-
eral sets of individual servers. This motivates the objective to identify
design principles for verifiability of security properties of scalable systems.

RQ 4. Which design principles facilitate verifiability of security properties
of scalable systems?

This thesis focusses on properties that rely on specific component
types and a specific number of individual components for these com-
ponent types but not on the specific individuality of the individ-
ual components. Well-behaved scalable systems can be characterised by
those systems which fulfil such a kind of property if already one pro-
totype system (depending on the property) fulfils that property.

Security analysis at design time is the main subject of Chapter 2 of
this thesis.

8

www.manaraa.com

1.1 motivation and key research issues

1.1.2 Objectives with respect to security of system configurations

A security policy - a set of security-motivated constraints - is a (partial)
system specification, lack of adherence to which will be regarded as a
security failure [Avizienis et al., 2004]. ICT is creating innovative sys-
tems and extending existing infrastructure to such an interconnected
complexity that predicting the effects of small internal changes (e.g.
firewall policies) and external changes (e.g. the discovery of new vul-
nerabilities and exploit mechanisms) becomes a major problem. The
security of such a complex networked system essentially depends on
a concise specification of security goals, their correct and consistent
transformation into security policies and an appropriate deployment
and enforcement of these policies. This has to be accompanied by a
concept to adapt the security policies to changing context and envi-
ronment, usage patterns and attack situations.

A major source of security vulnerability is any kind of misconfigu-
ration that enables an attacker to exploit a vulnerability in order for
a failure to occur [Nicol et al., 2004]. Known and unknown vulner-
abilities may be inherent to each of the connected components and
communication paths between them. In this thesis it is assumed that
the attack surface of a networked system with respect to a certain kind
of attackers is the part of the system which can be misused by attack-
ers of a certain strength. Thus, the attack surface is an indicator of a
networked system’s security.

The main aim of this thesis with respect to security of system configu-
rations is to provide an approach for model-based analysis of system
configurations in terms of situational awareness of the security state.
In particular, it should provide means to analyse whether the pres-
ence of vulnerabilities (i.e., internal faults that enable external faults
to harm the system [Avizienis et al., 2004]) within components is pro-
tected or hidden by the network security configuration. This aim mo-
tivates the following objectives.

Objective 5 (Configure systems so that vulnerabilities are protected
or hidden).

In order to understand the complex interrelations of security poli-
cies, ICT infrastructure and vulnerabilities and to validate security
goals in such a setting, tool-based modelling techniques are required
that can efficiently and precisely predict and analyse the behaviour
of such complex interrelated systems. These methods should guide
a systematic evaluation of a given network security policy and assist
the persons in charge with finally determining exactly what really
needs protection and which security policy to apply. Therefore, the
following research questions have been identified.

RQ 5a. How can exploitation possibilities of networked systems’ vulnerabil-
ities be analysed?

9

www.manaraa.com

1.1 motivation and key research issues

RQ 5b. How can attacker behaviour be incorporated into the system model
and the analysis?

RQ 5c. Which attacks would not be detected?

For this type of analytical analysis, this thesis describes a formal
modelling framework that, on the one hand, represents the informa-
tion system including its vulnerabilities and the security policy, and,
on the other hand, a model of attacker capabilities and profile. An
extension of the model by intrusion detection components can be
used to identify stealth attacks. Based on such an operational model,
a graph representing all possible attack paths can be automatically
computed. It is called an attack graph in the following text. Based on
this attack graph, it is now possible to find out whether a given se-
curity policy successfully blocks attack paths and is robust against
changes in the given vulnerability setting.

Objective 6 (Identify network configuration risks).
To ensure that security risks are managed cost-effectively, it is nec-

essary to analyse configuration options and likely attacker behaviour.
However, it is usually impossible to visualise an attack graph of a

realistic system directly because of its huge size. Therefore, abstract
representations of an attack graph are needed that enable to visualise
and analyse compacted information focussed on interesting aspects
of possible attacker behaviour and countermeasures.

RQ 6a. What are the effects of changes to the network configuration on
overall vulnerability?

RQ 6b. What is the most likely attacker behaviour and most effective coun-
termeasure?

RQ 6c. Will countermeasures of the system under attack succeed?

This thesis makes use of alphabetic language homomorphisms to
define the abstract views, minimal automaton techniques [Hopcroft
& Ullman, 1979] to compute the abstract representations, and shortest
path algorithms to discover the most important paths.

Liveness (in this context often called survivability) comes into play,
if part of the behaviour of the network is also modelled. With this
information it is possible to analyse effects of countermeasures that
the system performs under attack or the behaviour of vital services it
provides.

Objective 7 (Assess zero-day exploit vulnerability).
A zero-day vulnerability is a vulnerability that is exploited prior to

being publicly known [Turner, 2007]. Zero-day vulnerabilities repre-
sent a serious threat because at the time of exploitation no patches
are available and exploits based on these vulnerabilities will probably
not be detected by signature-based Intrusion Detection Systems (IDSs).

10

www.manaraa.com

1.1 motivation and key research issues

Zero-day attacks can be defined as attacks which use unknown vulner-
abilities [Kotenko & Chechulin, 2012]. This motivates the following
research question.

RQ 7. To which extent is a networked system resilient against exploits of
unknown vulnerabilities?

This thesis considers resilience of an information infrastructure
against attacks to unknown vulnerabilities by defining a new vul-
nerability for each installed product.

Objective 8 (Validate implementation of security goals).
To ensure compliance with laws and regulations, it is necessary to

analyse security policies with respect to security and safety goals.
Security policies provide a well-understood and suitable means to

administer security issues. However, using policies in distributed en-
vironments where applications, services and nodes dynamically join
and leave the system raises additional questions.

RQ 8. Does a policy correctly implement high-level security goals?

This thesis describes a policy validation component that can be
used to prove, whether a policy correctly implements given security
goals. It supports a subset of Xtensible Access Control Markup Lan-
guage (XACML) that comprises the most important elements of the lan-
guage. Furthermore, a concept to deploy an XACML policy using the
Common Open Policy Service (COPS) protocol [Durham et al., 2000]
has been developed.

Security at configuration time is the main subject of Chapter 3 of
this thesis.

1.1.3 Objectives with respect to predictive security analysis at runtime

Enforcing security and dependability in process-aware information sys-
tems at runtime requires the monitoring of system operation using
process information. Analysis of this information with respect to se-
curity and compliance aspects is growing in complexity with the in-
crease in functionality, connectivity, and dynamics of process evolu-
tion. To tackle this complexity, the application of models is becoming
standard practice. Considering today’s frequent changes to processes,
model-based support for security and dependability analysis is not
only needed in pre-operational phases but also at runtime.

The aim of this thesis with respect to predictive security analysis at
runtime is to support model-based evaluation of the current security
status of process instances as well as to allow for decision support by
analysing close-future process states. In order to reach this goal the
following objectives have to be addressed.

Objective 9 (Develop a security monitoring approach).

11

www.manaraa.com

1.1 motivation and key research issues

It is necessary to develop advanced techniques for the evaluation
of security-related events and their interpretation with respect to the
known control-flow of the processes involved and the required se-
curity properties. These techniques should enable methodologies for
performing dynamic predictive process analysis at runtime, detecting
any prospective potential violation of the required security proper-
ties.

RQ 9a. How can operational models reflect the state of observed systems
and thus capture abstractions of runtime behaviour?

RQ 9b. How can operational process models be used for early detection of
and reaction to deviations of process execution from its specification?

This thesis presents an approach to support model-based evalua-
tion of the current status of business process instances as well as to
allow for decision support by analysing close-future process states.
The approach is based on operational formal models derived from
process specifications.

Objective 10 (Validate security compliance at runtime).
In addition to the predicted process behaviour, the security model

is needed to identify security relevant states of the business process.

RQ 10. How can security analysis at runtime exploit process models to
identify current and close-future violations of security requirements?

This thesis proposes the derivation of security and compliance mod-
els from high-level security and safety goals. Monitor automata are
introduced as a formal notation for the security model.

Objective 11 (Integrate security management).
It is furthermore important to overcome the contextual restrictions

of existing solutions, with their predefined and closed models, and
rather to provide an extensible model that spans all parts of the secu-
rity monitoring and decision support process.

RQ 11. How can security analysis at runtime be integrated in a security
management strategy?

This thesis proposes a Security Strategy Meta Model (SSMM) that
supports an integration of functionalities of all parts of the security
monitoring and decision support process, namely: (i) detecting threat-
ening events; (ii) putting them in context of the current system state;
(iii) explaining their potential impact with respect to some security-
or compliance model; and (iv) taking appropriate actions.

Objective 12 (Provide evidence for usability in large scale industrial
scenarios).

Finally, the developed methods should be implemented into a pro-
totype, featuring a new generation, intelligent, multi-domain security
event-processing and predictive security monitoring and simulation.

12

www.manaraa.com

1.1 motivation and key research issues

RQ 12a. Can the developed methods and tools be successfully adapted to
large scale industrial scenarios?

RQ 12b. What are the performance effects of the number of events, processes,
security requirements, predicted steps, and of event abstraction?

This thesis evaluates the adaptability and performance of the pro-
posed solution in several industrial scenarios using requirements and
data from the scenario providers.

Security at runtime is the main subject of Chapter 4 of this thesis.
In summary, this thesis covers the research objectives shown in Fig-

ure 3.

Security and dependability anal-
ysis throughout system life cycle

Security of coopera-
ting system design

Security of system
configurations

Predictive security
analysis at runtime

O1: Provide a
framework for
model-based security
analysis

O2: Enable scal-
able verification of
properties

O3: Elicit secu-
rity requirements
systematically

O4: Identify princi-
ples for scalability

O5: Configure
systems so that
vulnerabilities are
protected or hidden

O6: Identify network
configuration risks

O7: Assess zero-day
exploit vulnerability

O8: Validate im-
plementation of
security goals

O9: Develop a se-
curity monitoring
approach

O10: Validate secu-
rity compliance at
runtime

O11: Integrate secu-
rity management

O12: Provide evi-
dence for usability in
large scale industrial
scenarios

Design time Configuration time Runtime

Figure 3: Research objectives

1.1.4 Security topics in practice

The selection of security topics to be addressed in this thesis has been
influenced by practical questions and needs from several research
projects in which the author of this thesis has been involved. For
example, the projects ProOnline-VSDD [Rieke, 2009b], NoW [Rieke
& Steinemann, 2007; Festag et al., 2008], and EVITA [Fraunhofer SIT,
2011] required model-based security analysis in order to prevent faults

13

www.manaraa.com

1.2 research contributions

in the design of the respective system architectures. Security require-
ments elicitation was needed in EVITA [Ruddle et al., 2009] and MASSIF

[Repp & Rieke, 2011]. Scalable verification of security and safety properties
was required in the projects NoW, EVITA, and ProOnline-VSDD. Attack
graph analysis was used for fault tolerance analysis in the projects SKe

[Sarbinowski, 2002] and MASSIF [MASSIF project consortium, 2013b].
Policy validation at configuration time was required in the project SicAri

[Rieke & Ebinger, 2008], and policy compliance at runtime is subject in
the project MASSIF. Model-based runtime monitoring of security prop-
erties was required in the projects ADiWa[ADiWa Konsortium, 2012]
and MASSIF. Behaviour anomaly detection was subject of project MASSIF

and is subject of project ACCEPT [Philipps-Universität Marburg, 2013].

1.2 research contributions

The results of this thesis provide a framework for security analysis
of system behaviour. Operational models are utilised at design time,
configuration time and at runtime.

Plan

Establish the objec-
tives, identify secu-
rity requirements,
and analyse the

design of the system.

Do

Analyse the
configuration of
the implemented
plan, verify that
the goals are met,

and provide data for
runtime analysis.

Study

Identify and study
deviations of

measured from
expected results,

check for compliance,
and forecast

critical behaviour.

Act

Analyse security
consequences,

determine their root
causes, and trigger
corrective actions.

Figure 4: Deming’s PDSA cycle adapted to security analysis

Figure 4 illustrates the cyclical security analysis activities addressed
by this thesis in relation to the PDSA cycle [Deming, 1993] for the

14

www.manaraa.com

1.2 research contributions

establishment of security critical systems as well as for continuous
monitoring and improvement of security during their life cycle.

The methods and tools provided by the results of this thesis con-
tribute to the steps of the PDSA cycle as follows.

plan

The thesis provides a method to identify security requirements
and express them formally; it provides methods and tools to
analyse system design with respect to given requirements; and,
it provides some construction principles that have to be taken
into account in the design of well-behaved scalable systems. Thus,
it addresses fault prevention and fault removal in the early
stages of the security engineering process.

do

The thesis provides methods and tools to analyse the exposition
of vulnerabilities in the software components of a networked
system to exploitation by internal or external threats. This al-
lows the security assessment of alternative system configura-
tions and thus to minimise the attack surface of the networked
system and mitigate potential impact of successful attacks. Fur-
thermore, methods and tools to validate and deploy security
policies are provided.

study

The thesis provides a method and tool to observe - de-facto -
behaviour of processes, compare it with the planned - de-jure -
behaviour, and evaluate security compliance at runtime. Where
applicable, knowledge on process’ expected behaviour is used
for forecasting critical situations in the near future. The reported
results also take into account other relevant context information
such as the current attack state for review and countermeasure
assessment. Furthermore, a concept to integrate the tool into a
holistic security management strategy is proposed.

act

The thesis provides methods and tools to analyse possible cor-
rective and preventive actions - based on the results of the secu-
rity assessment - as well as a tool to trigger their execution in
order to achieve continual improvement of the system.

In the following three subsections research results provided in this
thesis will be summarised with respect to each of the research ques-
tions identified in Section 1.1. The results are provided by 19 selected
peer-reviewed papers. For each paper Part III provides a separate
chapter (P1–P19) with a factsheet, an abstract describing the content
of the paper and its contribution to this cumulative thesis, and a copy
of the paper.

15

www.manaraa.com

1.2 research contributions

1.2.1 Results with respect to security of cooperating system design

The research results of this thesis with respect to security of cooperating
system design contribute to the security engineering process. Within
this process the aim of this thesis is to support the analysis of a system
design at an early stage based on an operational model of the system.
For a full coverage of the security engineering process the verification
of the refinement of the model up to the implementation and the
analysis of the implementation at the source-code level is of course
necessary but these topics are out of scope of this thesis.

Operational models such as Petri nets [Petri, 1962] or Asynchronous
Product Automata [Ochsenschläger et al., 1998] – which are used in
this thesis – are executable. They are in general qualitative, and are
thus at a higher abstraction level than quantitative models and they
are easier to analyse [Bonzanni et al., 2009] (because they are exe-
cutable). If needed, operational models can be enriched by specific
quantitative information when they are used in combination with
monitoring information from a running system (cf. Chapter 4).

An APA consists of a family of so called elementary automata commu-
nicating by common components of their state (shared memory). The ap-
plied specification method based on APA is supported by the Simple
Homomorphism Verification Tool (SHVT) [Ochsenschläger et al., 1998,
2000a; Ochsenschläger et al., 2002; Fraunhofer SIT, 2009]. The SHVT

has been developed at the Fraunhofer-Institute for Secure Information
Technology with significant participation of the author of this thesis in
the design and implementation of the tool. It provides components
for the complete cycle from formal specification to exhaustive valida-
tion as well as visualisation and inspection of computed reachability
graphs and minimal automata. In Hartel et al. [1999] ten different for-
mal methods and tools in this area including an old version of the
SHVT have been compared with respect to strengths and weaknesses
in supporting the modelling activity. It was concluded that it is use-
ful for specifications of systems at the architectural level, to compare
different designs, and to search for errors in high-level designs.

Result 1 (APA, TL and verification tool [P1, P2, P3]).
Adressing research question

RQ1 How can it be proven that components of cooperating systems securely
work together?

a number of contributions to the model-based analysis approach and
the SHVT have been provided. Specific model checking algorithms for
Temporal Logic (TL) properties have been designed and implemented
within the SHVT, for example, the construction of a Büchi automa-
ton [Clarke et al., 1999] representing the property given by a Proposi-
tional Linear Temporal Logic (PLTL) formula [Gerth et al., 1996; Clarke
et al., 1999; Peled, 2001], the construction of the synchronous product

16

www.manaraa.com

1.2 research contributions

of the automaton of property and system behaviour, construction of
the complement automaton, the construction of the intersection with
the automaton representing the behaviour, and a check whether the
resulting automaton is empty. The method for checking approximate
satisfaction of properties fits exactly to the already existing built-in
simple homomorphism check. These results have been published in
P1 [Ochsenschläger, Repp, Rieke & Nitsche, 1998] and P2 [Ochsen-
schläger, Repp & Rieke, 2000a]. P3 [Rieke, 2003] provides an extensive
example for the use of the methods and tool described in P1 and P2.
It has been shown in Apel, Repp, Rieke & Steingruber [2007] that op-
erational models can also be used for test case generation to validate
that a system behaves as specified.

Result 2 (Abstraction based verification [P4]).
Because of state space explosion problems, traditional model check-

ing techniques allow a verification of behaviour properties only for
systems with very few components. To be able to verify entire fami-
lies of critical systems, independent of the exact number of replicated
components, an abstraction based approach has been developed that ex-
tends tool supported verification techniques to such parameterised
systems. Abstraction is a fundamental and widely-used verification
technique. It can be used to reduce the verification of a property over
a concrete system, to checking a related property over a simpler ab-
stract system [Ochsenschläger, Repp & Rieke, 2000]. This allows the
verification of parameterised systems by constructing abstract sys-
tems that can be model checked and thus contributes to research
question

RQ2 How can finite state verification techniques be extended to prove prop-
erties independently of concrete parameters?

In P4 [Ochsenschläger & Rieke, 2007], a verification concept is pro-
posed that makes use of an inductive proof on the construction of
the behaviour of the parameterised system to show that it results in
identical abstract system behaviour for any given parameter configu-
ration.

Result 3 (Authenticity requirements identification [P5, P6]).
The first step in the design of an architecture for a novel system is

the requirements engineering process. With respect to security require-
ments this process typically covers the identification of the princi-
pal security goals, the actual security requirements elicitation process,
and a requirements categorisation and prioritisation, followed by re-
quirements inspection [Mellado et al., 2007; Mead & Hough, 2006;
Mead, 2007].

The approach provided in P5 [Fuchs & Rieke, 2010] addresses the
security requirements elicitation process. In particular, a systematic
and constructive approach for the identification of a consistent and com-
plete set of authenticity requirements has been developed. The method

17

www.manaraa.com

1.2 research contributions

is based on functional dependency analysis. It avoids premature as-
sumptions on the architectural structure and mechanisms to imple-
ment security measures which solves several issues compared to ex-
isting approaches [Firesmith, 2003]. In P6 [Coppolino, Jäger, Kuntze &
Rieke, 2012] it is shown by means of a representative example, namely,
a hydroelectric power plant in a dam, how the elicitation method can
be applied in order to analyse security threats for critical infrastruc-
tures. Thus research question

RQ3 How can security requirements for cooperating systems be elicited
systematically?

has been solved for authenticity requirements. Integrity can be ex-
pressed in terms of authenticity within a phase [Gürgens et al., 2005].
Furthermore, authenticity is closely related to accountability, and non-
repudiability [Avizienis et al., 2004]. It is still an open question whether
a similar approach works for other security properties such as confi-
dentiality and availability.

Result 4 (Parameterised verification problem reduced to finite state
[P7,P8]).

Behaviour properties of systems can be divided into two classes:
safety and liveness properties [Alpern & Schneider, 1985]. Intuitively a
safety property stipulates that “something bad does not happen” and
a liveness property stipulates that “something good eventually hap-
pens”. In P7 [Ochsenschläger & Rieke, 2011] it is shown that for well-
behaved scalable systems a wide class of safety properties can be ver-
ified by finite state methods. To extend this verification approach to
reliability or general liveness properties, additional assumptions for
well-behaved scalable systems have to be established. In P8 [Ochsen-
schläger & Rieke, 2012a] such assumptions have been developed for
uniformly parametrised two-sided cooperations. With respect to re-
search question

RQ4 Which design principles facilitate verifiability of security properties of
scalable systems?

the most important insight from this research is that behavioural self-
similarity is a key property which should be addressed in any de-
sign of a well-behaved scalable system. Behavioural self-similarity
formalises the property that from an abstracting point of view, where
only actions of some selected partners are considered, the complex
system of all partners behaves like the smaller subsystem of the se-
lected partners. However, this research path has opened a lot more
interesting new questions which should be addressed in further re-
search (cf. P8).

18

www.manaraa.com

1.2 research contributions

Figure 5 depicts the relations between the objectives, research ques-
tions, and results of this thesis with respect to security of cooperating
system design.

Objectives
Research
questions Results

O1: Provide a
framework for
model-based secu-
rity analysis

O2: Enable scal-
able verification of
properties

O3: Elicit secu-
rity requirements
systematically

O4: Identify princi-
ples for scalability

RQ1: How can it be proven
that components of coop-
erating systems securely
work together?

RQ2: How can finite state
verification techniques be
extended to prove prop-
erties independently of
concrete parameters?

RQ3: How can security
requirements for cooper-
ating systems be elicited
systematically?

RQ4: Which design princi-
ples facilitate verifiability
of security properties of
scalable systems?

R1: APA, TL and
verification tool
[P1, P2, P3]

R2: Abstraction
based verification
[P4]

R3: Authentic-
ity requirements
identification [P5,
P6]

R4: Parameterised
verification prob-
lem reduced to
finite state [P7,P8]

Figure 5: Security of cooperating system design: Objectives, research ques-
tions, and results.

19

www.manaraa.com

1.2 research contributions

1.2.2 Results with respect to security of system configurations

Security configuration is necessary to reflect the evolution of security
requirements during the life cycle of a system. It provides a proactive
approach to the management of changing security policies. It further-
more mitigates problems emerging from design or implementation
flaws and enables appropriate reaction to novel threats to which the
system is exposed.

The research results of this thesis with respect to security of sys-
tem configurations facilitate the identification of critical security risks
related to system vulnerabilities and the evaluation of different con-
figuration variants with regard to attack surface, detection as well as
impact mitigation aspects.

Result 5 (Attack graph model [P9]).
In P9 [Rieke, 2004b] an analysis approach has been developed that

builds on a model-based construction of an attack graph. The pro-
posed operational model comprises, (1) an asset inventory including
critical network components, topology and vulnerability attributions,
(2) a network security policy, (3) vulnerability specifications and ex-
ploit descriptions, and (4) an attacker model taking into account the
attackers knowledge and behaviour. This answers research question

RQ5a How can exploitation possibilities of networked systems’ vulnerabil-
ities be analysed?

In order to answer research question

RQ5b How can attacker behaviour be incorporated into the system model
and the analysis?

attacker capabilities are modelled by atomic exploits and by a strategy
to select and apply them. Several different attackers can easily be in-
cluded because an attacker is modelled as a role not a single instance
and the tool can automatically generate multiple instances from one
role definition. P9 further describes how the research question

RQ5c Which attacks would not be detected?

can be answered by introducing intrusion detection components into
the system model.

Result 6 (Abstraction based analysis method [P10]).
In consecutive work published in P10 [Rieke, 2006], generic formal

templates for the specification of vulnerabilities and exploits have
been developed that allow to easily extend the model. A unique fea-
ture of the approach is that abstract representations of attack graphs
can be computed that allow visualisation of specific aspects and com-
parison of focussed views on the behaviour of the system. The impact
of changes to security policies or network structure can be computed

20

www.manaraa.com

1.2 research contributions

and visualised by differences in the respective attack graphs. Results
of this analysis support the process of dependable configuration of
critical information infrastructures. This answers research question

RQ6a What are the effects of changes to the network configuration on over-
all vulnerability?

P10 further shows, how additional assignments of cost benefit rat-
ings to the exploits in the model and additional analysis features on
the abstract representation such as shortest path computations [Aho
& Ullman, 1995] solve the research question

RQ6b What is the most likely attacker behaviour and most effective coun-
termeasure?

When in addition a system’s countermeasures and the behaviour
of vital services the system provides are included in the model, then
these effects and the system’s resilience can be analysed, which an-
swers research question

RQ6c Will countermeasures of the system under attack succeed?

Result 7 (Model of unknown vulnerabilities [P11]).
In order to analyse resilience of systems against exploits of un-

known vulnerabilities, generic vulnerabilities for each installed prod-
uct and affected service are added to the model. The reachability anal-
ysis now considers every possible choice of product, and so all alter-
natives are evaluated in the attack graph, which answers research
question

RQ7 To which extent is a networked system resilient against exploits of
unknown vulnerabilities?

This capability has been added to the approach of P10 and was pub-
lished in P11 [Rieke, 2008a]. To the best of the knowledge of the au-
thor of this thesis, this was the first publication approaching this re-
search question. The analysis of network security against unknown
zero-day attacks is still an active research topic [Ingols et al., 2009;
Wang et al., 2010; Kotenko & Chechulin, 2012].

Result 8 (Policy validation concept and tool [P12]).
In order to address the enforcement of a security policy within

a system, an approach for policy validation and deployment based
on the middleware provided by the SicAri platform [Peters, 2013] has
been developed and published in P12 [Peters, Rieke, Rochaeli, Steine-
mann & Wolf, 2007], which answers research question

RQ8 Does a policy correctly implement high-level security goals?

The validation of a security strategy which is given by an Organiza-
tion Based Access Control (OrBAC) policy has been demonstrated in
Ochsenschläger, Rieke & Velikova [2008].

21

www.manaraa.com

1.2 research contributions

Figure 6 depicts the relations between the objectives, research ques-
tions, and results of this thesis with respect to security of system config-
urations.

Objectives
Research
questions Results

O5: Configure
systems so that
vulnerabilities
are protected or
hidden

O6: Identify net-
work configuration
risks

O7: Assess zero-
day exploit vulnera-
bility

O8: Validate im-
plementation of
security goals

RQ5a: How can exploita-
tion possibilities of net-
worked systems’ vulnerabili-
ties be analysed?

RQ5b: How can attacker
behaviour be incorporated
into the system model and
the analysis?

RQ5c: Which attacks
would not be detected?

RQ6a: What are the effects
of changes to the network
configuration on overall
vulnerability?

RQ6b: What is the most
likely attacker behaviour
and most effective counter-
measure?

RQ6c: Will countermea-
sures of the system under
attack succeed?

RQ7: To which extent is
a networked system re-
silient against exploits of
unknown vulnerabilities?

RQ8: Does a policy cor-
rectly implement high-level
security goals?

R5: Attack graph
model [P9]

R6: Abstraction
based analysis
method [P10]

R7: Model of
unknown vulnera-
bilities [P11]

R8: Policy valida-
tion concept and
tool [P12]

Figure 6: Security of system configurations: Objectives, research questions,
and results.

22

www.manaraa.com

1.2 research contributions

1.2.3 Results with respect to predictive security analysis at runtime

The research results of this thesis with respect to predictive security
analysis at runtime contribute to a new model-based approach for
Predictive Security Analysis at Runtime (PSA@R). In PSA@R the opera-
tion of a system or SoS is observed by analysing events received from
this system. PSA@R is not executed by this observed system but rather
by an observing and reacting system such as a Security Information
and Event Management (SIEM) system [MASSIF project consortium,
2013b].

The thesis exemplifies the approach utilising processes from several
industrial scenarios and demonstrates the systematic development
and application of models for PSA@R.

Result 9 (Process monitoring and uncertainty management [P13,P18]).
P13 [Rieke & Stoynova, 2010] provides a blueprint of the architecture

of PSA@R and describes the process modelling techniques in detail. It
is assumed that the purpose of the observed system is given by tech-
nical or business processes and that the intended behaviour can be
specified by process models. In order to support evaluation of the se-
curity status of these processes at runtime PSA@R uses operational for-
mal models derived from process specifications and security policies.
The behaviour of the observed system is given by the behaviour of
the set of involved processes. This behaviour - viewed as a sequence
of actions - is the shuffle of the behaviour of each process taken in
isolation [Sakarovitch, 2009].

To answer research question

RQ9a How can operational models reflect the state of observed systems and
thus capture abstractions of runtime behaviour?

the process behaviour model is synchronised with the running pro-
cess through events received from the execution environment. The
events from the monitored system are mapped to the abstract model.
The behaviour of the observed system is thus traced in the model
state that reflects the states of current processes within the model.

With respect to research question

RQ9b How can operational process models be used for early detection of
and reaction to deviations of process execution from its specification?

it is shown how a (partial) representation of the process behaviour
model with respect to the current state can be computed. This repre-
sentation can then be used to compare the de-facto behaviour given
by the event stream with the expected behaviour given by the be-
haviour model. Furthermore, P18 [Rieke, Zhdanova, Repp, Giot &
Gaber, 2013] describes how uncertainty management is used to ad-
just the specified (de-jure) process model to the measured (de-facto) be-
haviour. The incoming events are interpreted using the event model

23

www.manaraa.com

1.2 research contributions

and mapped to the process behaviour model. Uncertainty manage-
ment is initiated whenever an event does not match the expected
states within the behaviour model. Three cases of uncertainty are
handled: (1) evolution of the process specification, (2) process mea-
surement problems (e.g., lost or delayed events), and (3) anomalies
caused by malicious activity. In case the detected behaviour deviation
is considered legitimate, the underlying process model is adapted to
the changed conditions.

Result 10 (Close-future security violation prediction [P14,P19]).
In order to answer research question

RQ10 How can security analysis at runtime exploit process models to iden-
tify current and close-future violations of security requirements?

a security model - specified by monitor automata - formally defines se-
curity requirements restricting the allowed process behaviour. PSA@R

utilises prediction of expected close-future process states to find possi-
ble security violations and thus allows early decisions on countermea-
sures. P14 [Eichler & Rieke, 2011] and P19 [Rieke, Repp, Zhdanova &
Eichler, 2014] describe the approach for security requirements moni-
toring and violation prediction in detail and exemplify it on an appli-
cation scenario from the logistics domain (P14) and critical infrastruc-
tures (P19).

Result 11 (Security strategy management [P15,P19]).
Addressing research question

RQ11 How can security analysis at runtime be integrated in a security
management strategy?

P15 [Rieke, Schütte & Hutchison, 2012] describes a framework to in-
tegrate PSA@R into a holistic security strategy management system.
The proposed SSMM provides a way to model security directives at
an abstract level which can be compiled into specific rules for an
underlying framework of monitoring, decision support, and enforce-
ment engines. The information from other components of the security
strategy management system can provide situational awareness with
regard to network state and attack state to PSA@R and thus improve
the analysis results.

Result 12 (Industrial use cases [P14,P16, P17, P18, P19]).
Addressing research question

RQ12a Can the developed methods and tools be successfully adapted to
large scale industrial scenarios?

a prototype Predictive Security Analyser (PSA) has been implemented
by Fraunhofer SIT headed by the author of this thesis in order to
evaluate the applicability and performance of different modelling

24

www.manaraa.com

1.2 research contributions

strategies in the scope of PSA@R. The PSA supports the complete span
of application of PSA@R from formal process specification to exhaus-
tive validation. The application context for the developed solution is
given by the requirements from industrial scenarios documented in
P16 [Prieto, Diaz, Romano, Rieke & Achemlal, 2012] and P17 [Rieke,
Coppolino, Hutchison, Prieto & Gaber, 2012].

With respect to research question

RQ12b What are the performance effects of the number of events, processes,
security requirements, predicted steps, and of event abstraction?

first promising results on performance are provided by the tool adap-
tation to the scenarios of the MAnagement of Security information
and events in Service InFrastructures (MASSIF) project. Specifically, for
an MMTS scenario this is published in P18 [Rieke, Zhdanova, Repp,
Giot & Gaber, 2013] and for a critical infrastructure scenario in P19

[Rieke, Repp, Zhdanova & Eichler, 2014].

25

www.manaraa.com

1.2 research contributions

Figure 7 depicts the relations between the objectives, research ques-
tions, and results of this thesis with respect to predictive security anal-
ysis at runtime.

Objectives
Research
questions Results

O9: Develop a
security monitoring
approach

O10: Validate secu-
rity compliance at
runtime

O11: Integrate se-
curity management

O12: Provide
evidence for usabil-
ity in large scale
industrial scenarios

RQ9a: How can opera-
tional models reflect the
state of observed sys-
tems and thus capture
abstractions of runtime
behaviour?

RQ9b: How can opera-
tional process models be
used for early detection of
and reaction to deviations
of process execution from
its specification?

RQ10: How can security
analysis at runtime ex-
ploit process models to
identify current and close-
future violations of security
requirements?

RQ11: How can security
analysis at runtime be
integrated in a security
management strategy?

RQ12a: Can the developed
methods and tools be suc-
cessfully adapted to large
scale industrial scenarios?

RQ12b: What are the
performance effects of
the number of events,
processes, security require-
ments, predicted steps, and
of event abstraction?

R9: Process mon-
itoring and uncer-
tainty management
[P13,P18]

R10: Close-future
security viola-
tion prediction
[P14,P19]

R11: Security strat-
egy management
[P15,P19]

R12: Industrial use
cases [P14,P16,
P17, P18, P19]

Figure 7: Predictive security analysis at runtime: Objectives, research ques-
tions, and results.

26

www.manaraa.com

1.3 thesis organisation

1.3 thesis organisation

This cumulative thesis comprises four parts: Part I gives an introduc-
tion; Part II provides an extensive summary of the results achieved
with specific consideration of the connection to the individual papers;
Part III contains the peer-reviewed articles; Part IV is an appendix
with personal information on the author. These parts are now de-
scribed in more detail.

part i . Part I provides an overview of the research work presented
in this thesis. It gives the background and motivation for the work
and describes in detail the research objectives. Furthermore, it pro-
vides an overview of the approach taken as well as of the main re-
sults obtained. The links between the research questions and the cor-
responding publications are illustrated in the summaries of the three
research topics (cf., Figure 5, Figure 6, and Figure 7). Finally, the struc-
ture of the thesis is introduced.

part ii . Part II of this thesis gives an overview about the research
process and its results.

Chapter 2 provides a framework for operational modelling of sys-
tems and computation of possible system behaviour. On the basis of
such behaviour models, the analysis and verification of safety and
security properties is possible. It also comprises the elicitation of se-
curity requirements in the context of SoS and provides results from
theory to apply the results of analysis of small-scale prototype sys-
tems to large-scale systems composed of many identical components.

Chapter 3 aims at a systematic security assessment of the configu-
ration of information infrastructures taking into account constraints
given by a network security policy. To achieve this objective, a model-
based construction of an attack graph and appropriate abstractions
are utilised that enable focussed views on the system with respect to
possible attacks. It furthermore introduces a framework for enforce-
ment of security requirements by configuration of security policies.

Chapter 4 complements the security by design approach by an secu-
rity at runtime approach. Extensions to the modelling framework sup-
port real-time observation of a SoS and thus allow for on-the-fly secu-
rity reasoning utilising knowledge about de-jure and de-facto behaviour.
The applicability of the developed methods in complex large-scale ap-
plication scenarios is demonstrated and the basic performance of the
developed tools is evaluated.

Chapter 5 evaluates the research proposition and the outcomes
planned in Chapter 1. Furthermore, it considers current and future
application domains for the approach, open issues, and lessons learnt.

Part II ends with a bibliography of related work.

27

www.manaraa.com

1.3 thesis organisation

part iii . Part III of this cumulative thesis consists of previously
reviewed and published research results. The papers have been se-
lected based on their contribution to the research objectives of this
thesis. Each publication is introduced with a fact sheet which de-
scribes the contribution of the author of this thesis in detail. Table 1,
Table 2, and Table 3 list the papers considered for this cumulative
dissertation. They are not sorted in their actual timeline, but rather
based on their contribution to the objectives and research questions.
For each publication the authors, the title, the publication outlet, and
the publication type, namely, workshop proceedings (WS), conference
proceedings (CON), book chapter (BC), or journal (JNL) is given. The
contribution of the author of this thesis is marked as follows: – only
author, – main author, – co-author ranking equally, – co-author
with significant contribution.

Pub. Authors Title Outlet Type

P1 Ochsenschläger,
Repp, Rieke,
Nitsche

The SH-Verification Tool –
Abstraction-Based Verification
of Co-operating Systems

Springer JNL

P2 Ochsenschläger,
Repp, Rieke

The SH-Verification Tool AAAI CON

P3 Rieke Development of formal mod-
els for secure e-services

Eicar CON

P4 Ochsenschläger,
Rieke

Abstraction Based Verification
of a Parameterised Policy Con-
trolled System

Springer
LNCS

CON

P5 Fuchs, Rieke Identification of Security Re-
quirements in Systems of Sys-
tems by Functional Security
Analysis

Springer
LNCS

BC

P6 Coppolino,
Jäger, Kuntze,
Rieke

A Trusted Information Agent
for Security Information and
Event Management

IARIA CON

P7 Ochsenschläger,
Rieke

Security Properties of Self-
similar Uniformly Parameter-
ised Systems of Cooperations

IEEE CON

P8 Ochsenschläger,
Rieke

Reliability Aspects of Uni-
formly Parameterised Cooper-
ations

IARIA CON

Table 1: Publications contributing to Chapter 2

part iv. Part IV is the appendix. It starts with a short curriculum
vitae of the author with respect to research work and publications
followed by a declaration of the author of this cumulative thesis.

28

www.manaraa.com

1.3 thesis organisation

Pub. Authors Title Outlet Type

P9 Rieke Tool based formal Modelling,
Analysis and Visualisation of
Enterprise Network Vulnera-
bilities utilising Attack Graph
Exploration

Eicar CON

P10 Rieke Modelling and Analysing Net-
work Security Policies in a
Given Vulnerability Setting

Springer
LNCS

CON

P11 Rieke Abstraction-based analysis of
known and unknown vulner-
abilities of critical information
infrastructures

Inder-
science

JNL

P12 Peters, Rieke,
Rochaeli,
Steinemann,
Wolf

A Holistic Approach to Secu-
rity Policies – Policy Distribu-
tion with XACML over COPS

Elsevier JNL

Table 2: Publications contributing to Chapter 3

Pub. Authors Title Outlet Type

P13 Rieke,
Stoynova

Predictive Security Analysis
for Event-Driven Processes

Springer
LNCS

CON

P14 Eichler, Rieke Model-based Situational Secu-
rity Analysis

CEUR WS

P15 Rieke, Schütte,
Hutchison

Architecting a Security Strat-
egy Measurement and Man-
agement System

ACM-
DL

WS

P16 Prieto, Diaz,
Romano,
Rieke, Achem-
lal

MASSIF: A Promising Solu-
tion to Enhance Olympic Ga-
mes IT Security

Springer
LNICST

CON

P17 Rieke, Cop-
polino,
Hutchison,
Prieto, Gaber

Security and Reliability Re-
quirements for Advanced Se-
curity Event Management

Springer
LNCS

CON

P18 Rieke, Zh-
danova, Repp,
Giot, Gaber

Fraud Detection in Mobile
Payment Utilizing Process Be-
havior Analysis

IEEE WS

P19 Rieke, Repp,
Zhdanova,
Eichler

Monitoring Security Compli-
ance of Critical Processes

IEEE CON

Table 3: Publications contributing to Chapter 4

29

www.manaraa.com

www.manaraa.com

Part II

I N T R O D U C T I O N T O T H E S U B J E C T M AT T E R
A N D S U M M A RY O F T H E R E S U LT S

Knowledge is built on theory. The theory of knowledge teaches
us that a statement, if it conveys knowledge, predicts future out-
come, with risk of being wrong, and that it fits without failure
observations of the past.

— William Edwards Deming [Deming, 1993]

www.manaraa.com

www.manaraa.com

2
S E C U R I T Y O F C O O P E R AT I N G S Y S T E M D E S I G N

An automaton is a structure, but that tells us nothing - because
everything is structure, in other words a set equipped with op-
erations - except that we should remember this when defining a
map from one automaton to another. Furthermore, an object can
be viewed as a structure in several ways. Since they describe the
same object, they are equivalent, so can be translated into each
other. Each illuminates certain aspects and leaves others obscure.
To begin, we have to pick one!

— Jacques Sakarovitch, Elements of Automata Theory
[Sakarovitch, 2009]

aim of this chapter . This chapter aims to provide a specifi-
cation and analysis framework for model-based analysis of system
behaviour with respect to systematically deduced security and relia-
bility requirements. Extensions of this approach for the verification of
scalable systems and design principles that facilitate such verifiability
are given.

This chapter is based on the work published in P1, P2, P3, P4, P5,
P6, P7, and P8 (cf. Table 1).

2.1 introduction

For safety critical systems as well as for business critical systems or
parts thereof, assuring the correctness - conformance to the intended
purpose - is imperative. These systems must guarantee a variety of
safety, liveness and security properties. The behaviour of a discrete
system can be formally described by the set of its possible sequences
of actions. This point of view is important to define security require-
ments as well as to verify such properties, because for these purposes
sequences of actions of the system have to be considered [Schneider,
1996; Zegzhda et al., 2012].

The aim of this thesis with respect to security of cooperating system
design is approached by the following four objectives (cf. Figure 3).

O1: Provide a framework for model-based security analysis.

O2: Enable scalable verification of properties.

O3: Elicit security requirements systematically.

33

www.manaraa.com

2.2 operational modelling approach

O4: Identify principles for scalability.

Addressing objective O1 this chapter introduces the basic method
and tool to analyse a system’s behaviour with respect to security and
reliability requirements. To be suitable for the verification of Cooper-
ating Systems (CS), a modified type of satisfaction relation (approxi-
mate satisfaction) is considered and an implementation of a suitable
Temporal Logic (TL) variant is described. An approach to investigate
an abstract behaviour in order to verify the correctness of the under-
lying concrete behaviour is given. The problem that under such an
abstraction an incorrect part of the behaviour can be hidden by a
correct one is addressed.

Traditional model checking techniques allow a verification of the
required behaviour only for systems with very few components. In
order to be able to verify entire families of systems that are parame-
terised by a number of replicated identical components, an approach
to extend finite state verification techniques to prove properties that
are valid independently of the exact number of replicated compo-
nents is introduced. This enables scalable verification of properties,
the aim of objective O2.

CS typically base decisions on information from their own com-
ponents as well as on input from other systems’ components. Safety
critical decisions based on cooperative reasoning however raise severe
concerns to security issues. Therefore, the security requirements elic-
itation step for such Systems of Systems (SoS) is addressed. Address-
ing objective O3 an approach to systematically deduce comprehen-
sive sets of formally defined authenticity requirements with respect
to allowed sequences of actions is given.

Finally, addressing objective O4, design principles that facilitate ver-
ifiability of security properties of scalable systems are given.

Section 2.6 gives an overview of related work. Finally, this chapter
ends with a summary of the results in Section 2.7.

2.2 operational modelling approach

With respect to security of cooperating system design, the first objective
of this thesis is to provide means to prove that - in the context of CS -
the components work together in a desired manner.

RQ1 : How can it be proven that components of cooperating systems se-
curely work together?

In order to verify that system components work together in a de-
sired manner, the dynamic behaviour of the system has to be investi-
gated.

34

www.manaraa.com

2.2 operational modelling approach

2.2.1 Modelling the dynamic behaviour of a system

Modelling - in this context - means to represent the system in terms
of mathematical objects that reflect its observed properties [Peled,
2001]. In this thesis, the dynamic behaviour of the system will be
specified by an operational state model based on Asynchronous Prod-
uct Automata (APA), a flexible operational specification concept for CS,
which was first introduced by Ochsenschläger, Repp, Rieke & Nitsche
in P1. An APA consists of a family of so called elementary automata
communicating by common components of their state (shared memory).
For a graphical representation of an APA that is supported by the
Simple Homomorphism Verification Tool (SHVT) (cf. Section 2.2.4) cir-
cles are used to represent state components and rectangles are used
to represent elementary automata. Edges between state components
and elementary automata represent the neighbourhood relation. It
indicates which state components are included in the state of an ele-
mentary automaton and may be changed by a state transition of the
elementary automaton.

s1 e1 s2

e2

state compo-

nent

arc indicates

s1 ∈N(e1)

elementary

automaton

Figure 8: Graphical representation of an APA with two elementary automata
e1 and e2 and state components s1 and s2

Formally, an APA is defined as follows.

Definition 1 (Asynchronous Product Automaton (APA)).
An APA consists of

• a family of state sets Zs, s ∈ S,

• a family of elementary automata (Φe,∆e), e ∈ E and

• a neighbourhood relation N : E→ P(S).

S and E are index sets with the names of state components and of elementary
automata and P(S) is the power set of S. For each elementary automaton
(Φe,∆e) with Alphabet Φe, its state transition relation is

∆e ⊆ ��s∈N(e)(Zs)×Φe ×��s∈N(e)(Zs).

For each element of Φe the state transition relation ∆e defines state tran-
sitions that change only the state components in N(e). An APA’s (global)
states are elements of ��s∈S(Zs). To avoid pathological cases it is generally
assumed that S =

⋃
e∈E(N(e)) and N(e) 6= ∅ for all e ∈ E. Each APA has

35

www.manaraa.com

2.2 operational modelling approach

one initial state q0 = (q0s)s∈S ∈ ��s∈S(Zs). In total, an APA A is defined
by

A = ((Zs)s∈S, (Φe,∆e)e∈E,N,q0).

Definition 2. An elementary automaton (Φe,∆e) is activated in a state
q = (qs)s∈S ∈ ��s∈S(Zs) as to an interpretation i ∈ Φe, if there are
(ps)s∈N(e) ∈ ��s∈N(e)(Zs) with ((qs)s∈N(e), i, (ps)s∈N(e)) ∈ ∆e. An
activated elementary automaton (Φe,∆e) can execute a state transition and
produce a successor state p = (ps)s∈S ∈ ��s∈S(Zs), if qr = pr for
r ∈ S \N(e) and (qs)s∈N(e), i, (ps)s∈N(e) ∈ ∆e. The corresponding state
transition is (q, (e, i),p).

Formally, the behaviour of an operational APA model is described by
a Reachability Graph (RG).

Definition 3 (reachability graph). The behaviour of an APA is represented
by all possible coherent sequences of state transitions starting with initial
state q0. The sequence

(q0, (e1, i1),q1) (q1, (e2, i2),q2) . . . (qn−1, (en, in),qn)

with ik ∈ Φek , where Φek is the alphabet of the elementary automaton ek,
represents one possible sequence of actions of an APA.

State transitions (p, (e, i),q) may be interpreted as labelled edges of a
directed graph whose nodes are the states of an APA: (p, (e, i),q) is the edge
leading from p to q and labelled by (e, i). The subgraph reachable from the
node q0 is called Reachability Graph of an APA.

Please note that by this definition it is not allowed that transi-
tions that can execute concurrently interact in a way that can not be
achieved by executing them one after the other. Fortunately, however,
this kind of interaction is not required for modelling software [Peled,
2001].

States in which no transition is enabled are called dead states. The
derivation of RGs is called reachability analysis.

In the literature, a RG is sometimes also referred to as Transition
System (TS) or Labeled Transition System (LTS) [Baier & Katoen, 2008;
Peled, 2001]. Besides from APA, an LTS can also be generated from
other models such as π-calculus [Milner, 1999; Sobocinski, 2007] or
B [Bert & Cave, 2000]. In this thesis the term RG will be used to em-
phasise that the behaviour representation was generated from an APA

and the term LTS will be used when the origin of the behaviour model
does not matter in the given context.

A small example from P3 is now used to illustrate how APA can
be used to specify a system and how the dynamic behaviour of the
operational model representing the system is computed.

Example 2. The problem: Given the puzzle in Figure 9 construct an opera-
tional model of the system that can be used to compute all possible positions

36

www.manaraa.com

2.2 operational modelling approach

reachable by shifting the numbers on the squares of the board to the empty
square at any one time starting from the initial state shown in Figure 9 on
the left and verify if the state on the right is reachable.

6
3

5
8 7
4
1 2

?
6
3

54
1 2

7 8
Figure 9: Is it possible to change positions of the 8 and 7

One solution is, (1) to represent the actual state of the puzzle by nine
state components of an APA corresponding to the nine locations in the
puzzle, (2) the board by twelve elementary automata - one for each dividing
line between each two positions on the board -, and (3) to model the shifting
of a numbered square between each two positions by a state transition of
the respective elementary automaton.

For this example, the graphical APA representation (cf. Figure 8) is used.
Only the syntactical elements used in the example are introduced here. For
a complete description please refer to Fraunhofer SIT [2009].

S1
A_1_2

x=’e’ | y=’e’
S2

<x>
<y>

<y>
<x>

Figure 10: The elementary automaton A_1_2

For the model of the puzzle example each elementary automaton has the
form depicted in Figure 10. It shows an elementary automaton named A_1_2

with two neighbour state components S1 and S2. A state transition of the
elementary automaton A_1_2 may only change the content of directly con-
nected state components S1 and S2 representing two neighbour positions on
the puzzle board. In this example x is bound to the content of S1 and y to the
content of S2. The inscription x = ’e’ | y = ’e’ in the box represents a
restriction for the possible transitions of A_1_2. If one of the state compo-
nents contains the value ’e’ representing the empty square then the content
of S1 and S2 can be interchanged (which represents a move on the board).

The APA for this example is given in Figure 11. Note that the squares with
numbers are not part of the APA they just illustrate the initial state.

Formally, the model is given by the following specification.
APA state components:
S = {S1,S2, . . . ,S9} with
ZS1 = ZS2 = . . . = ZS9 = {1, 2, 3, 4, 5, 6, 7, 8, ’e’} and
q0 = (q0S1,q0S2, . . . ,q0S9) = (1, 2, 3, 4, 5, 6, 8, 7, ’e’).
Elementary automata:
E = {A_1_2,A_2_3, . . . ,A_8_9}.

37

www.manaraa.com

2.2 operational modelling approach

S1
A_1_2

x=’e’ | y=’e’
S2

A_2_3

x=’e’ | y=’e’
S3

S4
A_4_5

x=’e’ | y=’e’
S5

A_5_6

x=’e’ | y=’e’
S6

S7
A_7_8

x=’e’ | y=’e’
S8

A_8_9

x=’e’ | y=’e’
S9

A_1_4

x=’e’ | y=’e’

A_4_7

x=’e’ | y=’e’

A_2_5

x=’e’ | y=’e’

A_3_6

x=’e’ | y=’e’

A_6_9

x=’e’ | y=’e’
A_5_8

x=’e’ | y=’e’

321

6

’e’78

4

5

<y>

<x>

<y>

<x>

<y>

<x>

<x>

<y>
<x>

<y>
<x>

<y>

<y>

<x>

<x>

<y>

<x>

<y>

<y>

<x>

<x>

<y>

<y>

<x>

<x>

<y>

<y>

<x>

<x>

<y>

<y>

<x>

<y>

<x>

<x>

<y>

<y>

<x>

<x>

<y>

<x>

<y>

<x>

<y>

<y>

<x>

<y>

<x>

Figure 11: An APA model of the puzzle

Neighbourhood relation:
N(A_1_2) = {S1,S2},N(A_2_3) = {S2,S3}, . . . ,N(A_8_9) = {S8,S9}.
State transition relation:
Let Z = {1, 2, 3, 4, 5, 6, 7, 8, ’e’} and for each e ∈ E letΦe = {#}. Therefore,

the middle component of the state transition relation ∆e can be omitted.
For each e ∈ E:
∆e = {((x,y), #, (y, x)) ∈ (Z× Z)× (Z× Z) | ((x = ’e’)∧ (y ∈ Z))∨

((y = ’e’)∧ (x ∈ Z))}.
Alternative behaviour is represented here by the asynchronicity of the

possible transitions of the elementary automata that are neighbours to the
empty square. For example, in the initial position the elementary automata
A_6_9 and A_8_9 can act, that is,

((1, 2, 3, 4, 5, 6, 8, 7, ’e’), (A_6_9, #), (1, 2, 3, 4, 5, ’e’, 8, 7, 6))

and

((1, 2, 3, 4, 5, 6, 8, 7, ’e’), (A_8_9, #), (1, 2, 3, 4, 5, 6, 8, ’e’, 7))

are possible initial state transitions in the puzzle example. As mentioned
above, # is omitted in the sequel. Both alternatives have to be evaluated.

The SHVT which can compute the possible behaviour of an APA has a built-
in check for equal states. In Figure 12 the state following M-2 when shifting
the square with content 7 back to the original position is identified with M-
1. Please note that the tool prints the state q0 as M-1. The states following
M-3, M-4, and M-5 have not been computed in Figure 12.

The brute force method to find out if the puzzle has the property asked for
in Figure 9 is, to run a complete analysis of the example and then search in

38

www.manaraa.com

2.2 operational modelling approach

M-3

M-4

M-1 M-2

M-5

A_8_9 (y = e x = 7)

A_6_9 (y = e x = 6)

A_8_9 (y = 7 x = e)

A_7_8 (y = e x = 8)

A_5_8 (y = e x = 5)

Figure 12: Initial part of the representation of the possible behaviour

the generated states (in this case 181440 different states and 483840 state
transitions) for a state matching the solution. However, in the given example
the respective query will find no matching state because it is impossible to
reach such a state by using the given operations.

2.2.2 Model checking

In the context of CS, verification is the proof that system components
work together in a desired manner. So the dynamic behaviour of the
system has to be investigated. One usual approach is to start with a
formal specification of the dynamic behaviour of the system which
is represented by an LTS with an initial node and then to prove prop-
erties of such an LTS [Baeten & Weijland, 1990; Kurshan, 1994]. For
finite state systems verification can be done by an exhaustive search
of the state space given by the LTS. This search and check of properties
on the states is called model checking. Model checking is preferable
to deductive verification whenever applicable, because it can be per-
formed automatically [Clarke et al., 1999].

Temporal Logic (TL) [Emerson, 1990] formulas are one way to rep-
resent the properties to be checked on some or all paths of the LTS.
As a means to prove that components of CS securely work together
(RQ1) a model checking algorithm for Propositional Linear Temporal
Logic (PLTL) has been implemented by the author of this thesis. PLTL

[Emerson, 1990] is the language used to specify linear properties that
the system (characterised by its behaviour) is supposed to satisfy.

A system satisfies a property linearly if and only if all its computations
satisfy the property.

The formulas are constructed as follows:

• ’True’, ’False’, and the edge-labels of the automaton represent-
ing the concrete or abstracted behaviour of the system to be
checked are atomic TL formulas.

• If f and g are TL formulas, then ¬f, f∧ g, f∨ g, f ⇒ g, f ⇔ g,
G(always) f, F(eventually) f, f U(until) g, f B(before) g, and
X(next) f are TL formulas.

39

www.manaraa.com

2.2 operational modelling approach

algorithm to check pltl satisfaction of tl-formulas

The concept of the algorithm for checking PLTL satisfaction of a TL

formula is to find a counter-example, that is, to check if a model for
the negation of the given TL formula exists.

Step 1: First the given TL formula is negated and a Büchi automaton
FA is constructed using the algorithm given in Gerth et al. [1996]. FA
accepts infinite words corresponding to the property represented by
the negated PLTL formula. The alphabet is given by the edge-labels of
the automaton BA representing the concrete or abstracted behaviour
of the system.

Step 2: The synchronous product automaton SPA of the automaton
BA (representing the system’s behaviour) and the automaton FA (rep-
resenting the negated property to be checked) is computed. Because
BA has no acceptance conditions (all nodes accept) the synchronous
product automaton SPA inherits the acceptance conditions of FA.

Step 3: A graph representation of the strongly connected compo-
nents of SPA called the component graph of SPA (CG-SPA) is com-
puted. Each node in this graph is a strongly connected component
and there is an arc from one node to another, if there exists a tran-
sition to move from one strongly connected component to the other.
CG-SPA is a graph without cycles. This approach allows to divide the
original problem into subproblems, one for each strongly connected
component.

Step 4: Now for each component of the component graph CG-SPA
it is checked if it satisfies the acceptance conditions (contains an ac-
cepting loop). If such a component is found this is a counter-example
for the property to be verified an so the formula is false else it is true.
If the formula is false the part of the automaton BA that corresponds
to the counter-example can be identified.

Example 3. In the project ProOnline-VSDD an operational formal model
of the communication infrastructure of the German eHealth Card was used
to verify the following security requirement (log access before read).

¬((¬|K1_TUC_Konn_006_Result|) U

(|K1_TUC_Konn_017_GVD_Read| ∧

(¬|K1_TUC_Konn_006_Result|)))

Figure 13 shows the results of the verification of this requirement on an
LTS with 172418 nodes and 345605 edges which took about 12 minutes (the
computation of the reachability graph took about 22 minutes).

2.2.3 Abstraction based verification concept

For real life applications the corresponding LTS are often too complex
to apply the verification by model checking directly.

40

www.manaraa.com

2.2 operational modelling approach

Figure 13: TL-frame

In contrast to the immense number of transitions of such an LTS

usually only a few characteristic actions of the system are of interest
with respect to verification. So it is evident to define abstractions with
respect to the actions of interest and to compute a representation of such
an abstract behaviour, which usually is much smaller than the LTS of
the specification.

Formally, the behaviour L of a discrete system can be described by
the set of its possible sequences of actions. Therefore, L ⊂ Σ∗ holds
where Σ is the set of all actions of the system, and Σ∗ (free monoid
over Σ) is the set of all finite sequences of elements of Σ (words), in-
cluding the empty sequence denoted by ε. Subsets of Σ∗ are called
formal languages [Sakarovitch, 2009]. Words can be concatenated: if u
and v are words, then uv is also a word; especially εu = uε = u. A
word u is called a prefix of a word v if there is a word x such that
v = ux. The set of all prefixes of a word u is denoted by pre(u).
Formal languages, which describe system behaviour, have the charac-
teristic that pre(u) ⊂ L holds for every word u ∈ L. Such languages
are called prefix closed. System behaviour is thus described by prefix
closed formal languages.

Different formal models of the same system are partially ordered
with respect to different levels of abstraction. Abstraction is a fun-
damental and widely used verification technique. It can be used to
reduce the verification of a property over a concrete system, to check-
ing a related property over a simpler abstract system [Ochsenschläger,
Repp & Rieke, 2000]. By these abstractions certain transitions are ig-
nored and others are renamed, which may have the effect, that dif-
ferent transitions are identified with one another. Generally, under

41

www.manaraa.com

2.2 operational modelling approach

abstraction the problem occurs that an incorrect subbehaviour can be
hidden by a correct one. However, in Ochsenschläger, Repp & Rieke
[2000] it has been shown that when the abstraction complies to a
specific restriction then by investigating an abstract behaviour, the
correctness of the underlying concrete behaviour can be inferred.

Definition 4 (abstractions). Abstractions are described by alphabetic
language homomorphisms. These are mappings h∗ : Σ∗ −→ Σ ′∗ with

h∗(xy) = h∗(x)h∗(y),h∗(ε) = ε and h∗(Σ) ⊂ Σ ′ ∪ {ε}.

So they are uniquely defined by corresponding mappings h : Σ −→ Σ ′ ∪
{ε}. In the following, both the mapping h and the homomorphism h∗ is
denoted by h. In general, let Ľ ⊂ Σ̌∗ and L ⊂ Σ∗ be prefix closed languages.
Ľ is called finer than L and L is called coarser than Ľ iff an alphabetic
homomorphism ν : Σ̌∗ → Σ∗ exists with ν(Ľ) = L.

As it is well known, system properties are divided into two types:
safety (what happens is not wrong) and liveness properties (eventu-
ally something desired happens, e.g. availability) [Alpern & Schnei-
der, 1985]. On account of liveness aspects system properties are for-
malised by ω-languages (sets of infinite long words) [Perrin & Pin,
2004]. Thus, to investigate satisfaction of properties, infinite system
behaviour has to be considered. The usual concept of linear satisfac-
tion of properties (each infinite run of the system satisfies the prop-
erty) is not suitable in this context because no fairness constraints are
considered. Therefore, an abstract notion of fairness in the satisfaction
relation for properties is needed, which considers that independent
of a finitely long computation of a system certain desired events may
occur eventually. To formalise such “possibility properties”, which
are of interest when considering CS, the notion of approximate satis-
faction of properties has been defined in Nitsche & Ochsenschläger
[1996].

Definition 5. A system approximately satisfies a property if and only
if each finite behaviour can be continued to an infinite behaviour, which
satisfies the property.

For safety properties linear satisfaction and approximate satisfac-
tion are equivalent [Nitsche & Ochsenschläger, 1996]. To deduce ap-
proximately satisfied properties of a specification from properties of
its abstract behaviour an additional property of abstractions called
simplicity of homomorphisms on an action language [Ochsenschläger,
1994] is required. Simplicity of homomorphisms is a very technical
condition concerning the possible continuations of finite behaviours.
For regular languages simplicity is decidable. In [Ochsenschläger,
1994] a sufficient condition based on the strongly connected com-
ponents of corresponding automata is given, which easily can be

42

www.manaraa.com

2.2 operational modelling approach

checked. Especially: If the automaton or reachability graph is strongly
connected, then each homomorphism is simple.

The following theorem from Nitsche & Ochsenschläger [1996] shows
that approximate satisfaction of properties and simplicity of homo-
morphisms exactly fit together for verifying CS.

Theorem 1. Simple homomorphisms define exactly the class of such abstrac-
tions, for which holds that each property is approximately satisfied by the ab-
stract behaviour if and only if the “corresponding” property is approximately
satisfied by the concrete behaviour of the system [Nitsche & Ochsenschläger,
1996].

Formally, the “corresponding” property is expressed by the inverse
image of the abstract property with respect to an appropriate modifi-
cation of the abstraction for ω-languages [Nitsche & Ochsenschläger,
1996; Ochsenschläger & Rieke, 2012b].

Figure 14 shows an overview of this approach.

behaviour
abstract

representation

corresponding

properties
properties

ω-modification

abstraction

Theorem 1
proof of prop-

erties by SHVT

inverse image w.r.t.

ω-abstraction

contribution
of this thesis

simple homomorphism
proof by SHVT

Figure 14: Abstraction based verification approach

The following algorithm from Nitsche [1998] checks whether a prop-
erty is satisfied approximately by the “behaviour-automaton”. On the
automaton level, seven steps have to be performed (cf. P1):

Step 1: Compute a Büchi automaton representing the property given
by a PLTL formula according to Gerth et al. [1996].

Step 2: Construct the synchronous product of the automaton con-
structed so far and the automaton representing the behaviour of the
considered system. The synchronous product is the construction of
the intersection of languages on the automaton level.

Step 3: Reduce the resulting Büchi automaton (remove all states
which are not reachable from the initial state or from which no cycle
containing an accepting state is reachable).

Step 4: Ignore acceptance conditions (make all states accepting) and
do not interpret the automaton anymore as an automaton on infinite
(ω-) words but as one on finitely long words (this corresponds to the
prefix construction).

43

www.manaraa.com

2.3 scalable verification of properties

Step 5: Construct the complement automaton (for a finite-word au-
tomaton, not an ω-automaton).

Step 6: Construct the intersection with the automaton representing
the behaviour.

Step 7: Check whether the resulting automaton is empty (does not
accept words).

This algorithm, a user interface, and visualisation methods for in-
termediate graphs and failure traceback have been implemented by
the author of this thesis in the SHVT that is introduced now.

2.2.4 Simple homomorphism verification tool

The SHVT has been developed at the Fraunhofer-Institute for Secure In-
formation Technology with significant participation of the author of this
thesis in the design and implementation of the tool. The SHVT pro-
vides components for the complete cycle from formal specification
to exhaustive validation as well as visualisation and inspection of
computed reachability graphs and minimal automata. The applied
specification method based on APA is supported by this tool. The tool
manages the components of the model, allows to select alternative
parts of the specification and automatically glues together the selected
components to generate a combined model of the APA specification.
After an initial state is selected, the RG is automatically computed
by the SHVT. The tool provides an editor to define homomorphisms
on action languages, it computes corresponding minimal automata
[Eilenberg, 1974] for the homomorphic images and checks simplicity
of the homomorphisms.

The SHVT successfully has been applied in several security projects
such as Valikrypt [Bundesamt für Sicherheit in der Informationstech-
nik, 2003], Computer-Aided solutions to SEcure electroNic commercE
Transactions (CASENET) [NetUnion, 2003], MakoSi [Herfert et al., 2004],
and SicAri [Peters, 2013; Rieke & Ebinger, 2008]. The user interface (cf.
Figure 15) and general handling of the SHVT has reached a level of
maturity that enabled its successful application in the industrial area
[Apel et al., 2007].

P1 gives an overview about the main functions of the SHVT, P2 gives
an overview about the main components of the tool, and P3 provides
an extensive example for the use of the methods and tool described
in P1 and P2.

2.3 scalable verification of properties

Traditional model checking techniques allow a verification of the re-
quired behaviour only for systems with very few components. For
example, in Wang et al. [2000] “E-process Design and Assurance Us-
ing Model Checking” has been analysed. Their application scenario

44

www.manaraa.com

2.3 scalable verification of properties

Figure 15: Simple Homomorphism Verification Tool

was a ticket sales example. Because they wanted to compute the com-
plete system behaviour they had to make some simplifications to their
model. With only 2 agents and 2 customers, a ticket server that has
only 1 ticket for sale and other simplifications they still computed
331079 system states using automatic model checking based on the
tools VeriSoft [Godefroid, 1997] and Spin [Ben-Ari, 2008].

Similarly, a security analysis of the German Health Card infras-
tructure [Stroetmann & Lilischkis, 2007; gematik, 2007b] and services
in particular the management services for the insurance master data
[gematik, 2007a] which was done by the author of this thesis [Rieke,
2009a,b] showed the limits of explicit finite state model checking
methods (state space explosion).

This general state space explosion problem leads to the following
question.

RQ2 : How can finite state verification techniques be extended to prove prop-
erties independently of concrete parameters?

To address this research question, an approach has been developed
that extends the techniques described in Section 2.2 to a particularly
interesting class of systems called parameterised systems. A parame-
terised system describes a family of systems that are finite-state in
nature but scalable. A formal specification of a parameterised system
thus covers a family of systems, each member of which has a dif-
ferent number of replicated components. Instances of the family can

45

www.manaraa.com

2.3 scalable verification of properties

be obtained by fixing the parameters. Extensions of model checking
techniques are required that support verification of properties that
are valid independently of given concrete parameters.

To be able to verify entire families of critical systems, independent
of the exact number of replicated components, an abstraction based
approach has been developed to extend current tool supported verifi-
cation techniques to such parameterised systems.

To address the research question RQ2 using this abstraction based
approach an inductive proof on the construction of the behaviour of
the parameterised system is needed to show that it results in identi-
cal abstract system behaviour for any given parameter configuration.
This allows the verification of parameterised systems by constructing
abstract systems that can be model checked. This is demonstrated in
P4.

In the case of the proposed abstraction based approach, the key
problem is the choice of an appropriate abstraction that, firstly, is prop-
erty preserving, secondly, results in identical abstract system behaviour
for any given parameter configuration, and, lastly, is sufficiently pre-
cise to express the required properties at the chosen abstraction level.
To solve this problem, it is suggested

• to compute the system behaviour and verify the required prop-
erties for some configurations with fixed numbers of compo-
nents;

• to use the results to choose an appropriate property preserving
abstraction that results in identical abstract system behaviour
for any given parameter configuration;

• to provide an inductive proof (by hand) based on this abstrac-
tion that generalises the results for a family of systems with
arbitrary settings of parameters.

An outline of the verification concept for parameterised models
that has been published in P4 is depicted in Figure 16.

In the proposed approach for each individual verification the fol-
lowing proofs are needed:

simple homomorphism proof . The computation of abstraction
and proof that the homomorphism is simple for small parameters.
This serves as base for the induction. The proof is done automatically
- for several sufficient conditions - by the built-in algorithms of the
SHVT.

proof of properties . The specified properties have to be proven
for the abstract behaviour, for example, by the TL model check in the
SHVT (cf. Section 2.2.2).

46

www.manaraa.com

2.4 security requirements elicitation

behaviour
abstract

representation

corresponding

properties
properties

abstract

representation

extended

behaviour

parameterised

model (APA)

ω-modification

abstraction

Theorem 1
proof of prop-

erties by SHVT

inverse image w.r.t.

ω-abstraction

conclude by

induction

generic sim-

plicity proof

generic

abstraction

proof

induction on

parameter order

small parameters com-

putation by SHVT

Theorem 1

simple homomorphism
proof by SHVT

Figure 16: Verification concept for parameterised APA

generic simplicity proof . It has to be proven that the homo-
morphism is simple for each parameter setting. This can be done, for
example, by proving that the LTS representing the abstract behaviour
is finite and strongly connected.

generic abstraction proof . It has to be proven that the ap-
plication of the chosen homomorphism results in identical abstract
system behaviour for any given parameter configuration. This can be
done, for example, by an inductive proof on the construction of the
behaviour of the parameterised system.

In P4 this approach is demonstrated by an exemplary verification
of security and liveness properties of a simple parameterised collabo-
ration scenario.

2.4 security requirements elicitation

This section addresses the security requirements engineering process
for CS. CS typically base decisions on information from their own
components as well as on input from other systems. Safety critical
decisions based on cooperative reasoning, such as automatic emer-
gency braking of a vehicle, raise severe concerns to security issues.
Thus, security requirements need to be explicit, precise, adequate,
non-conflicting, and complete [van Lamsweerde, 2004]. Therefore, the
following question has to be answered.

RQ3 : How can security requirements for cooperating systems be elicited
systematically?

47

www.manaraa.com

2.4 security requirements elicitation

In P5, an approach has been published that addresses this research
question. In particular, it presents a systematic and constructive ap-
proach to the authenticity requirements elicitation step in this process.
This approach makes use of the Security Modelling Framework (SeMF)
that has been introduced in Gürgens et al. [2002]. In this framework,
requirements are defined by specific constraints regarding sequences
of actions that can or can not occur in a system’s behaviour. Actions
in SeMF represent an abstract view on actions of the real system. SeMF

models the interdependencies between actions and ignores their func-
tionality. An action is specified in a parameterised format, consisting
of the action’s name, the acting agent and a variable set of parameters:

actionName(actingAgent, parameter1, parameter2, ...)

Specifically, authenticity can be seen as the assurance that a par-
ticular action has occurred in the past. For a formal specification of
the application-level authenticity requirements, Definition 6, which
is taken from Gürgens et al. [2002], is used.

Definition 6. auth(a,b,P): Whenever an action b happens, it must be
authentic for an Agent P that in any course of events that seem possible to
him, a certain action a has happened.

An important aspect of a systematic security evaluation is the anal-
ysis of potential information flows. The method published in P5 de-
rives such authenticity requirements from an information flow model
of the involved CS based on functional dependency analysis. From
the use case descriptions, atomic actions are derived and set into rela-
tion by defining the functional flow among them. The action-oriented
approach considers possible sequences of actions (control flow) and
information flow (input/output) between interdependent actions. Ac-
tions of interest are specifically the boundary actions, which represent
the interaction of the system’s internals with the outside world. From
a functional dependency graph, the boundary actions can be identi-
fied. The analysis now spans a dependency graph with a safety crit-
ical action as root and the origins of decision relevant information
as leaves. Based on this graph, a set of authenticity requirements is
deduced for the input from the leaves of the derivation graph. This
set is comprehensive and defines the maximal set of authenticity re-
quirements from the given functional dependencies. Furthermore, the
proposed method avoids premature assumptions on the architectural
structure and mechanisms to implement security measures.

This approach is now illustrated by an example taken from P5 that
is based on a security relevant use case from the project EVITA [Fraun-
hofer SIT, 2011] in which vehicles and roadside units communicate in
an ad hoc manner to exchange information such as safety warnings
and traffic information [Ruddle et al., 2009].

48

www.manaraa.com

2.4 security requirements elicitation

Example 4 (Boundary Actions and Dependencies). The CS in this ex-
ample consists of a vehicle w and a RoadSide Unit (RSU) that can send coop-
erative awareness messages cam. The vehicle is equipped with an Electronic
Stability Protection (ESP) sensor, a Global Positioning System (GPS) sensor,
and a Communication Unit (CU). Furthermore, a connection to a Human
Machine Interface (HMI) is required to display the warning message.

In the CS instance depicted in Figure 17 the authenticity requirements
for the boundary action show(HMIw, warn) shall be identified. Following
backwards along the functional flow it can be derived that the output action
show(HMIw, warn) is depending on the input actions pos(GPSw, pos) of
vehicle w and send(cam(pos)) of the RSU.

RSU Vehicle w

send(cam(pos)) sense(ESPw,sW)

pos(GPSw,pos)

rec(CUw, cam(pos))

send(CUw,cam(pos))

show(HMIw,warn)

fwd(CUw, cam(pos))
cam

Figure 17: Vehicle w receives warning from RSU

In P6, this model-based approach has been applied by the author of
this thesis to systematically identify security requirements for a criti-
cal infrastructure. In critical infrastructures some information sources
– like sensors that provide the event data - are typically placed in
a non-protected environment at the boarder of the managed system.
Thus, they are exposed to various kinds of attacks. Manipulated equip-
ment can be used to hide critical conditions, generate false alerts, and
in general cause misjudgement on subsystem’s state. Wrong assump-
tions about a subsystem’s state in turn can lead to false decisions with
severe impact on the overall CS. As a consequence, the system has to
assure that all safety critical actions using sensor data must only use
authentic sensor data.

Proposition 1. Whenever a certain control decision is made, the input in-
formation that presumably led to it must be authentic.

The question, which measurements and system control decisions
are critical to the overall system behaviour, cannot be answered inde-
pendently of the concrete system and application context determined.
The following example taken from P6 analyses a possible misuse case
based on a scenario of the MASSIF project [Llanes et al., 2011].

Example 5 (Water level sensor compromise). An attacker takes control
of the Water Level Sensors (WLS) of a dam and uses them to send spoofed
measurements of the water level (wl) to the dam control station (DCS). This
hides the real status of the reservoir to the dam administrator (Admin). In

49

www.manaraa.com

2.4 security requirements elicitation

this way, the dam can be overflown without alarms being raised by the mon-
itoring system. From this, it is obvious that the water level measures have
to be authentic for the administrator when they are displayed at the dam
control station. More formally, the authenticity requirement can be specified
as follows:

auth(sense(WLS, wl), display(DCS, wl), Admin) (1)

Example 5 shows that some elementary security requirements can
be derived directly from misuse cases. In general, however, informa-
tion flows between systems and components are highly complex, es-
pecially when organisational processes need to be considered. Hence,
not all security problems are discoverable easily. In order to achieve
the desired security goals, security requirements need to be derived
systematically.

The following example describes authenticity requirements elicita-
tion based on security information flows in the use case of the dam
scenario [Llanes et al., 2011] that has been published in P6.

Example 6 (On demand electric production). The dam control station
feeds an hydroelectric turbine, connected to the dam by means of penstocks,
for producing electric power on demand. The turbine and hydroelectric power
production depends on the water discharge in the penstocks. By analysing
the parameters of the command received by the dam control station, it can be
inferred that the safety critical actions are the opening and closing actions of
the penstock gates (PG). Table 4 lists the dam scenario actions involved in
the security requirements analysis.

Table 4: Dam actions

Action Description

sense(WLS, wl) Measurement of the water level.

sense(PP, power) Measurement of voltage and current in the power
grid. The power plant PP sends commands ppc to
the dam control station depending on these mea-
surements.

sense(SDC, wdc) Measurement of the water discharge on the pen-
stock gates PG.

sense(PG, open) Reporting of the state of the penstock gates.

display(DCS,X) Display X at the dam control station, with X ∈
{wl, ppc, wdc, open}.

activate(Admin, cmd) Decision of the administrator, which command
shall be triggered.

exec(PG, cmd) Command to be executed by penstock gates.

An identification of functional dependencies reveals that the dam control
activity makes use of the (i) current water level, (ii) the state of the gates
joined to the hydroelectric power plant, (iii) the gates openness, and, (iv)

50

www.manaraa.com

2.5 scalability for large-scale

the discharge through the penstocks. Figure 18 shows the dependency graph
of this use case. The decision of the administrator, which command shall be
triggered, depends on the displayed measurements. The dashed line indicates
that there is no direct functional dependency.

Dam PenstockPower plant

Dam control station

sense(WLS, wl) sense(PP, power) sense(SDC, wdc)

sense(PG, open)

exec(PG, cmd)

display(DCS, {wl, ppc, wdc, open})

activate(Admin, cmd)
Admin

Figure 18: Functional dependencies: On demand electric production

An analysis of the dependencies depicted in Figure 18 leads to the fol-
lowing conclusion: The control display values are derived from the measure-
ments of wl, power, wdc, and open.

From this, it can be concluded that, in addition to the water level wl (1),
the measurements of power, wdc, and open have to be authentic. More
formally:

auth(sense(PP, power), display(DCS, ppc), Admin) (2)

auth(sense(SDC, wdc), display(DCS, wdc), Admin) (3)

auth(sense(PG, open), display(DCS, open), Admin) (4)

Furthermore, the activation of the penstock command by the administrator
has to be authentic for the penstock gate when executing it.

auth(activate(Admin, cmd), exec(PG, cmd), PG) (5)

So the authenticity requirements for the use case described in Figure 18
are given by: (1), (2), (3), (4), and (5).

It is evident that further types of security requirements are needed
in order to cover important liveness properties such as availability of
necessary information at a certain place and time. In some cases also
confidentiality of certain information may be required. These require-
ments are important but not in the scope of the work developed in
this thesis.

2.5 scalability for large-scale

Scalability is a desirable property of a system. In Bondi [2000], four
aspects of scalability are considered, i.e., load scalability, space scal-
ability, space-time scalability, and structural scalability. In this thesis,

51

www.manaraa.com

2.5 scalability for large-scale

the focus is on structural scalability, which is “the ability of a system to
expand in a chosen dimension without major modifications to its ar-
chitecture” [Bondi, 2000]. Examples of systems that need to be highly
scalable comprise grid computing architectures and cloud computing
platforms [Bullock & Cliff, 2004; Weinman, 2011] but also vehicular ad
hoc networks [Gerlach, 2005] or large scale client-server architectures
like the German electronic health card (eGK) telematics infrastructure
[Stroetmann & Lilischkis, 2007; gematik, 2007b]. It has been shown in
Section 2.3 that the complexity of such SoS causes problems with ver-
ification of security properties. This leads to the following research
question.

RQ4 : Which design principles facilitate verifiability of security properties
of scalable systems?

Usually, scalable systems consist of few different types of compo-
nents and for each such type a varying set of individual components
exists. Component types can be defined in such a granularity that
individual components of the same type behave in the same man-
ner, which is characteristic for the type. For example, a client-server
system that is scalable consists of the component types client and
server and several sets of individual clients as well as several sets of
individual servers. Thus, in P7 and P8 uniform parameterisations of co-
operations are defined that comprise this important class of scalable
systems.

These uniformly parameterised cooperations are characterised by (i)
the composition of a set of identical components (copies of a two-
sided cooperation); and (ii) the fact that these components interact
in a uniform manner (described by the schedules of the partners).
E-commerce protocols, for example, are instances of such uniformly
parameterised systems of cooperations, in which the cooperation part-
ners have to perform specific financial transactions. An E-commerce
protocol should work for several partners in the same manner, and
the mechanism (schedule) to determine how one partner may be in-
volved in several cooperations is the same for each partner. So, the
cooperation is parameterised by the partners and the parameterisa-
tion should be uniform with respect to the partners.

2.5.1 Parameterised cooperations

As already introduced in Section 2.2, in this thesis the focus is on
the dynamic behaviour of systems, which is described by the set of
all possible sequences of actions. This point of view is important to
define security requirements as well as to verify such properties, be-
cause for these purposes sequences of actions of the system have to
be considered [Schneider, 1996; Zegzhda et al., 2012].

52

www.manaraa.com

2.5 scalability for large-scale

To describe a two-sided cooperation, let Σ = Φ ∪ Γ where Φ is the
set of actions of cooperation partner F and Γ is the set of actions of
cooperation partner G and Φ ∩ Γ = ∅. Now a prefix closed language
L ⊂ (Φ ∪ Γ)∗ formally defines a two-sided cooperation.

Example 7. LetΦ = {fs, fr}, Γ = {gr, gi, gs} and Σ = {fs, fr,gr,gi,gs}. An ex-
ample for a cooperation L ⊂ Σ∗ is now given by the automaton in Figure 19.
It describes a simple handshake between F (client) and G (server), where a
client may perform the actions fs (send a request), fr (receive a result) and
a server may perform the corresponding actions gr (receive a request), gi

(internal action to compute the result) and gs (send the result).

In the following, initial states will be denoted by a short incoming
arrow and final states by double circles. In the automaton depicted in
Figure 19 all states are final states, since L is prefix closed.

fs
gr

gi

gsfr

Figure 19: Automaton for 1-1-cooperation L

For parameter sets I, K and (i, k) ∈ I× K let Σik denote pairwise
disjoint copies of Σ. The elements of Σik are denoted by aik and
ΣIK :=

⋃
(i,k)∈I×K

Σik. The index ik describes the bijection a↔ aik for

a ∈ Σ and aik ∈ Σik. Now LIK ⊂ Σ∗IK (prefix-closed) describes a pa-
rameterised system. To avoid pathological cases, it is generally assumed
that parameter and index sets to be non empty.

For a cooperation between one partner of type F with two partners
of type G in Example 7 let

Φ{1}{1,2} = {fs11, fr11, fs12, fr12},

Γ{1}{1,2} = {gr11, gi11, gs11, gr12, gi12, gs12} and

Σ{1}{1,2} = Φ{1}{1,2} ∪ Γ{1}{1,2}.

fs12
gr12

gi12

gs12fr12

fs11
gr11

gi11

gs11 fr11

Figure 20: Automaton for 1-2-cooperation L{1}{1,2}

A 1-2-cooperation, where each pair of partners cooperates restricted
by L and each partner has to finish the handshake it just is involved
in before entering a new one, is now given (by reachability analysis)

53

www.manaraa.com

2.5 scalability for large-scale

by the automaton in Figure 20 for L{1}{1,2}. It shows that one after an-
other client 1 runs a handshake either with server 1 or with server 2.
Figure 21 depicts an automaton for a 2-1-cooperation L{1,2}{1} with
the same overall number of partners involved but two of type F and
one partner of type G. Figure 21 is more complex than Figure 20 be-
cause client 1 and client 2 may start a handshake independently of
each other, but server 1 handles these handshakes one after another.
For a 5-3-cooperation with the same simple behaviour of partners the
SHVT already computes 194.677 states and 1.031.835 state transitions.

fs11

fs21

fs21

gr11

fs11

gr21

gr11

gr21

gi11

fs21

gi21

fs11

gi11

gi21

fs21

gs11

fs11

gs21

gs11

gs21

fs21
fr11

fs11

fr21

gr21fr11

gr11

fr21

fr11

gi21

fr21

gi11

fr11

gs21

fr21

gs11

fr21

fr11

Figure 21: Automaton for the 2-1-cooperation L{1,2}{1}

For (i, k) ∈ I×K, let πIKik : Σ∗IK → Σ∗ with

πIKik (ars) =

{
a | ars ∈ Σik
ε | ars ∈ ΣIK \ Σik

.

For uniformly parameterised systems LIK one generally wants to have

LIK ⊂
⋂

(i,k)∈I×K

((πIKik)
−1(L))

because from an abstraction point of view, where only the actions of
a specific Σik are considered, the complex system LIK is restricted
by L.

In addition to this inclusion, LIK is defined by local schedules that
determine how each “version of a partner” can participate in different

54

www.manaraa.com

2.5 scalability for large-scale

cooperations. More precisely, let SF ⊂ Φ∗, SG ⊂ Γ∗ be prefix closed.
For (i, k) ∈ I×K, let ϕIKi : Σ∗IK → Φ∗ and γIKk : Σ∗IK → Γ∗ with

ϕIKi (ars) =

{
a | ars ∈ Φ{i}K

ε | ars ∈ ΣIK \Φ{i}K

and

γIKk (ars) =

{
a | ars ∈ ΓI{k}
ε | ars ∈ ΣIK \ ΓI{k}

,

where ΦIK and ΓIK are defined correspondingly to ΣIK.

Definition 7 (uniformly parameterised cooperation).
Let I, K be finite parameter sets, then

LIK :=
⋂

(i,k)∈I×K

(πIKik)
−1(L)∩

⋂
i∈I

(ϕIKi)−1(SF)∩
⋂
k∈K

(γIKk)−1(SG)

denotes a uniformly parameterised cooperation.

By this definition,

L{1}{1} = (π
{1}{1}
11)−1(L)∩ (ϕ

{1}{1}
1)−1(SF)∩ (γ

{1}{1}
1)−1(SG).

In order to have L{1}{1} be isomorphic to L by the isomorphism π
{1}{1}
11 :

Σ∗
{1}{1} → Σ∗, it is additionally required that

(π
{1}{1}
11)−1(L) ⊂ (ϕ

{1}{1}
1)−1(SF) and

(π
{1}{1}
11)−1(L) ⊂ (γ

{1}{1}
1)−1(SG).

This is equivalent to πΦ(L) ⊂ SF and πΓ (L) ⊂ SG, where πΦ : Σ∗ →
Φ∗ and πΓ : Σ∗ → Γ∗ are defined by

πΦ(a) =

{
a | a ∈ Φ
ε | a ∈ Γ

and πΓ (a) =

{
a | a ∈ Γ
ε | a ∈ Φ

.

So, Definition 7 is completed by the additional conditions

πΦ(L) ⊂ SF and πΓ (L) ⊂ SG.

Figure 22a and Figure 22b depict schedules SF and SG that fit to the
cooperations given in Example 7. Here, πΦ(L) = SF and πΓ (L) = SG.

The system LIK of cooperations is a typical example of a complex
system. It consists of several identical components (copies of the two-
sided cooperation L), which interact in a uniform manner (described
by the schedules SF and SG and by the homomorphisms ϕIKi and
γIKk).

Remark 1. It is easy to see that LIK is isomorphic to LI ′K ′ if I is isomorphic
to I ′ and K is isomorphic to K ′. More precisely, let ιII ′ : I → I ′ and ιKK ′ :
K→ K ′ be bijections and let ιIKI ′K ′ : Σ

∗
IK → Σ∗I ′K ′ be defined by

ιIKI ′K ′(aik) := aιI
I ′(i)ι

K
K ′(k)

for aik ∈ ΣIK.

Hence, ιIKI ′K ′ is a isomorphism and ιIKI ′K ′(LIK) = LI ′K ′ . The set of all these
isomorphisms ιIKI ′K ′ defined by corresponding bijections ιII ′ and ιKK ′ is denoted
by IIKI ′K ′ .

55

www.manaraa.com

2.5 scalability for large-scale

fs

fr

(a) Schedule SF

gr

gi

gs

(b) Schedule SG

Figure 22: Automata SF and SG for the schedules SF and SG

2.5.2 Self-similarity

The notion of self-similarity is introduced in order to formalise that for
I ′ ⊂ I and K ′ ⊂ K from an abstracting point of view, where only the
actions of ΣI ′K ′ are considered, the complex system LIK behaves like
the smaller subsystem LI ′K ′ . Therefore, now special abstractions on
LIK are considered.

Definition 8 (Projection abstraction).
For I ′ ⊂ I and K ′ ⊂ K let ΠIKI ′K ′ : Σ

∗
IK → Σ∗I ′K ′ with

ΠIKI ′K ′(ars) =

{
ars | ars ∈ ΣI ′K ′
ε | ars ∈ ΣIK \ ΣI ′K ′ .

It is easy to see [Ochsenschläger & Rieke, 2010]:

Theorem 2. LIK ⊃ LI ′K ′ for I ′ ×K ′ ⊂ I×K, and therefore

ΠIKI ′K ′(LIK) ⊃ ΠIKI ′K ′(LI ′K ′) = LI ′K ′ .

However, the following example shows that the reverse inclusions

ΠIKI ′K ′(LIK) ⊂ LI ′K ′ for all I ′ ×K ′ ⊂ I×K (6)

do not hold in general.

Example 8. For a counterexample let us examine the 1-1-cooperation given
by the automaton in Figure 19. Let the schedule SF again be given by the
automaton SF in Figure 22a and the schedule SG be given by the automaton
SG in Figure 23.

1

2 3

4 5 6

7

9 8gr

gi

gs

grgs

gr gi

gi

gs

gsgs

Figure 23: Schedule SG for the counterexample

56

www.manaraa.com

2.5 scalability for large-scale

In the automaton SG immediately after entering a second handshake (state
4) G may enter a third handshake but immediately after entering the first
handshake (state 2) G may not enter a second handshake. Now, for example,

fs11fs21fs31gr11gi11gr21gr31 ∈ L{1,2,3}{1}.

Hence

fs21fs31gr21gr31 ∈ Π
{1,2,3}{1}
{2,3}{1} (L{1,2,3}{1}), but

fs21fs31gr21gr31 /∈ L{2,3}{1}.

The decidability status of (6) in general is not addressed in P7, but
for many parameterised systems (6) holds, and therefore

ΠIKI ′K ′(LIK) = LI ′K ′ ,

which is a generalisation of πIKik (LIK) = L.

Definition 9 (Self-similarity).
A uniformly parameterised cooperation LIK is called self-similar iff

ΠIKI ′K ′(LIK) = LI ′K ′ for each I ′ ×K ′ ⊂ I×K.

So it is of interest to find conditions, which imply (6). Figure 23 is
typical in the sense that it may serve as an idea to get a sufficient con-
dition for self-similarity. It requires (a) two separate conditions, one
for each schedule, (b) structuring schedules into phases, which may
be shuffled in a restricted manner, (c) formalising “how a cooperation
partner is involved in several phases”, and (d) the more phases a coop-
eration partner is involved in, the less possibilities of acting in each
phase he has. In Ochsenschläger & Rieke [2010] a sufficient condition
for self-similarity is given, which is based on deterministic compu-
tations in shuffle automata. Under certain regularity restrictions this
condition can be verified by a semi-algorithm.

In P7, an example is given that demonstrates the significance of
self-similarity for verification purposes and it is shown in particu-
lar that for self-similar parameterised systems LIK the parameterised
problem of verifying a uniformly parameterised safety property can be
reduced to finite many fixed finite state problems.

Complementary to this, in P8, uniformly parameterised reliability prop-
erties are defined based on this concept. The main result is a finite
state verification framework for such uniformly parameterised relia-
bility properties. In this framework the concept of structuring cooper-
ations into phases enables completion of phases strategies. Consistent
with this, corresponding success conditions can be formalised. These
produce finite state semi-algorithms (independent of the concrete pa-
rameter setting) to verify the reliability properties.

Well-behaved scalable systems are a special class of parameterised sys-
tems [Ochsenschläger & Rieke, 2014]. The main motivation for this

57

www.manaraa.com

2.6 related work

definition is to achieve that well-behaved scalable systems fulfil cer-
tain kind of safety properties if already one prototype system (de-
pending on the property) fulfils that property. To this end, construc-
tion principles for well-behaved scalable systems are design principles
for verifiability [Avizienis et al., 2004].

The research results with respect to research question RQ4 pro-
vided in P7 and P8 as well as ongoing research work in this area
[Ochsenschläger & Rieke, 2014] show the significance of self-similarity
for verification purposes and thus for the construction of well-behaved
scalable systems.

2.6 related work

The following research areas have been identified that are of major
importance to the research questions regarding security of coopera-
ting system design: formal methods and model checking, characterisation
of system properties, security requirements engineering, and verification ap-
proaches for parameterised systems.

2.6.1 Formal methods and model checking

The presented approach can be compared with automata based meth-
ods as described in Alur & Henzinger [1995] or Kurshan [1994] as
well as with the concurrency workbench Cleaveland et al. [1993],
which uses the modal µ-calculus as a specification language for prop-
erties [Stirling, 1989].

There exists a variety of verification tools which can be found in
the literature. Some are based on model checking, others use proof
systems. COSPAN [Kurshan, 1994] that is also the base of the commer-
cial verification tool FormalCheck [Xie & Liu, 2007] is probably the
closest to the SHVT. COSPAN is automata based and contains a ho-
momorphism based abstraction concept. Since the transition labels of
automata in COSPAN are in a Boolean algebra notation, the abstrac-
tion homomorphisms are Boolean algebra homomorphisms which
correspond to non-erasing alphabetic language homomorphisms on
the automata level. The SHVT, in addition, offers erasing homomor-
phisms as an abstraction concept. COSPAN also considers only linear
satisfaction of properties. Thus fairness assumptions need to be made
explicitly in this tool. In Hartel et al. [1999] ten tools in this area in-
cluding an old version of SHVT are compared.

The main strength of the method presented here is the combination
of an inherent fairness assumption in the satisfaction relation, a very
flexible abstraction technique compatible with approximate satisfac-
tion, and a suitable compositional and partial order method for the
construction of only a partial state space. The construction of a Büchi
automaton representing the property given by a PLTL formula that is

58

www.manaraa.com

2.6 related work

used in the specific model checking algorithms implemented within
the SHVT is using the algorithm given in Gerth et al. [1996]; Clarke
et al. [1999]; Peled [2001].

2.6.2 Characterisation of system properties

In the information flow analysis approach presented in Guttman et al.
[2003] for the SELinux system, a LTS is generated from the policy
specifications that models the information flow policy. TL formulas
are used to specify the security goals. The NuSMV model-checker
[Cimatti et al., 2002] verifies the security goals on this LTS.

In Benenson et al. [2006] a formal framework based on three dis-
tinct classes of properties, namely safety, liveness and information
flow is given, which makes it possible to reason distinguished within
the formal system model. Examples of dependable systems are given
in this framework in order to justify that these classes of system prop-
erties are sufficient to describe the functional requirements of depend-
able systems satisfying required fault-tolerance and security proper-
ties.

In Cederquist & Dashti [2011] the complexity of expressing fair-
ness constraints for the Dolev-Yao model is analysed. The analysis is
mainly based on type and size of communication buffers (bounded,
unbounded).

A formal definition of safety and liveness properties is given in
Alpern & Schneider [1985]. In Nitsche & Ochsenschläger [1996] a sat-
isfaction relation, called approximate satisfaction, has been defined that
expresses a possibilistic view on liveness and is equivalent to the sat-
isfaction relation in Alpern & Schneider [1985] for safety properties.
Besides these safety and liveness properties so called hyperproperties
[Clarkson & Schneider, 2008] are of interest because they give formal-
isations for non-interference and non-inference.

The specification of the application level security requirements in
this thesis is based on the security modelling framework developed
by Fraunhofer SIT [Gürgens et al., 2002; Gürgens et al., 2005]. The
underlying formal model describes system behaviours as (sets of)
traces of actions, where these actions are associated with agents in
the systems. Security properties are constraints on these sequences.
In contrast to previous approaches it is not focused on a special type
of security property. Formalisations of authenticity, different types of
non-repudiation and confidentiality are presented within the frame-
work. The method to derive security requirements described in this
thesis results in requirements which fit to this framework.

59

www.manaraa.com

2.6 related work

2.6.3 Security requirements engineering

A comprehensive concept for an overall security requirements en-
gineering process called Security Quality Engineering Methodology
(SQUARE) is described in Mead & Hough [2006]; Mead [2007]. The
authors propose a 9 step approach. The elicitation of the security re-
quirements is one important step in the SQUARE process. In Mead
[2007] several concrete methods to carry out this step are compared.
These methods are based on misuse cases, soft systems methodol-
ogy, quality function deployment, controlled requirements expres-
sion, issue-based information systems, joint application development,
feature-oriented domain analysis, critical discourse analysis as well
as accelerated requirements method. A comparative rating based on
9 different criteria is also given but none of these criteria measures
the completeness of the security requirements elicited by the differ-
ent methods. An overview of some formal and informal methods for
the specification of secure systems is also given.

A similar approach based on the integration of Common Crite-
ria (ISO/IEC 15408) called Security Requirements Engineering Pro-
cess (SREP) is described in Mellado et al. [2006, 2007]. Both approaches
Mead [2007] and Mellado et al. [2007] do not provide own formal se-
curity requirements specification techniques but propose to integrate
other formal methods for this purpose.

In van Lamsweerde [2004] anti-goals derived from negated security
goals are used to systematically construct threat trees by refinement
of these anti-goals. Security requirements are then obtained as coun-
termeasures. This method aims to produce more complete require-
ments than other methods based on misuse cases. The refinement
steps in this method can be performed informally or formally.

In Firesmith [2003] different kinds of security requirements are
identified and informal guidelines are listed that have proven useful
when eliciting concrete security requirements. The author emphasises
that there has to be a clear distinction between security requirements
and security mechanisms.

In Haley et al. [2008] it is proposed to use Jackson‘s problem di-
agrams to determine security requirements which are given as con-
straints on functional requirements. Though this approach presents a
methodology to derive security requirements from security goals, it
does not explain the actual refinements process, which leaves open,
the degree of coverage of requirements, depending only on expert
knowledge. Hatebur et al. [2008] specifically addresses accountability
by logging.

In Hatebur & Heisel [2009] patterns for expressing and analysing
dependability requirements, such as confidentiality, integrity, avail-
ability, and reliability are given. The patterns are expressed as logical

60

www.manaraa.com

2.6 related work

predicates. They are part of a pattern system that can be used to iden-
tify missing requirements.

There are a number of other approaches to solve specific problems
in the security requirements refinement process, which are comple-
mentary to the work presented here. For example, in Bandara et al.
[2003] Event Calculus and abductive reasoning is used for developing
a language that supports specification and analysis of policy based
systems, which can be used to detect modality conflicts and a range
of application specific conflicts.

In Liu et al. [2002] actor dependency analysis is used to identify
attackers and potential threats in order to identify security require-
ments. The so called i∗ approach facilitates the analysis of security
requirements within the social context of relevant actors. In Giorgini
et al. [2004] a formal framework for modelling and analysis of se-
curity and trust requirements at an organisational level is described.
Both of these approaches target organisational relations among agents
rather than functional dependence.

An overview of current security requirements engineering processes
is given in Fabian et al. [2010] and Mellado et al. [2010].

Though all of the above mentioned approaches may lead to a suf-
ficient level of security for the designed architecture, there is no ob-
vious means by which they can be compared regarding the security
requirements that they fulfil.

The application to specific application areas as for example vehic-
ular communication networks or critical infrastructures has to con-
sider application specific requirements. Dam monitoring applications
with Automated Data Acquisition Systems (ADASs) are discussed in
Parekh et al. [2010]; Myers et al. [2005]. Usually, an ADAS is organ-
ised as a Supervisory Control And Data Acquisition (SCADA) system
with a hierarchical organisation. Details on SCADA systems organisa-
tion can be found in Coppolino et al. [2010]. In the majority of cases,
SCADA systems have very little protection against the escalating cyber
threats. Compared to traditional IT systems, securing SCADA systems
poses unique challenges. In order to understand those challenges and
the potential danger, Zhu et al. [2011] provides a taxonomy of possi-
ble cyber attacks including cyber-induced cyber-physical attacks on
SCADA systems.

Besides identification of security requirements that is addressed in
this thesis, the further security engineering process has to addresses
issues such as how to mitigate risks resulting from connectivity and
how to integrate security into a target architecture [Bodeau, 1994].
Specific mechanisms for enforcement of authenticity requirements
which have been derived by the method proposed in this thesis com-
prise, for example, Trusted Computing (TC) techniques. TC technol-
ogy standards provide methods for reliably verifying a system’s in-
tegrity and identifying anomalous and/or unwanted characteristics

61

www.manaraa.com

2.6 related work

[Mitchell, 2005]. An approach for the generation of secure evidence
records was presented in Richter et al. [2010].

2.6.4 Verification approaches for parameterised systems

Considering the behaviour verification aspect, which is one of the
motivations to formally define well-behaved scalable systems, there
are some other approaches to be mentioned.

An extension to the Murϕ verifier to verify systems with repli-
cated identical components through a new data type called Repeti-
tiveID is presented in Ip & Dill [1999]. The verification is performed
by explicit state enumeration in an abstract state space where states
do not record the exact numbers of components. A typical appli-
cation area of this tool are cache coherence protocols. The aim of
Derepas & Gastin [2001] is an abstraction method through symmetry,
which works also when using variables holding references to other
processes. This is not possible in Murϕ. In Lakhnech et al. [2001],
a methodology for constructing abstractions and refining them by
analysing counter-examples is presented. The method combines ab-
straction, model-checking and deductive verification. In Basu & Ra-
makrishnan [2006], a technique for automatic verification of param-
eterised systems based on process algebra CCS [Milner, 1989] and
the logic modal mu-calculus [Bradfield & Stirling, 2001] is presented.
This technique views processes as property transformers and is based
on computing the limit of a sequence of mu-calculus formula gener-
ated by these transformers. The above-mentioned approaches demon-
strate that finite state methods combined with deductive methods can
be applied to analyse parameterised systems. The approaches differ
in varying amounts of user intervention and their range of applica-
tion. A survey of approaches to combine model checking and theorem
proving methods is given in Uribe [2000].

Far reaching results in verifying parameterised systems by model
checking of corresponding abstract systems are given in Clarke et al.
[2006]; Talupur [2006].

In Ochsenschläger & Rieke [2010] it is shown that the definition of
uniformly parameterised cooperations is strongly related to iterated
shuffle products [Jantzen, 1985], if the cooperations are “structured into
phases”. The main concept for such a condition are shuffle automata
[Jedrzejowicz & Szepietowski, 2001] (multicounter automata [Björk-
lund & Bojanczyk, 2007]) whose computations, if they are determin-
istic, unambiguously describe how a cooperation partner is involved
in several phases.

The main contribution of P7 is to show how the parameterised
problem of verifying a uniformly parameterised safety property can
be solved by means of the self-similarity results of Ochsenschläger &
Rieke [2010] and finite state methods.

62

www.manaraa.com

2.7 summary of results

It is well known that the general verification problem for param-
eterised systems is undecidable [Apt & Kozen, 1986; Suzuki, 1988].
However, this chapter introduces a formal framework to specify pa-
rameterised systems in a restricted manner, in order to achieve that
these well-behaved scalable systems fulfil certain kind of safety prop-
erties if already one prototype system fulfils that property. Further
work on construction principles for well-behaved scalable systems
shows how to construct more complex systems by the composition
of several synchronisation conditions based on this characterisation
[Ochsenschläger & Rieke, 2014]. A similar approach is well-developed
for hardware with respect to design for testability of physical faults
[Avizienis et al., 2004].

2.7 summary of results

This chapter addresses security of cooperating system design. The
specific objective is to support the development of secure and depend-
able systems by model-based analysis and verification of security and
safety properties with regard to the design or redesign of a system,
that is, support for fault prevention and fault removal in a system’s de-
sign. With respect to the overall aim of this thesis – to provide a
framework for security analysis of system behaviour – this chapter
addresses the “Plan“ activity in the Plan-Do-Study-Act (PDSA) cycle
(cf. Figure 4). The general objective of this activity is to establish the
objectives, identify security requirements, and analyse the design of
the system.

The thesis provides a method to identify security requirements and
express them formally; it provides methods and tools to analyse sys-
tem design with respect to given requirements; and, it provides some
construction principles that have to be taken into account in the de-
sign of well-behaved scalable systems. Thus, it addresses fault preven-
tion and fault removal in the early stages of the security engineering
process.

2.7.1 APA, TL and verification tool

With respect to security of cooperating system design, the first objective
O1 of this thesis was to provide a framework for model-based security
analysis. This motivated research question RQ1.

O1: Provide a
framework for
model-based secu-
rity analysis

RQ1: How can it be proven
that components of coop-
erating systems securely
work together?

R1: APA, TL and
verification tool
[P1, P2, P3]

The results published in P1 – P3 address this research question and
provide means to prove that - in the context of CS - the components

63

www.manaraa.com

2.7 summary of results

work together in a desired manner. In the following, an overview of
each of the papers contributing to result R1 is given.

P1 . The SH-Verification Tool – Abstraction-Based Verifica-
tion of Co-operating Systems

This paper gives an overview about the main functions of the SHVT.
The aim of the SHVT is to support the verification of cooperating sys-
tems. Cooperating systems are specific distributed SoS which are char-
acterised by freedom of decision and loose coupling of their compo-
nents. This causes a high degree of nondeterminism which has to be
handled by the analysis methods. Typical examples of cooperating
systems are telephone systems, communication protocols, smartcard
systems, electronic money, and contract systems. In that context, ver-
ification is the proof that system components work together in a de-
sired manner. At that, the main strength of the tool is the combination
of an inherent fairness assumption in the satisfaction relation, an ab-
straction technique compatible with approximate satisfaction, and a
suitable compositional and partial order method for the construction
of only a partial state space.

P2 . The SH-Verification Tool

This paper gives an overview about the main components of the
SHVT. With the help of an illustrative example, the usage of the meth-
ods described in P1 is shown. P2 contributes to research question
RQ1 by the demonstration of the applicability of the methods devel-
oped in P1. Specifically, abstraction and temporal logic based reason-
ing is demonstrated. The SHVT’s user interface and general handling
has reached a level of maturity that enabled its successful application
in the industrial area [Apel et al., 2007].

P3 . Development of formal models for secure e-services

This paper provides an extensive example for the use of the meth-
ods and tool described in P1 and P2. From e-government applications
provided by project partners from the city of Cologne a typical exam-
ple of an e-service implementation was selected. This e-service was
modelled, augmented by an attacker model, and analysed using the
SHVT. It has been shown that even if the correct behaviour of an e-
service is proven under assumptions about the interfaces to the en-
vironment and about reasonable input it is necessary to inspect the
system behaviour and ask ’what if’ questions to check the behaviour
of the model against given attack patterns or slightly changed as-
sumptions about the environment. A vulnerability - a race condition
problem - was found that leads in the end to a misrouting effect.
Race conditions are just the most security-relevant type of concur-
rency problem [Viega & McGraw, 2002].

64

www.manaraa.com

2.7 summary of results

2.7.2 Abstraction based verification

Objective O2 of this thesis was to enable scalable verification of proper-
ties. Given the results from the work on RQ1, namely, the finite state
verification framework, research question RQ2 addresses extensions
to this framework with respect to objective O2.

O2: Enable scal-
able verification of
properties

RQ2: How can finite state
verification techniques be
extended to prove prop-
erties independently of
concrete parameters?

R2: Abstraction
based verification
[P4]

The results published in P4 address this research question and thus
provide result R2.

P4 . Abstraction Based Verification of a Parameterised Pol-
icy Controlled System

This paper extends the tool supported verification techniques pre-
sented in P1 and P2 by an approach to verify entire families of critical
systems, independent of the exact number of replicated components.
This is demonstrated by an exemplary verification of security and
liveness properties of a simple parameterised collaboration scenario.
Verification results for configurations with fixed numbers of compo-
nents are used to choose an appropriate property preserving abstrac-
tion that provides the basis for an inductive proof that generalises the
results for a family of systems with arbitrary settings of parameters.
The inductive proof uses the construction of the behaviour of the pa-
rameterised system to show that it results in identical abstract system
behaviour for any given parameter configuration. This allows the ver-
ification of parameterised systems by constructing abstract systems
that can be model checked.

2.7.3 Authenticity requirements identification

Objective O3 of this thesis was to elicit security requirements systemati-
cally. This motivated research question RQ3.

O3: Elicit secu-
rity requirements
systematically

RQ3: How can security
requirements for cooper-
ating systems be elicited
systematically?

R3: Authentic-
ity requirements
identification [P5,
P6]

The results published in P5 and P6 address this research question.
In the following, an overview of the papers contributing to result R3

is given.

65

www.manaraa.com

2.7 summary of results

P5 . Identification of Security Requirements in Systems of Sys-
tems by Functional Security Analysis

This book chapter is an extended version of [Fuchs & Rieke, 2009].
It provides a model-based approach to systematically identify se-
curity requirements for cooperating systems. The proposed method
comprises the tracing down of functional dependencies over system
component boundaries right onto the origin of information as a func-
tional flow graph. Based on this graph, comprehensive sets of for-
mally defined authenticity requirements for the given security and
dependability objectives are systematically deduced. The proposed
method thereby avoids premature assumptions on the security ar-
chitecture’s structure as well as the means by which it is realised.
The most common problem with security requirements is that they
tend to be replaced with security-specific architectural constraints
that may unnecessarily constrain the choice of the most appropri-
ate security mechanisms [Firesmith, 2003]. Therefore, the proposed
approach avoids to break down the overall security requirements
to requirements for specific components or communication channels
prematurely. So the requirements identified by this approach are in-
dependent of decisions not only on concrete security enforcement
mechanisms to use, but also on the structure, such as hop-by-hop
versus end-to-end security measures.

P6 . A Trusted Information Agent for Security Information

and Event Management

This paper demonstrates on an example of a critical infrastructure -
a hydroelectric power plant - how security requirements for such SoS

can be derived by application of the requirements elicitation method
described in P5. The elicited requirements provide implications for
the design of the security architecture which - in this case - leads to
the application of trusted computing technology.

2.7.4 Parameterised verification problem reduced to finite state

Objective O4 of this thesis aimed to identify principles for scalability.
This motivated research question RQ4.

O4: Identify princi-
ples for scalability

RQ4: Which design princi-
ples facilitate verifiability
of security properties of
scalable systems?

R4: Parameterised
verification prob-
lem reduced to
finite state [P7,P8]

The results published in P7 and P8 address this research question.
In the following, an overview of the papers contributing to result R4

is given.

66

www.manaraa.com

2.7 summary of results

P7 . Security Properties of Self-similar Uniformly Parameter-
ised Systems of Cooperations

In this paper uniform parameterisations of cooperations are de-
fined in terms of formal language theory, such that each pair of part-
ners cooperates in the same manner, and that the mechanism (sched-
ule) to determine how one partner may be involved in several cooper-
ations, is the same for each partner. Generalising each pair of partners
cooperating in the same manner, for such systems of cooperations
a kind of self-similarity is formalised. From an abstracting point of
view, where only actions of some selected partners are considered, the
complex system of all partners behaves like the smaller subsystem of
the selected partners. For verification purposes, so called uniformly
parameterised safety properties are defined. Such properties can be
used to express privacy policies as well as security and dependability
requirements. It is shown, how the parameterised problem of veri-
fying such a property is reduced by self-similarity to a finite state
problem.

P8 . Reliability Aspects of Uniformly Parameterised Coopera-
tions

In this paper reliability aspects of systems, which are characterised
by the composition of a set of identical components are examined.
These components interact in a uniform manner, described by the
schedules of the partners. Such kind of interaction is typical for scal-
able complex systems with cloud or grid structure. In addition to the
safety properties of such uniformly parameterised cooperations which
have been analysed in P7 reliability of such systems in a possibilistic
sense is considered. This is formalised by always-eventually proper-
ties, a special class of liveness properties using a modified satisfac-
tion relation, which expresses possibilities. As a main result, a finite
state verification framework for uniformly parameterised reliability
properties is given. The keys to this framework are structuring coop-
erations into phases and defining closed behaviours of systems. In
order to verify reliability properties of such uniformly parameterised
cooperations, finite state semi-algorithms that are independent of the
concrete parameter setting are used.

2.7.5 Conclusion

In summary, the results presented in this chapter aim at prevention of
faults in the design phase and removal of faults in redesign phases. Specif-
ically, the security and dependability properties expressed by the at-
tributes integrity (= authenticity within a phase), safety, reliability, and
availability have been analysed.

The modelling framework and tool introduced in this chapter is
not only used within this chapter, for example, in P3 for security

67

www.manaraa.com

2.7 summary of results

analysis of e-services provided by the city of Cologne, in P4 for a
collaboration scenario with trusted and untrusted clients, in P5 for
vehicle-to-vehicle communications. It is further utilised to model and
analyse quite different systems throughout this thesis.

In Chapter 3 the modelling framework is utilised in P9, P10, and
P11 for network models including assets, vulnerabilities, security poli-
cies and attacker behaviour, and in P12 for validation of Xtensible
Access Control Markup Language (XACML) policies.

In the work presented in Chapter 4 the framework is extended for
runtime usage. It is utilised in P13 for an online credit application
process, in P14 for a pickup process from a logistics scenario of the
project Alliance Digital Product Flow (ADiWa) [ADiWa Konsortium,
2012], in P18 for fraud detection in a Mobile Money Transfer Service
(MMTS) scenario, and in P19 for a hydroelectric power plant model.
The SHVT is a core component of the Predictive Security Analyser
(PSA) presented in Chapter 4.

Additional peer-reviewed publications related to the methods and
tool described in this chapter with participation of the author of
this thesis comprise Ochsenschläger et al. [2000b]; Ochsenschläger
et al. [2000]; Herfert et al. [2004]; Apel et al. [2007]; Fuchs & Rieke
[2009]; Kaindl et al. [2012]; Ochsenschläger & Rieke [2012b]; Khan
et al. [2013]. An invited talk related to P5 has been given at the CAST

workshop 2010 on Mobile Security for Intelligent Cars [Rieke, 2010b].
In further noteworthy work of the author of this thesis APA have been
used to model a framework for secure e-government [Rieke, 2002] as
well as critical parts of the infrastructure of the German ehealth card
[Rieke, 2009b].

68

www.manaraa.com

3
S E C U R I T Y O F S Y S T E M C O N F I G U R AT I O N S

It is easier to perceive error than to find truth, for the former
lies on the surface and is easily seen, while the latter lies in the
depth, where few are willing to search for it.

— Johann Wolfgang von Goethe, Maximen und
Reflexionen (1823)

aim of this chapter . A systematic security assessment of in-
formation infrastructures requires an analytical process to identify
the critical components and their interplay, to determine the threats
and vulnerabilities, to assess the risks, and to prioritise countermea-
sures where risk is unacceptable. To achieve this objective, this chap-
ter presents an approach that builds on a model-based construction
of an attack graph taking into account constraints given by the net-
work security policy. The most distinctive feature of this approach
is the ability to compute abstract representations of these complex
graphs that enable comparison of focussed views on the behaviour
of the system. In order to analyse resilience of information infrastruc-
tures against exploits of unknown vulnerabilities by zero day attacks,
generic vulnerabilities for each installed product and affected service
are added to the model. Furthermore, an approach for the validation
and deployment of a security policy is given.

This chapter is based on the work published in P9, P10, P11, and
P12 (cf. Table 2).

3.1 introduction

Information and Communications Technology (ICT) is creating inno-
vative systems and extending existing infrastructure to such an in-
terconnected complexity that predicting the effects of small internal
changes (e.g., firewall policies) and external changes (e.g., the discov-
ery of new vulnerabilities and exploit mechanisms) becomes a major
problem [Bullock & Cliff, 2004]. The security of such a complex net-
worked system essentially depends on a concise specification of se-
curity goals, their correct and consistent transformation into security
policies, and an appropriate deployment and enforcement of these
policies. This has to be accompanied by a concept to adapt the secu-
rity policies to changing context and environment, usage patterns and
attack situations. To help to understand the complex interrelations of
security policies, ICT infrastructure and vulnerabilities and to validate

69

www.manaraa.com

3.1 introduction

security goals in such a setting, tool-based modelling techniques are
required that can efficiently and precisely predict and analyse the be-
haviour of such complex interrelated systems. Known and unknown
vulnerabilities may be part of each of the connected components and
communication paths between them. Analysis methods should guide
a systematic evaluation of such a critical information infrastructure
assist the persons in charge with finally determining exactly how to
configure protection measures and which security policy to apply.

The aim of this thesis with respect to security of system configura-
tions is expressed by the following four objectives (cf. Figure 3).

O5: Configure systems so that vulnerabilities are protected or hid-
den.

O6: Identify network configuration risks.

O7: Assess zero-day exploit vulnerability.

O8: Validate implementation of security goals.

In order to configure systems securely (objective O5), a formal mod-
elling framework is presented that, on the one hand, represents the
information system and the security policy, and, on the other hand,
a model of attacker capabilities and profile. Building on this, a graph
representing all possible attack paths called attack graph can be auto-
matically computed. The attack graph allows to investigate whether
a given security policy successfully blocks attack paths and is robust
against changes in the given vulnerability setting.

For the identification of network configuration risks (objective O6),
a method to compute abstract representations of an attack graph is
proposed that helps to overcome the problems to analyse an attack
graph of a realistic network configuration directly because of the huge
size.

This is especially important when possible attacks based on un-
known vulnerabilities are added to the model in order to identify
and assess network configuration risks with respect to zero-day ex-
ploit vulnerabilities (objective O7).

In order to validate the implementation of security goals (objective
O8), the analysis of a network security policy with respect to compli-
ance with the high-level security and safety requirements is consid-
ered and an approach for the runtime management of policies and
their update and synchronisation process is proposed.

This chapter is structured as follows. The modelling approach is
introduced in Section 3.2, while Section 3.3 considers the use of ab-
straction techniques for high-level aspect visualisation. Section 3.4
presents an approach to analyse resilience of critical information in-
frastructures against exploits of unknown vulnerabilities. Section 3.5
addresses policy validation and deployment. Section 3.6 gives an

70

www.manaraa.com

3.2 configuration analysis approach

overview of related work. Finally, this chapter ends with a summary
of the results in Section 3.7.

3.2 configuration analysis approach

The systematic protection of critical information infrastructures re-
quires an analytical process to identify the critical components and
their interplay, to determine the threats and vulnerabilities, to assess
the risks and to prioritise countermeasures where risk is unaccept-
able. A typical means by which an attacker (directly or using mal-
ware such as blended threats) tries to break into such a network is, to
use combinations of basic exploits to get more information or more
credentials and to capture more assets step by step. To find out if
there is a combination that enables an attacker to reach critical net-
work resources or block essential services, it is required to analyse all
possible sequences of basic exploits, so called attack paths.

In order to analyse a networked Systems of Systems (SoS) with re-
spect to such threats the following research questions have to be ad-
dressed.

RQ5a : How can exploitation possibilities of networked systems’ vulnera-
bilities be analysed?

RQ5b : How can attacker behaviour be incorporated into the system model
and the analysis?

RQ5c : Which attacks would not be detected?

To answer these research questions, a formal modelling framework
has been developed and published in P9 that, on the one hand, repre-
sents the information system and the security policy (RQ5a), and, on
the other hand, a model of attacker capabilities and profile (RQ5b). It
is extensible to comprise intrusion detection components (RQ5c) and
optionally a model of the system’s countermeasures. Based on this
model a graph representing all possible attack paths can be automati-
cally computed. It is called an attack graph in the following text. Based
on this attack graph, it is now possible to find out whether a given
security policy successfully blocks attack paths and is robust against
changes in the given vulnerability setting.

3.2.1 Network and vulnerability model

The set of all hosts of the information system consists of the union of
the hosts of the ICT network and the hosts of the attacker(s). Following
the M2D2 model [Morin et al., 2002], products are the primary entities
that are vulnerable. A host configuration is a subset of products that
is installed on that host and affects is a relation between vulnerabili-
ties and sets of products that are affected by a vulnerability. A host

71

www.manaraa.com

3.2 configuration analysis approach

is vulnerable if its configuration is a superset of a vulnerable set of
products and the affected services are currently running. In order to
conduct a subsequent comparative analysis of attack paths, an asset
prioritisation as to criticality or worth regarding relative importance
of the assets is required.

Figure 24 depicts a small example scenario that will be used to illus-
trate the modelling concepts and typical analysis outcome through-
out this chapter. One possible attack path is sketched in the scenario.

intern zone

ICT network

PEP supplier zone

vulnerabilities
unknown

customer zone

vulnerabilities
unknown

with special db_host
production zone

CAN_2003_0715
CAN_2002_0649

developer zone

CVE_1999_0035
CAN_2003_0693
CAN_2003_0620

teleworker VPN zone

CAN_2003_0715

Attacker

CAN_xxxx_yyyy
CVE_xxxx_yyyy

dmz zone

CAN_2003_0694
CAN_2003_0693

management zone

CAN_2003_0715
CAN_2002_1262

PEP

Figure 24: Attack path in vulnerable ICT network

The model of the network security policies is based on the Orga-
nization Based Access Control (OrBAC) model [Cuppens et al., 2004].
The advantage of this choice is that it is possible to link the policies in
the formal model at an abstract level to the low level vendor specific
policy rules for the Policy Enforcement Points (PEPs) such as firewalls
in the concrete ICT network. Following the OrBAC concept, the policy
is given at an abstract level in terms of roles (an abstraction of sub-
jects), activities (an abstraction of actions) and views (an abstraction of
objects). A subject in this model is any host. An action is a network
service such as snmp, ssh or ftp. Actions are represented by a triple
of protocol, source port and target port. An object is a message sent
to a target host. Currently only the target host or rather the role of
the target host is used for the view definition here. To specify the ac-
cess control policy using this approach, permissions are given between
role, activity and view. An example for policy permissions is given in
Table 5.

In order to model mobile components that can transport malware
from one network zone to another, it is convenient to allow a host
to play different roles. For example, a laptop used for teleworking
that plays the role telework_host can additionally be permitted to
play the role intern_host. In this case an attack path could cross the
zones from telework_host to intern_host without any restrictions
by the network security policy.

72

www.manaraa.com

3.2 configuration analysis approach

Table 5: Network security policy

Role (source) View (target) Activity (service)

internet_host internet_host any_activity

any_role dmz_host ssh

any_role dmz_host smtp

dmz_host intern_host ssh

intern_host any_role net

intern_host internet_host ftp

intern_host internet_host rsh

intern_host dmz_host ssh

db_host production_host rpc

teleworker_host dmz_host any_activity

Vulnerability specifications for the formal model are derived from
the Common Vulnerabilities and Exposures (CVE) [MITRE Corpora-
tion, 2013b] descriptions. CVE comprises a list of virtually all pub-
licly known information security vulnerabilities and exposures. The
CVE name is the 13 character ID used by the CVE standards group to
uniquely identify a vulnerability. Additional information about the
vulnerabilities also covers preconditions about the target host as well
as network preconditions. Furthermore, the impact of an exploita-
tion of a vulnerability is described. The specifications for the formal
model of the vulnerabilities additionally comprise the vulnerability
range and impact type assessments provided by the National Vulner-
ability Database (NVD) [NIST Computer Security Resource Center,
2013b]. Of course, other kinds of vulnerabilities could be added to
the model in a similar manner. The Common Vulnerability Scoring
System (CVSS) [FIRST.org, Inc., 2013] provides universal severity rat-
ings for security vulnerabilities. These ratings are used in the model
to assess the threat level.

The information model presented so far covers the description of
a (static) configuration of an ICT network and its vulnerabilities. In
the formal model such a configuration describing the state of the net-
work is represented by Asynchronous Product Automaton (APA) state
components (cf. Section 2.2.1).

3.2.2 Attacker model

With respect to research question RQ5b attacker behaviour has to be
represented in the model. To have a vulnerable product installed on
some host, does not necessarily imply, that someone can exploit that
vulnerability. A target host is configured vulnerable, if (1) the target
host has installed a product or products that are vulnerable with re-
spect to the given vulnerability, and (2) necessary other preconditions

73

www.manaraa.com

3.2 configuration analysis approach

are fulfilled (e.g. some vulnerabilities require that a trust relation is
established as for example used in remote shell hosts allow/deny con-
cepts). The second precondition to exploit a vulnerability is, that the
target host is currently running the respective products such as a vulnera-
ble operating system or server version. If a user interaction is required
this also requires that the vulnerable product is currently used (e.g.
a vulnerable Internet explorer). The third necessary precondition is,
that the network security policy permits that the target host is reachable
on the port the vulnerable product is using from the host the attacker
selected as source.

The knowledge of exploits and hosts and the credentials on the
known hosts constitute an attackers profile. Knowledge about hosts
changes during the computation of the attack graph because the at-
tacker might gain new knowledge when capturing hosts. On the other
hand, some knowledge may become outdated because the enterprise
system changes ip-numbers or other configuration of hosts and reach-
ability. In case a vulnerability is exploited, the model has to cover the
effects for the attacker (e.g. to obtain additional user or root credentials
on the target host) and also the direct impact on the network and host
such as, to shut down a service caused by buffer overflow.

Attacker capabilities are modelled by the atomic exploits and by
the strategy to select and apply them. A state transition modelling an
exploit is constructed from, (1) a predicate that states that the attacker
knows this exploit, (2) an expression to select source and target hosts
for the exploit, (3) a predicate that states that the target host is vulnera-
ble by this exploit, (4) an expression for the impact of the execution of
this exploit on the attacker and on the target host as for example the
shut down of services. Optional add-ons are, an assignment of cost
benefit ratings to this exploit and intrusion detection checks. Several
different attackers can easily be included because an attacker is mod-
elled as a role not a single instance and the tool can automatically
generate multiple instances from one role definition. Modelling of
Denial of Service (DoS) attacks aiming to block resources or communi-
cation channels either directly or by side effects require a much more
detailed model of the resources involved. This could be accomplished
using the presented framework but is out of scope of this work.

3.2.3 Behaviour and properties of the model

To describe how actions of attacker(s) and actions of the system can
change the state of the model, specifications of APA state transitions
are used. These state transitions represent atomic exploits and option-
ally the actions that the system executes itself (e.g., to implement vital
services).

The Simple Homomorphism Verification Tool (SHVT) is used to
analyse this model. It manages the components of the model, al-

74

www.manaraa.com

3.2 configuration analysis approach

lows to select alternative parts of the specification and automatically
“glues” together the selected components to generate a combined
model of ICT network specification, vulnerability and exploit spec-
ification, network security policy and attacker specification. After an

Attack Graph

Exploits

range, cost, impact, IDS
vulnerability, severity, type

initial state

possible global states

q-0

q-2q-1 q-5q-4q-3

ICT Network

topology, asset prioritisation
hosts, services, vulnerabilities critical Services

Counteractions &

Attacker

- apply Exploit
- select Source + Target
- select Exploit

state transition
Policy

role x activity x view

Figure 25: Computation of an attack graph

initial configuration is selected, the attack graph is automatically com-
puted by the SHVT (see Figure 25). Formally, the attack graph is the
Reachability Graph (RG) (see Definition 3) of the corresponding APA

model.
A subgraph of the attack graph for the simple example scenario

from Figure 24 is shown in Figure 26. This graph was computed un-

M-1
start:

M-72M-59M-58 M-73

M-125M-123

M-111

M-48

M-81

M-38

M-67

M-30

M-55M-102

M-124

M-101M-99 M-100

M-28

M-53

M-50

M-83

M-40

M-69

M-126

M-114

M-11

M-25

M-21

M-45

M-16

M-35M-47 M-37M-27

M-78M-76

M-19

M-43

M-14

M-33

M-10

M-24

M-77

M-9

M-23

M-20

M-44

M-15

M-34

M-5

M-8

M-7

M-18

M-6

M-13

M-4

M-3

M-122 M-110M-121 M-109M-97 M-98

M-94

(DEAD)
M-120

M-80

(DEAD)
M-108

(DEAD)
M-142

(DEAD)
M-138

(DEAD)
M-141

(DEAD)
M-137

(DEAD)
M-139

(DEAD)
M-135

(DEAD)
M-140

(DEAD)
M-136

(DEAD)
M-119

M-79

(DEAD)
M-107

(DEAD)
M-133

(DEAD)
M-131

(DEAD)
M-132

(DEAD)
M-95

(DEAD)
M-96

(DEAD)
M-134

M-52

M-85

M-42

M-71

M-32

M-75 M-74

M-51

M-84

M-41

M-70

M-130

M-118

M-129

M-117M-115

M-128

M-49

M-82

M-39

M-68

M-105M-103M-104

M-29

M-54

M-31

M-56

M-106

M-22

M-46

M-17

M-36

M-12

M-26

M-2

Figure 26: Subgraph of attack graph of simple example scenario

der the assumption that the attacker knows all exploits.
Figure 27 shows a detail of this attack graph. For better readability,

the interpretations at the edge labels are omitted. For example, the
edge q13 −→ q38 depicts the application of an exploit where attacker
A uses the ssh vulnerability CAN_2003_0693 and there is a second
exploit (which is stealth, that means not detectable by intrusion de-
tection systems) with the same state transition. The edge q38 −→ q73
depicts an action of the system to restart the ssh daemon and the
edge q73 −→ q73 depicts an action that models the availability of a
critical service.

75

www.manaraa.com

3.2 configuration analysis approach

Service_answer

A_CAN_2002_0649_sql_exploit

A_CAN_2003_0693_ssh_exploit_stealth (3)
A_CAN_2003_0693_ssh_exploit

Defence_Restart_sshd

A_CVE_1999_0035_ftp_exploit (3)

A_CAN_2003_0715_dcom_exploit (2)q13

q11

q38

q88

q78

q73

Figure 27: Attack graph detail

For very large models, on the fly analysis allows to stop compu-
tation of the reachability graph automatically when specified condi-
tions are reached or invariants are broken.

3.2.4 Cost benefit analysis

Cost benefit analysis can be used as a means to help to assess the
likely behaviour of an attacker. Cost ratings (from the view of an
attacker) can be assigned to each exploit, for example, to denote the
time it takes for the attacker to execute the exploit or the resources
needed to develop an exploit. Cost ratings can also be based on the
severity ratings given by CVSS. If not only technical vulnerabilities are
modelled but also human weaknesses are considered, then cost could
be, for example, the money needed to buy a password.

Based on these cost assignments (weights of edges), the shortest
path from the root of the attack graph to a node representing a suc-
cessful attack can be computed using Dijkstra’s well-known algo-
rithm. This path represents the least expensive combined attack break-
ing a given security goal.

A benefit for the attacker based on the negative impact he achieves
can also be assigned, for example to indicate the worth regarding rel-
ative criticality of the captured asset.

Example 9. Costs are directly assigned to the atomic exploits in this exam-
ple, whereas the benefit for a transition is computed as the worth of the target
host multiplied by the rank of the access right gained (cf. Figure 28).

Figure 29 depicts an attack path computed by cost benefit analysis (cf. P9).

Summarised costs and benefits can be compared for selected paths
or the whole graph and used for example to find the node with the
greatest benefit for a potential attacker. Extensions of such analysis
methods could be used for minimum-cost network hardening (cf.
http://www.patentstorm.us/patents/7555778/fulltext.html).

Other security related properties such as the probability of being
detected by intrusion detection systems can be associated with APA

transitions. In Figure 29 steps of the attacker that are not detected
by Intrusion Detection System (IDS) components are coloured green,
detected steps are coloured orange. This information when evaluated
in the analysis of an attack graph answers research question RQ5c

76

http://www.patentstorm.us/patents/7555778/fulltext.html

www.manaraa.com

3.3 systematic risk identification

Exploit Cost

CAN_2003_0693_ssh_exploit 3

CAN_2003_0693_ssh_exploit_stealth 4

CVE_1999_0035_ftp_exploit 2

CAN_2003_0620_man_db_exploit 3

CAN_2003_0715_dcom_exploit 4

CAN_2003_0694_sendmail_exploit 4

CAN_2002_0649_sql_exploit 4

rsh_login 1

(a) Exploit costs

Host Worth

nix_host 2

ms_host 2

db_server 9

portal 4

(b) Host criticality

Access Rank

none 1

restricted_user 2

user 3

db_user 4

root 5

(c) Access rank

Figure 28: Cost benefit values

(($ 0 . 0))
M-4

(($ 4 . 20))
M-7

(($ 6 . 22))
M-18

(($ 10 . 32))
M-45

(($ 14 . 77))
M-85

(($ 15 . 83))
M-122

(($ 18 . 93) DEAD)
M-140

(Attacker_CAN_2003_0620_man_db_exploit (T = nix_host)) $(3 . 10)

(Attacker_rsh_login (S = portal T = nix_host)) $(1 . 6)

(Attacker_CAN_2002_0649_sql_exploit (S = portal T = db_server)) $(4 . 45)

(Attacker_CAN_2003_0715_dcom_exploit (S = portal T = ms_host)) $(4 . 10)

(Attacker_CVE_1999_0035_ftp_exploit (S = portal T = nix_host)) $(2 . 2)

(Attacker_CAN_2003_0694_sendmail_exploit (S = attacker T = portal)) $(4 . 20)

Figure 29: Attack path with cost benefit annotations

and can lead to improvements of a given configuration of a critical
information infrastructure.

3.3 systematic risk identification

The SHVT usually computes attack graphs of some million edges in
acceptable time and space. The problem now is that it is impossible
to visualise a graph of that size. It is evident that in order to make use
of the security related information that is available within this com-

77

www.manaraa.com

3.3 systematic risk identification

plex behaviour representation an abstraction process is needed. This
abstraction should condense millions of specific transitions into a few
human-understandable abstract transitions thus enabling to visualise
and analyse compacted information focussed on interesting aspects
of the behaviour like those expressed by the following research ques-
tions.

RQ6a : What are the effects of changes to the network configuration on
overall vulnerability?

RQ6b : What is the most likely attacker behaviour and most effective coun-
termeasure?

RQ6c : Will countermeasures of the system under attack succeed?

To address these research questions, it has been proposed in P10

to use an abstraction based approach using the concept depicted in
Figure 14.

Abstract representations of an attack graph can be computed and
used to visualise and analyse compacted information focussed on in-
teresting aspects of the behaviour. The behaviour abstraction of an
APA can be formalised by alphabetic language homomorphisms (see
Section 2.2.3). The mappings used to compute the abstract representa-
tions of the behaviour have to be property preserving, in order to assure
that properties are transported as desired from a lower to a higher level
of abstraction and no critical behaviour is hidden by the mapping (cf.
Section 2.2.3).

Example 10 (Definition of an abstract representation). Figure 30 defines
a mapping of the transitions representing an exploit of a vulnerability to the
respective range and impact type assessments of the vulnerabilities (cf.
Section 3.2.1). Range types of the vulnerabilities in the example scenario are
remote (remotely exploitable) and local (locally exploitable). Impact types
used here are unspecific (provides unauthorised access), user (provides
user account access) and root (provides administrator access).

This mapping denotes, that all transitions (leaves of the tree) are to be rep-
resented by their respective father nodes, namely system, preprocessing,
unspecific, user, root and local in the abstract representation. The nodes
system and preprocessing are coloured in grey, symbolising that they are
mapped to ε, that means the transitions represented by these nodes will be
invisible in the abstract representation. Please ignore the notation (Pol) at
the node remote for the moment.

Figure 31 shows the result of application of the mapping in Figure 30 to
the attack graph from Figure 26. This computed abstract representation (a
graph with only 20 states and 37 edges) gives a visualisation focussing on
the transition types root, user, unspecific and local. The simplicity of
this mapping that guarantees that properties are preserved was automatically
proven by the tool.

78

www.manaraa.com

3.3 systematic risk identification

Service_answer

Defence_Restart_sshd

system

A_select_exploit

Preprocessor_gen_vulnerabilities

preprocessing

A_IE_caching_mail

A_null_session

A_CAN_2002_0649_sql_exploit

A_rsh_login

unspecific

A_CVE_1999_0035_ftp_exploituser

A_CAN_2003_0694_sendmail_exploit

A_CAN_2003_0715_dcom_exploit

A_CAN_2003_0693_ssh_exploit_stealth

A_CAN_2003_0693_ssh_exploit

root

remote (Pol)

A_CAN_2003_0620_man_db_exploitlocal

scenario

Figure 30: Definition of an abstract representation of the attack graph

A-20

A-4

A-11

A-13

A-10

A-14

A-17

A-15

A-18

A-2

A-9

A-7A-19

A-1

A-8

A-5
A-12

A-6

A-16

A-3

(user)

(unspecific)

(root)
(root)

(user)

(unspecific)

(user)

(root)

(unspecific)
(unspecific)

(root)

(user)

(root)

(unspecific)

(root)
(root)

(user)

(root)

(unspecific)

(root)

(unspecific)

(user)

(root)

(unspecific)

(user)

(root)

(root)

(user)

(root)

(unspecific)

(root)

(unspecific)

(user)

(unspecific)

(root)

(unspecific)

(root)

Figure 31: Abstract view on an attack graph

refined mapping . To find out which policies permit the attacks
shown in Figure 31, a refinement of the abstraction defined in Fig-
ure 30 is necessary. It is possible to “fine tune” the mapping so that
the interpretation variables (cf. Definition 2) stay visible in the ab-
stract representation. In this case the binding of the interpretation
variable Pol that contains the respective policy can be visualised. This
is denoted by (Pol) in the node remote in Figure 30. The correspond-
ing refined abstract representation is a graph with 34 states and 121

edges when computed on the attack graph in Figure 26. The initial
nodes and edges of this graph are shown in Figure 32a. In compari-
son to the corresponding edges A20 −→ A19 and A20 −→ A18 of the
graph in Figure 31 now the details on the related policies are visible.

79

www.manaraa.com

3.3 systematic risk identification

A-32
A-34

A-33

(root (Pol = (any_role,dmz_host,ssh))) (2)
(root (Pol = (any_role,dmz_host,smtp)))

(unspecific ())

(a) (any_role,dmz_host, ssh/smtp)

A-32
A-34

A-33

(root (Pol = (any_role,dmz_host,smtp)))

(unspecific ())

(b) (any_role,dmz_host, smtp)

Figure 32: Details in the abstract view

adapt/optimise the system configuration. Further anal-
ysis reveals, that, if the example policy given in Table 5 is changed to
allow only smtp instead of ssh and smtp for any_role to dmz_host
then the analysis yields of course a smaller graph than the original
shown in Figure 26, the coarse abstract representation in Figure 31 is
the same, but the finer mapping with interpretation variable Pol visi-
ble results in a different representation which is shown in Figure 32b.

If alternatively the policy is restricted to allow only ssh instead of
ssh and smtp in the above example, then the result is yet a different
attack graph but the abstract view in Figure 31 is still the same.

This analysis demonstrates that there may be differences in the de-
tailed attack graphs but no differences in the abstract representations
thereof. This indicates that the different policies are equally effective
(or not) concerning the enforcement of security goals on the abstract
level, even if variations in the attack paths are covered by different
policy rules.

using predicates to define abstractions . Let us now as-
sume that the host db_server in the scenario is the most valuable and
mission critical host in the ICT network. So we want to know if in the
given scenario, (1) attacks to the db_server are possible, (2) on which
vulnerabilities they are based, and, (3) which policy rules are directly
involved.

The abstraction given by Figure 33a exemplifies how predicates
can be used to define such a mapping. In this mapping the predicate
(T=db_server) matches only those transitions that model direct attacks
to the target host db_server. Furthermore the bindings of the interpre-
tation variables Vul and Pol that contain the respective vulnerability
and policy are used in the mapping. The remote transitions that don’t
match that predicate are mapped to ε and so are invisible.

Evaluating this abstraction on the attack graph from Figure 26

above results in the simple graph given in Figure 33b. This proves
that, (1) in the current policy configuration attacks to the db_server are
possible, (2) those attacks are based on exploits of the vulnerability
CAN_2002_0649, and, (3) they are utilising the policy permission (in-
tern_hosts,any_role,net). So to prevent this attack, it has to be decided,
whether it is more appropriate to uninstall the product that is hurt

80

www.manaraa.com

3.4 zero-day exploit assessment

system

preprocessing

 ~(,(T=db_server),)

 (,(T=db_server),)

remote (,(T=db_server),); (Vul,Pol)

local

scenario

(a) Abstraction used

A-2

A-1

 Pol = (intern_host,any_role,net)))
 (Vul = CAN_2002_0649
((,(T=db_server),)

(b) Resulting graph

Figure 33: Focus on attacks to the host db_server

by this vulnerability or to restrict the internal hosts in their possible
actions by replacing the above policy with a more restrictive one.

3.3.1 Countermeasure model and liveness properties

With respect to research question RQ6c liveness properties (cf. Sec-
tion 2.2.3) have to be considered. Liveness properties in the context
of ICT infrastructure security analysis cover availability and business
continuity aspects for example with respect to DoS attacks. When a
system’s countermeasures and the behaviour of vital services the sys-
tem provides are included in the model, then availability properties
such as the system’s resilience with respect to DoS attacks can be anal-
ysed.

Example 11. An example for the inclusion of countermeasures and critical
services in the model is given by the transitions Defence_restart_sshd
and Service_answer in Figure 27. If, for example, as a side effect of an
ssh_exploit the attacker kills the sshd then afterwards the sshd is not
active on the respective host and so some service possibly cannot answer
requests anymore. Now additionally a system countermeasure is considered
that restarts the sshd. No other details are added to keep the model small.

A typical liveness question in this scenario is “Will a client still get
answers from a server when the network is attacked?”. In terms of
Temporal Logic (TL) the property in question above can be written as
G F Service_answer (always eventually Service_answer). This is a
specialisation of the more general research question RQ6c. An appro-
priate type of model checking, in this case approximate satisfaction of
TL (cf. Section 2.2.3) can now be used to answer this kind of questions.

3.4 zero-day exploit assessment

The analysis of network security with respect to unknown zero day
attacks [Wang et al., 2010] is a relatively new research topic [Kotenko

81

www.manaraa.com

3.4 zero-day exploit assessment

& Chechulin, 2012]. Zero day attacks can be defined as attacks which
use unknown vulnerabilities [Kotenko & Chechulin, 2012]. This moti-
vates the following research question.

RQ7 : To which extent is a networked system resilient against exploits of
unknown vulnerabilities?

One way to consider resilience of an information infrastructure
against attacks to unknown vulnerabilities is, to define a new vul-
nerability for each installed product. For the model of the scenario
used in this chapter this has been done in P11 by definition of a new
vulnerability called CAN_generic with a variable part for the affected
service. In the same way a generic exploit based on this vulnerability
is defined. Now in the preprocessing phase a state transition selects
an arbitrary product and inserts a generic vulnerability CAN_generic
for that product and the related service. Because the reachability anal-
ysis considers every possible choice of product, all alternatives are
evaluated in the attack graph.

When analysing the (now much larger) attack graph, the mapping
in Figure 34 exemplarily shows a possible use of resilience analy-
sis. The state transition modelling an exploit of an unknown generic
vulnerability uses the additional interpretation variables RS and RT ,
where RS denotes the role of the source host and RT the role of the
target host. So the given predicate (RS = RT) matches only those
transitions that model attacks of hosts in the same role (within the
same zone). Now the attacks that fulfil this predicate are mapped to
ε (coloured in grey in the mapping) and so are invisible, whereas
the attacks with RS 6= RT (across roles/zones) are visible. Further-
more the bindings of the interpretation variables VulServ and Pol

that contain the respective vulnerable service and policy are used in
the mapping. All other transitions are mapped to ε.

 ~(,(RS=RT),)

 (,(RS=RT),)

unknown (,(RS=RT),); (VulServ,Pol)

preprocessing_system_local_remote

scenario

Figure 34: Mapping for attacks against unknown vulnerabilities that cross
zones

The abstract representation computed from that mapping is shown
in Figure 35. It gives a clear overview about what kind of zone cross-
ing attacks would be possible in case that new unknown vulnerabili-
ties were exploited. For each assumed vulnerable service it shows the
policies that would allow the attack.

A modified definition of the mapping in Figure 34 can be used
to inspect, for example, the edge (VulServ = sendmaild Pol =

(intern_host, any_role,net)) in Figure 35. A refined mapping with

82

www.manaraa.com

3.4 zero-day exploit assessment

A-4

A-2A-3

A-1

(VulServ = sshd Pol = (intern_host,any_role,net))
(VulServ = sshd Pol = (any_role,dmz_host,ssh))
(VulServ = sshd Pol = (intern_host,dmz_host,ssh))

(VulServ = sshd Pol = (dmz_host,intern_host,ssh))
(VulServ = sendmaild Pol = (intern_host,any_role,net))
(VulServ = sql_res Pol = (intern_host,any_role,net))
(VulServ = ftpd Pol = (intern_host,any_role,net))

(VulServ = sshd Pol = (dmz_host,intern_host,ssh))
(VulServ = sshd Pol = (any_role,dmz_host,ssh))
(VulServ = sshd Pol = (intern_host,dmz_host,ssh))
(VulServ = sshd Pol = (intern_host,any_role,net))

(VulServ = sshd Pol = (dmz_host,intern_host,ssh))
(VulServ = sshd Pol = (intern_host,any_role,net))

Figure 35: Abstract representation of attacks against unknown vulnerabili-
ties

predicate (RS 6= RT ∧ VulServ = sendmaild) and visible interpre-
tation variables RS and RT results in an abstract representation with
four parallel edges labelled
(RS = developer_host RT = dmz_host),
(RS = db_host RT = dmz_host),
(RS = intern_host RT = dmz_host), and
(RS = management_host RT = dmz_host)
respectively. This shows that if an attacker knows a new exploit for an
unknown vulnerability of the product providing the sendmaild, then
the current policy rule (intern_host,any_role,net) would allow to
use the exploit to cross the four given zones.

Now if the policies are quite restrictive and no new cross role/-
zone attacks are found by the reachability analysis, then it can be
concluded that the network configuration is resilient with respect to
attacks against one unknown vulnerability. In the same way resiliency
with respect to two or more unknown vulnerabilities can be analysed.
Please note that in many cases this will not be possible because of
state space explosion problems. However, computation of a subgraph
of the attack graph by giving a limitation on the number of edges
to be computed is possible and helps to identify problems and to
successively restrict the configuration to an acceptable risk level. An-
other way of mitigating state space explosion problems could be to
assign common weaknesses defined by Common Weakness Enumer-
ation (CWE) [Martin & Barnum, 2008; MITRE Corporation, 2013d] to
each system instead of using vulnerabilities of products. CWE pro-
vides a unified set of software weaknesses, that is, an abstraction of
CVE.

83

www.manaraa.com

3.5 security policy validation

3.5 security policy validation

Security policies provide a well-understood and suitable means to
administer security issues. However, using policies in distributed en-
vironments where applications, services and nodes dynamically join
and leave the system raises additional questions.

Policy-based control of ICT networks has the benefit that the con-
trolling units of the system are kept decoupled from the manage-
ment components and the rule base that governs the decisions. This
enables the management and change of the system’s behaviour with-
out having to modify the software or the controlled nodes. The sys-
tem is controlled by policies that specify behaviour rules which are
interpreted by decision components (subsequently called Policy Deci-
sion Point (PDP)) and are asserted by enforcement components (sub-
sequently called PEP). Hence, if conditions change or new services
or applications are added to the system one just adapts the policy
rules. Using a central administration component the platform admin-
istrator does not have to deal with the multitude of different nodes
in the system. Figure 36 shows a policy management approach that
has been developed for this purpose by the SicAri project [Rieke &
Ebinger, 2008; Peters, 2013].

Security policyPolicy
validation

Policy administration

Policy pro-
visioning

Policy
decision

Policy en-
forcement

Services

Figure 36: Policy administration and validation in policy architecture

84

www.manaraa.com

3.5 security policy validation

It is an important requirement for holistic policy management to
bridge the gap between the informal specification of security policies
– what the security administrator wants to enforce – and its correspond-
ing machine-readable policy specification – what the system actually
enforces –. This goal is expressed by the following research question.

RQ8 : Does a policy correctly implement high-level security goals?

P12 [Peters, Rieke, Rochaeli, Steinemann & Wolf, 2007] suggests
the integration of policy validation into an holistic policy architec-
ture. The policy architecture comprises the components of the policy
framework and their interactions in order to guarantee that all secu-
rity relevant processes in the platform are fulfilled according to the
underlying security policy.

The task of the policy validation component is to evaluate, whether
a policy correctly implements given security goals. To accomplish this,
the SHVT (cf. Section 2.2) was extended to accept a subset of Xtensible
Access Control Markup Language (XACML) as input and to translate
it into transition patterns, which specify the behaviour of APA. Each
policy rule is converted into such a transition pattern which then en-
codes the action that is controlled by that rule. This in turn results in
an operational model of the policy system that can be executed in the
SHVT. It allows to analyse the policy system’s behaviour, to simulate
its potential information flow and to verify the wanted security goals.
For that purpose the system’s reachability graph is computed which
spans all possible sequences of transition steps that are allowed by
the given policy.

To answer RQ8 it is necessary to analyse a policy with respect to
actions that can be executed by a specific subject on a specific object
during any course of action. In this case the actions will likely be
actions of the system components, that is, the subjects acting in a
specific role. An action could be the creation or deletion of a file, the
use of some resource, the activation or termination of a process or the
communication with other systems or components.

For the analysis it is, firstly, necessary to compute a complete graph
of the possible (critical) system behaviour (cf. Section 2.2.1). Secondly,
as described in Section 3.3 an abstract representation of the behaviour
can be computed and used as basis for the analysis. The abstraction
could, for example, blind out all actions from subjects not involved in
a critical aspect of the behaviour (see Figure 37).

Further work published in P12 provides an approach for policy pro-
visioning based on the Common Open Policy Service (COPS) protocol.
The component covers negotiation and distribution of policies and
policy updates, as well as transport of policy decision requests and
responses.

85

www.manaraa.com

3.6 related work

Security Goals
Violation of

Security Goals
Evaluation of

Conversion
Automatic

Parameters
System

Policy
XACML

Goals
Security

OKAnalysis
Reachability

Automata Model (APA)

Possible System Behaviour

Figure 37: Policy validation

3.6 related work

The rising complexity of computer network security management has
led to the necessity to develop methods to detect errors in network
configurations, determine critical network resources, and choose and
enforce appropriate security policies with respect to current threats
[Kotenko et al., 2011]. There are many different approaches to ana-
lytical attack modelling given in the literature. The key elements for
security evaluation and suggested architectural solutions, however,
are provided by the concepts of attack trees, attack graphs, security con-
figuration metrics, and administration and validation of security policies.

3.6.1 Attack trees

The attack tree concept has been introduced by Schneier [1999, 2000].
The notion is related to the preexisting fault/failure tree model that is
normally used to identify safety hazards. The method to develop an
attack tree is a top down approach with a divide and conquer method
to break down an attacker goal in the root of the attack tree to sub-
goals in the child nodes annotated by logical and and or connectives.
A formal model of attack trees is given by Mauw & Oostdijk [2006].

Several variants of attack trees have been developed. Defence trees
[Bistarelli et al., 2006, 2012] add a set of attack countermeasures on
each leaf node, whereas attack countermeasure trees [Roy et al., 2012]
support countermeasure at any tree node. The nodes of a protection
tree [Edge et al., 2007] contains four run-time metrics, namely, proba-
bility, cost, impact and risk. Attack response trees introduced in Zonouz
et al. [2009, 2011] consist of a root node that contains the security
property, leaf nodes that denote specific vulnerability exploitations,
and consequence nodes representing countermeasure actions. For-
malisations of attack defence trees were published in Kordy et al. [2011].
They comprise attack nodes that represent attack actions to compro-
mise the system, defence nodes that represent defender actions to

86

www.manaraa.com

3.6 related work

protect the system, and additional child nodes representing counter-
measures. An attempt to provide a generic notation, namely, unified
parametrizable attack tree for several variants of such attack trees has
been proposed in Wang et al. [2011].

An attack pattern is a minimal sets of nodes in an attack tree that
achieves the goal at the root node [Barnum & Sethi, 2007]. Common
Attack Pattern Enumeration and Classification (CAPEC) [MITRE Cor-
poration, 2013a] is an initiative to collect core sets of attack pattern
instances and make them publicly available.

Attack trees have been used, for example, for dark-side scenario
analysis in the project EVITA [Fraunhofer SIT, 2011] in order to assess
security risks of automotive on-board networks [Ruddle et al., 2009].
The project VIKING [Viking project consortium, 2012] modelled the
security risk for networked Supervisory Control And Data Acquisi-
tion (SCADA) systems and consequences of successful attacks in terms
of monetary loss for the society based on attack trees [Björkman, 2010;
Dan et al., 2012].

3.6.2 Attack graphs

Attack graphs have been introduced by Phillips & Swiler [1998]. This
concept is closely related to attack trees but attack graphs usually
comprise all possible attack paths not just one goal. This analysis
takes into account the vulnerabilities of the products installed on the
components of a networked SoS, the connectivity of the SoS, and the
assumed capabilities of an attacker or group of attackers. This can
be seen as a bottom up approach that computes all goals an attacker
reach based on a given set of possible exploits. The arcs in the attack
graph represent attacks and the nodes represent a stage of attack. The
leafs represent states where an attacker can not proceed any further,
thus they can be used to find the maximum impact. Loops are possi-
ble when an attacker can act but does not gain any advantage from it
or even looses attack possibilities.

The network vulnerability modelling part of the framework pre-
sented in this chapter is adopted from the approach introduced in
P9 and P10. It is similar in design to the approach taken in Phillips
& Swiler [1998] and Swiler et al. [2001]. A major contribution of P9

and P10 was the use of abstraction methods to visualise compact pre-
sentations of the graph and the inclusion of liveness analysis. The
work presented in Ritchey & Ammann [2000], Jha et al. [2002] and
Sheyner et al. [2002] uses attack graphs that are computed and anal-
ysed based on model checking. Ammann et al. [2002] presented an
approach that is focussed on reduction of complexity of the analy-
sis problem by explicit assumptions of monotonicity. The work of
Kotenko & Stepashkin [2006] is focussed on security metrics com-
putations and adaptive cooperative defence mechanisms [Kotenko

87

www.manaraa.com

3.6 related work

& Ulanov, 2007]. Noel & Jajodia [2004]; Noel et al. [2005] describe
novel attack graph visualisation techniques. Ingols et al. [2006, 2009]
developed a tool for high-performance network analysis taking into
account modern client-side attacks. Kheir et al. [2010]; Debar et al.
[2010] propose a new service dependency model that enables intru-
sion and response cost evaluation including response collateral dam-
age effects. A formal model of an attack surface is provided by Manad-
hata & Wing [2011]. The attack surface is one indicator of a system’s
security; the larger the attack surface, the more insecure is the sys-
tem. Attack modelling and security evaluation in Security Informa-
tion and Event Management (SIEM) systems is introduced in Kotenko
et al. [2012] and Kotenko & Chechulin [2012].

P11 added the capability to represent attacks based on unknown
vulnerabilities to the model proposed in this thesis. To the best of the
knowledge of the author, this was the first publication approaching
this research question, even though, the term zero-day for unknown
vulnerabilities was not used by the author at that time. The analysis
of network security against unknown zero-day attacks is still an ac-
tive research topic [Ingols et al., 2009; Wang et al., 2010; Kotenko &
Chechulin, 2012]. State space explosion problems that have limited
the number of unknown vulnerabilities in the model of P11 could be
mitigated by using CWE [MITRE Corporation, 2013d] instead of CVE.
CWE provides a unified set of software weaknesses Martin & Barnum
[2008] that abstracts from specific product vulnerabilities.

An overview on the state of the art in analytical attack and defence
modelling is given in Kotenko et al. [2011] and Kordy et al. [2013].

3.6.3 Security configuration metrics

To model the ICT network, that is, the platforms, installed products,
known vulnerabilities of these products and the intrusion detection
systems, a data model loosely resembling the formally defined M2D2

information model [Morin et al., 2002] has been used in P9, P10, and
P11. Appropriate parts of this model are adopted and supplemented
by concepts needed for description of exploits, attacker knowledge
and strategy and information for cost benefit analysis. The informa-
tion in CVE [MITRE Corporation, 2013b; Christey & Martin, 2007] has
been used to represent the known vulnerabilities in the model. Infor-
mation from NVD [NIST Computer Security Resource Center, 2013b]
has been used for the vulnerability range and impact type that indicates
the post-attack effects of exploits of CVE vulnerabilities to the respec-
tive target. The Open Sourced Vulnerability Database (OSVDB) [Mar-
tinet al. , 2013] is an independent and open sourced web-based vul-
nerability database that provides information similar to CVE and NVD.
Recent work on a Cyber-Security Ontology Architecture [Parmelee,
2010] building on Common Platform Enumeration (CPE) [NIST Com-

88

www.manaraa.com

3.6 related work

puter Security Resource Center, 2013c] that provides an open stan-
dard for a structured naming scheme for Information Technology (IT)
products [Buttner & Ziring, 2009] and Common Configuration Enu-
meration (CCE) [NIST Computer Security Resource Center, 2013a]
could be used alternatively to the M2D2 information model.

The CVSS [FIRST.org, Inc., 2013] provides universal severity ratings
for CVE security vulnerabilities [Schiffmann, 2005; Mell et al., 2007;
Scarfone & Mell, 2009]. In P9, P10, and P11 the CVSS is used in the
model to assess the threat level. Further work on security metrics com-
prises Jaquith [2007], Herrmann [2007], Jansen [2009], and the Com-
mon Weakness Scoring System (CWSS) [MITRE Corporation, 2013c].
An ontology of metrics for security evaluation and decision support
in SIEM systems is given in Kotenko et al. [2013].

3.6.4 Administration and validation of security policies

Approaches to specify and enforce rights for access control in ICT

have been researched for many years. To name a few of the most
influential results, Bell & LaPadula [1974, 1976], Harrison, Ruzzo &
Ullman [1975] and Clark & Wilson [1987] have developed early mod-
els for computer system and operating system security. Many recent
research papers investigate security policies on its own and abstract
from the systems needed to enforce these policies. Most of these
activities focus on the examination of specific properties of policies
like consistency, freedom of conflicts, information flow implications
and effects to system safety. This allows shifting the attention from
specifics of computer system towards the analysis of properties that
are inherent to the policy itself. A method to enforce rigorous auto-
mated network security management using a network access control
policy is presented in Guttman & Herzog [2005]. This method is illus-
trated using examples based on enforcement strategy by distributed
packet filtering and confidentiality/authenticity goals enforced by
IPsec mechanisms.

Access control policies in SicAri are based on the Role-Based Ac-
cess Control (RBAC) standard [Ferraiolo et al., 2001]. The general con-
cepts of RBAC [Ferraiolo & Kuhn, 1992] are well-understood and ex-
tensively described, for example, in Sandhu [1998]; Ferraiolo et al.
[2003]. RBAC is assumed to be policy-neutral, thus it provides a flexi-
ble means to deal with arbitrary security policies. SicAri uses a subset
of XACML [Moses, 2005] that comprises the most important elements
and attributes of the language as its policy specification language.
The goal was to reach the expressiveness that allows to handle a well-
known XACML example which has been validated in the literature
before [Bryans, 2005; Fisler et al., 2005].

XACML supports the RBAC policy model RBAC [Anderson, 2005]. Ex-
tensions to this profile that support OrBAC have been proposed by

89

www.manaraa.com

3.7 summary of results

Haidar et al. [2006]. Both RBAC and OrBAC support the role abstrac-
tion for subjects. Roles are assigned to subjects and permissions are
given to roles. OrBAC extends RBAC by supporting additional abstrac-
tions such as activity for actions and views for an object hierarchy.
This allows to express the security policy on abstract entities only
and separate it from its implementation [Kalam & Deswarte, 2006]. A
formal approach to use an OrBAC model to specify network security
policies was presented in Cuppens et al. [2004]. This approach has
been adopted in this thesis to model the network security policies
in the attack graph analysis framework (cf. P9, P10, P11). Ochsen-
schläger, Rieke & Velikova [2008] addresses OrBAC policy validation
by an example of a policy controlled information flow in a hospital.
Ben Mustapha & Debar [2013] presents a service dependency aware
policy enforcement framework in order to explore several enforce-
ment possibilities in an attack response decision.

The COPS protocol that has been used in the approach presented in
P12 has also been used for policy based Quality of Service (QoS) man-
agement in Ponnappan et al. [2002], for policy based ad hoc network
management in Phanse [2003], and for distributing and enforcing ac-
cess control policies to Resource Reservation Protocol (RSVP) aware
application servers in Toktar et al. [2004].

Major focus of the combined modelling and analysis framework
presented in this thesis is the integration of formal network vulnera-
bility modelling, on the one hand, and network security policy mod-
elling, on the other hand. This aims to help adaptation of a network
security policy to a given and possibly changing vulnerability setting.
Recent methods for analysis of attack graphs are extended to support
analysis of abstract representations of these graphs.

3.7 summary of results

This chapter addresses security of system configurations. It considers
specific aspects of fault forecasting and fault tolerance by analysis of net-
worked system configurations with respect to external exploitability
of given vulnerabilities.

With respect to the overall aim of this thesis – to provide a frame-
work for security analysis of system behaviour – this chapter ad-
dresses the “Do“ activity in the Plan-Do-Study-Act (PDSA) cycle (cf.
Figure 4). The general objective of this activity is to analyse the con-
figuration of the implemented plan, verify that the goals are met, and
provide data for runtime analysis.

The thesis provides methods and tools to analyse the exposition
of vulnerabilities in the software components of a networked system
to exploitation by internal or external threats. This allows the security
assessment of alternative system configurations and thus to minimise
the attack surface of the networked system and mitigate potential im-

90

www.manaraa.com

3.7 summary of results

pact of successful attacks. Furthermore, methods and tools to validate
and deploy security policies are provided.

3.7.1 Attack graph model

Objective O5 of this thesis was to configure systems so that vulnerabilities
are protected or hidden. This motivated research questions RQ5a, RQ5b,
and RQ5c.

O5: Configure
systems so that
vulnerabilities
are protected or
hidden

RQ5b: How can attacker
behaviour be incorporated
into the system model and
the analysis?

RQ5a: How can exploita-
tion possibilities of net-
worked systems’ vulnerabili-
ties be analysed?

RQ5c: Which attacks
would not be detected?

R5: Attack graph
model [P9]

The results published in P9 address these research questions. In the
following, an overview of this paper is given.

P9 . Tool based formal Modelling, Analysis and Visualisation

of Enterprise Network Vulnerabilities utilising Attack Graph

Exploration

A core concern of critical infrastructure protection is a careful anal-
ysis of what parts of the information infrastructure really need pro-
tection and what are the concrete threads as well as an evaluation of
appropriate protection measures.

In this paper a methodology and a tool for the development and
analysis of operational formal models is presented that addresses
these issues in the context of network vulnerability analysis. A graph
of all possible attack paths is automatically computed from the model
of a government or enterprise network, of vulnerabilities, exploits
and an attacker strategy. Based on this graph, security properties are
specified and verified, abstractions of the graph are computed to vi-
sualise and analyse compacted information focussed on interesting
aspects of the behaviour and cost-benefit analysis is performed. Sur-
vivability comes into play, when system’s countermeasures and the
behaviour of vital services it provides are also modelled and effects
are analysed.

91

www.manaraa.com

3.7 summary of results

3.7.2 Abstraction based analysis method

Objective O6 of this thesis was to identify network configuration risks,
which led to the research questions RQ6a, RQ6b, and RQ6c.

O6: Identify net-
work configuration
risks

RQ6b: What is the most
likely attacker behaviour
and most effective counter-
measure?

RQ6a: What are the effects
of changes to the network
configuration on overall
vulnerability?

RQ6c: Will countermea-
sures of the system under
attack succeed?

R6: Abstraction
based analysis
method [P10]

The results published in P10 address these research questions. In
the following, an overview of this paper is given.

P10 . Modelling and Analysing Network Security Policies in

a Given Vulnerability Setting

A typical means by which an attacker or his malware try to break
into a network is, to use combinations of basic exploits to get more
information or more credentials and to capture more hosts step by
step. To find out if there is a combination that enables an attacker
to reach critical network resources or block essential services, it is
required to analyse all possible sequences of basic exploits, so called
attack paths. Based on such an analysis, it is now possible to find out
whether a given security policy successfully blocks attack paths and
is robust against changes in the given vulnerability setting.

For this type of security policy analysis, a formal modelling frame-
work is presented that, on the one hand, represents the information
system and the security policy, and, on the other hand, a model of
attacker capabilities and profile. It is extensible to comprise intrusion
detection components and optionally a model of the system’s counter-
measures. Based on such an operational model, a graph representing
all possible attack paths can be automatically computed. Now secu-
rity properties can be specified and verified on this attack graph. If
the model is too complex to compute the behaviour, then simulation
can be used to validate the effectiveness of a security policy. The im-
pact of changes to security policies can be computed and visualised
by finding differences in the attack graphs. A unique feature of the
presented approach is, that abstract representations of these graphs
can be computed that allow comparison of focussed views on the be-

92

www.manaraa.com

3.7 summary of results

haviour of the system. This guides optimal adaptation of the security
policy to the given vulnerability setting.

3.7.3 Model of unknown vulnerabilities

Objective O7 of this thesis was to assess zero-day exploit vulnerability
of a networked system. The associated research question RQ7 thus
investigates network resiliency.

O7: Assess zero-
day exploit vulnera-
bility

RQ7: To which extent is
a networked system re-
silient against exploits of
unknown vulnerabilities?

R7: Model of
unknown vulnera-
bilities [P11]

The results published in P11 address this research question. In the
following, an overview of this paper is given.

P11 . Abstraction-based analysis of known and unknown vul-
nerabilities of critical information infrastructures

This journal paper is an extended version of P10. In addition to
the results of P10 it provides an approach to analysis of unknown
vulnerabilities. In order to analyse resilience of critical information in-
frastructures against exploits of unknown vulnerabilities, generic vul-
nerabilities for each installed product and affected service are added
to the model. The reachability analysis now considers every possible
choice of product, and so all alternatives are evaluated in the attack
graph. The impact of changes to security policies or network structure
can be visualised by differences in the attack graphs. Results of this
analysis support the process of dependable configuration of critical
information infrastructures.

3.7.4 Policy validation concept and tool

Objective O8 of this thesis was to validate implementation of security
goals. The respective research question RQ8 aims to validate whether
a policy correctly implements the primary security goals.

O8: Validate im-
plementation of
security goals

RQ8: Does a policy cor-
rectly implement high-level
security goals?

R8: Policy valida-
tion concept and
tool [P12]

The results published in P12 address this research question. In the
following, an overview of this paper is given.

93

www.manaraa.com

3.7 summary of results

P12 . A Holistic Approach to Security Policies – Policy Dis-
tribution with XACML over COPS

The potentials of modern information technology can only be ex-
ploited, if the underlying infrastructure and the applied applications
sufficiently take into account all aspects of IT security. This paper
presents the policy architecture of the SicAri project [Rieke & Ebinger,
2008; Peters, 2013] that aims to build a security platform for ubiqui-
tous Internet usage, and gives an overview of the implicitly and ex-
plicitly used security mechanisms to enable access control for service
oriented applications in distributed environments. The paper intro-
duces the security policy integration concept with a special focus on
distribution of security policies within the service infrastructure for
transparent policy enforcement. Specifically, extensions to the COPS

protocol to transport XACML payload for security policy distribution
and policy decision requests/responses are described.

3.7.5 Conclusion

Fault tolerance denotes the ability to avoid service failures in the pres-
ence of faults [Avizienis et al., 2004]. A vulnerability is an internal
fault. When a vulnerable component of a system is exposed to access
by an attacker its vulnerabilities may be exploited and cause an er-
ror. This may possibly cause a subsequent failure of a service that the
system provides or it may force the system into a mode providing
only reduced functionality. The configuration of the network policy
of a system influences the exposition of vulnerable components to
external access. Thus the analysis of the network security policy and
optimisation of the configuration based on the results of this analysis
can improve the fault tolerance of a system as a whole.

In summary, the work presented in this chapter brings together,
(1) attack graph computation technology, (2) state-of-the-art policy
modelling, and, (3) formal methods for analysis and computation of
abstract representations of the system behaviour. The aim is, to guide
a systematic evaluation and assist the persons in charge with opti-
mising adaptation of the network security policy to an ever-changing
vulnerability setting and so to improve the configuration of the IT in-
frastructure. The most distinctive feature of this approach is the abil-
ity to compute abstract representations of the complex graphs that
enable comparison of focussed views on the behaviour of the system.
In addition, the approach enables the analysis of the resilience of IT

infrastructures against exploits of unknown vulnerabilities by zero
day attacks.

In the work presented in Chapter 4 attack graph analysis can be
utilised in two ways. Firstly, vulnerability metrics resulting from at-
tack graph analysis can be used to enrich the context information
used by security analysis at runtime, and secondly, attack paths like

94

www.manaraa.com

3.7 summary of results

the one depicted in Figure 29 can be used for the definition of the
security model.

Further noteworthy work of the author of this thesis with respect
to the work presented in this chapter comprises peer-reviewed pub-
lications regarding policy validation for access control of electronic
health records [Ochsenschläger et al., 2008] and security policies in
mobile business intelligence infrastructures [Kuntze et al., 2010]. In-
vited talks have been given to the IFIP working group on Dependable
Computing and Fault Tolerance [Rieke, 2007a], at the J.W. Goethe univer-
sity in Frankfurt [Rieke, 2007b], and at the first FORWARD workshop
in Göteborg [Rieke, 2008b].

95

www.manaraa.com

www.manaraa.com

4
P R E D I C T I V E S E C U R I T Y A N A LY S I S AT R U N T I M E

Another challenge is the notion of concept drift, i.e., processes
change while being observed. Existing process discovery approaches
do not take such changes into account. It is interesting to detect
when processes change and to visualize such changes.

— Wil M. P. van der Aalst, Process Mining [van der Aalst,
2011]

aim of this chapter . Security analysis is growing in complex-
ity with the increase in functionality, connectivity, and dynamics of
current electronic business processes. Technical processes within crit-
ical infrastructures intrinsically linked to the business processes fur-
ther complicate the task to provide situational security awareness. To
tackle this complexity, the application of models is becoming stan-
dard practice. However, model-based support for security analysis is
not only needed in pre-operational phases but also during process
execution, in order to provide situational security awareness at run-
time. Therefore, this chapter presents an approach to support model-
based evaluation of the security status of process instances. In partic-
ular, challenges with respect to the assessment whether instances of
processes violate security policies or might violate them in the near
future are addressed. The approach is based on operational formal
models derived from process specifications and security and com-
pliance models derived from high-level security and safety goals. An
integration concept for a holistic security strategy management is pro-
posed and the applicability of the approach is exemplified utilising
processes from several industrial scenarios.

This chapter is based on the work published in P13, P14, P15, P16,
P17, P18, and P19 (cf. Table 3).

4.1 introduction

The Internet today provides the environment for novel applications
and processes which may evolve way beyond pre-planned scope and
purpose. Frequent changes to business process models have to be ap-
plied to address changing business needs [Tallon, 2008]. Some work-
flow management systems already facilitate the necessary adaptation
of business process models at runtime [Döhring et al., 2011]. Tech-
nical processes within critical infrastructures also have to cope with
these developments. For example, many Supervisory Control And

97

www.manaraa.com

4.1 introduction

Data Acquisition (SCADA) systems that include functions for the re-
mote measurement and control of process devices already include
computerised models of the supervised process [Björkman, 2010]. Ge-
ographically dispersed real and virtual infrastructures, services and
resources are elementary components of such processes within large-
scale, massively interconnected Systems of Systems (SoS). This evolv-
ing environment, however, also enables new threats and scales up the
risks of financial and also physical impact. This situation specifically
leads to challenges with respect to the assessment whether instances
of processes violate security policies or might violate them in the near
future.

The aim of this thesis with respect to predictive security analysis at
runtime is, to support model-based evaluation of the current security
status of process instances as well as to allow for decision support
by analysing close-future process states. This chapter now introduces
a novel model-based approach called Predictive Security Analysis at
Runtime (PSA@R) that fits to the following four objectives of this thesis
(cf. Figure 3).

O9: Develop a security monitoring approach.

O10: Validate security compliance at runtime.

O11: Integrate security management.

O12: Provide evidence for usability in large scale industrial scenar-
ios.

Addressing objective O9, PSA@R observes the operation of a system
by analysing events received from this system. Events from process
instances executed by the observed system are filtered for their rele-
vance to the analysis and then mapped to the model of the originat-
ing process instance. Deviations from the expected behaviour trigger
uncertainty management and possibly alerts.

With respect to objective O10, PSA@R allows for specification, on-
the-fly check, and visualisation of a security model. Because possi-
ble close-future process actions can be predicted, based on the opera-
tional process specification and the current process state as reflected
in the model, predictive security alerts can be computed.

Addressing objective O11, an extensible meta model is presented
that spans all parts of the security monitoring and decision support
process, namely: (i) detecting threatening events; (ii) putting them
in context of the current system state; (iii) explaining their potential
impact with respect to some security- or compliance model; and (iv)
taking appropriate actions.

Addressing objective O12, requirements to adapt PSA@R to specific
industrial scenarios are collected and analysed. A prototype that im-
plements the PSA@R approach, its embedding into the runtime envi-

98

www.manaraa.com

4.2 process monitoring and uncertainty management

ronment, and some observations considering the runtime behaviour
and performance of the prototype are provided.

This chapter is organised as follows. Section 4.2 describes the ap-
proach for security analysis of processes at runtime, the synchronisa-
tion with the running process, and the prediction of possible contin-
uations of process instances. Section 4.3 presents the security model
applied at runtime to identify security relevant states and exempli-
fies generated security alerts. Section 4.4 describes the integration of
PSA@R into a systemic approach for security strategy measurement
and management. Section 4.5 summarises the requirements to adapt
PSA@R to specific industrial scenarios, describes the prototype and
application results. Section 4.6 reviews related work to the approach.
Finally, this chapter ends with a summary of the results in Section 4.7.

4.2 process monitoring and uncertainty management

With respect to Objective O9 of this thesis, namely, to develop a secu-
rity monitoring approach, the following research questions have been
raised.

RQ9a : How can operational models reflect the state of observed systems
and thus capture abstractions of runtime behaviour?

RQ9b : How can operational process models be used for early detection of
and reaction to deviations of process execution from its specification?

To answer these research questions, the PSA@R approach has been
developed by the author of this thesis. PSA@R was first introduced in
P13 [Rieke & Stoynova, 2010]. In PSA@R the operation of a system or a
SoS is observed by analysing events received from this system. PSA@R

is not executed by this observed system but rather by an observing
and reacting system such as a Security Information and Event Man-
agement (SIEM) system. It is assumed that the purpose of the observed
system is given by technical, organisational, and business processes
and that the intended behaviour can be specified by process models.
The behaviour of the system is then a composition of the behaviours
of the running processes.

The PSA@R approach assumes that events from the observed sys-
tem are first filtered according to their relevance to the analysis and
then mapped to the operational formal model of the originating pro-
cess instance. Now the possible close-future process actions can be
predicted, based on the operational process specification and the cur-
rent process state as reflected in the model. In the anomaly detec-
tion phase PSA@R identifies deviations from the normal characteristics
based on the values from a transaction monitor and generates alerts.
Uncertainty management supports semi-automatic adaptation of pro-
cess models at runtime according to the context conditions. Uncer-
tainty situations can occur during synchronisation of the state of a

99

www.manaraa.com

4.2 process monitoring and uncertainty management

running process instance with the state of the model, if the process
model is not accurate enough or outdated, or when unknown events
are received or expected events are missing.

4.2.1 Process model

PSA@R is based on a formal process model given by an Asynchronous
Product Automaton (APA) representation (cf. Section 2.2.1) that is
utilised to reflect the current state of the system. This model provides
the basis for the prediction of close-future actions. However, PSA@R

does not depend on a specific formal method chosen for model rep-
resentation. The only requirement is, that it must allow to compute
the possible process behaviour from the process model. For exam-
ple, Petri nets [Petri, 1962] also meet this requirement (cf. Rieke et al.
[2012]). Formally, the behaviour of an operational APA model of a busi-
ness process is described by a Reachability Graph (RG) (cf. Definition
3 in Section 2.2.1).

Example 12. A process specification provides the control flow structure of
a process as a sequence of events and functions. In an APA model that is
derived from a process specification, the set of possible output events of a
process function can be used as the alphabet of the elementary automaton
representing the function [Eichler & Rieke, 2011]. So the interpretation i is
the output event. An example for a state transition is

(p, (transfer, event = ′critical ′),q).

The parameters of this state transition are the state p, the tuple composed of
the elementary automaton transfer and its interpretation event = ′critical ′,
and the follow-up state q.

4.2.2 Event model

A stream of events characterises one specific execution trace of the
observed system. This trace is a shuffle [Jantzen, 1985; Björklund &
Bojanczyk, 2007] of the traces of the executed process instances. The
event model determines the internal mapping for the runtime events
defined by an event schema. To reduce the complexity only data re-
quired for the analysis or in generated alarms should be used in the
model.

Formally, it is assumed that an event represents a letter of the alpha-
bet that denotes the possible actions in the system. Different formal
models of the same system are partially ordered with respect to dif-
ferent levels of abstraction (cf. Definition 4 in Section 2.2.3).

Definition 10 (process instance projection). Let P denote a finite set of
process instances i of some process with i ∈ P and let Σi denote pairwise

100

www.manaraa.com

4.2 process monitoring and uncertainty management

disjoint copies of Σ. The elements of Σi are denoted by ei and ΣP :=
⋃̇
i∈P
Σi.

The index i describes the bijection e ↔ ei for e ∈ Σ and ei ∈ Σi. Now the
projection π identifies events from a specific process instance i.

For i ∈ P, let πPi : Σ∗P → Σ∗ with

πPi (er) =

{
e | er ∈ Σi
ε | er ∈ ΣP \ Σi

.

This is similar to the notion of a correlation condition [Motahari-
Nezhad et al., 2011] that defines which sets of events in the service
log belong to the same instance of a process.

Remark 2. For effective use of PSA@R it is assumed that a process instance
projection is possible for each event. In many applications, a process instance
identification is directly available as an attribute of the event. Sometimes a
set of attributes identifies the process instance. However, the assumption
about pairwise disjoint alphabets is not always valid.

This aspect contributes to the general requirement: Systems and applica-
tions need to be designed for security assessment at runtime.

If the event data contain redundant or irrelevant attributes, a proper
subset of attributes for use in model construction has to be selected. In
order to avoid state space explosion problems, the coarsest abstraction
that still contains all security relevant information should be used.

Example 13. Let us assume that Σ is the alphabet of events from the mea-
sured system and for a given event e the term #(e) denotes the value of an
attribute involved in a transaction.

Let h2,h3 : Σ∗ → { ′high ′, ′medium ′, ′low ′}∗ the homomorphisms given
by

h2(e) =

{
′high ′ | 105 < #(e)
′low ′ | #(e) 6 105

h3(e) =

′high ′ | 105 < #(e)

′medium ′ | 103 < #(e) 6 105

′low ′ | #(e) 6 103
.

Then h3 and h2 can be used to differentiate process control flow with respect
to events with different attribute values. h3 is finer than h2 because ν :

{ ′high ′, ′medium ′, ′low ′}∗ → { ′high ′, ′low ′}∗ exists.

At runtime, the current state of the process behaviour model of the
process instance i is synchronised with the running process using the
projection of the measured events to the respective state transitions
(p, (e, i),q) of the RG.

Using this approach, operational models can reflect the state of
observed systems and provide an abstract view of their runtime be-
haviour, thus answering research question RQ9a.

101

www.manaraa.com

4.2 process monitoring and uncertainty management

4.2.3 Prediction of close-future process actions

In order to answer research question RQ9b, PSA@R uses the RG to
predict the close-future behaviour of the process instance. A subgraph
of the RG starting with the current state of the process instance can
always be computed on-the-fly based on the formal process model.
The prediction depth is the depth of this subgraph starting from the
current state.

event
stream

e4
e0

e1

e2

e3

process
behaviour
model

q0
q1

q2

q3 q′3

q′2qx

process
model

ê0

f1

ê1

f2 f3

ê2 f4

ê3 ê4

ê5

past time future time

Figure 38: Predict close-future process behaviour

Figure 38 illustrates the approach taken for the prediction of close-
future process behaviour. The ellipses in the event stream pane de-
note the observed events, whereby the filled ellipses e0, e1, e2, and
e3 denote the events that belong to the specific process instance i, i.e.,
e0, e1, e2, e3 ∈ Σi. The ellipses in the process model pane denote ab-
stract events with respect to an abstraction h used in the event model,
e.g., ê1 = h(πPi (e1)). The dotted arrows denote this mapping. The
rectangles in the process specification pane denote the process func-
tions and the solid lines denote the transitions. The dashed arrows
in the process behaviour model (subgraph of the RG) denote the pre-
dicted process behaviour.

Example 14. If in Figure 38 the function f2 is modelled by the elementary
automaton transfer and ê3 = h(πPi (e3)) = ′high ′ and the depicted process
instance i is in the state q1 and the event e3 is received, then the transi-
tion (q1, (transfer, event = ′high ′),q3) will match the current situation.
In order to predict the behaviour that is following q3, the functions f3 in
the process specification can be used to compute q ′3 in the RG. Therefore, an
event e4 with ê4 = h(πPi (e4)) is predicted.

102

www.manaraa.com

4.2 process monitoring and uncertainty management

4.2.4 Observing system operation

The control flow of model learning and uncertainty reasoning in
PSA@R has been introduced in P18. Based on this, Figure 39 depicts
the current algorithm used by PSA@R for semi-automatic adaptation
of the de-jure process model based on de-facto measured behaviour at
runtime, and detection of anomalies such as unknown, unexpected
and missing events. Step 5 “Adjust process model” is done semi-
automatically and requires the user’s involvement during runtime;
all other actions are performed automatically. Semi-automatic adjust-
ment of the process model is particularly useful in the initial learning
phase. It can be used to learn normal behaviour pattern with regard
to the transaction characteristics by processing an event log without
malicious content.

1: Predict behaviour

2: Get next event

4: Map event to process state

3: Discard/Log event

6: Predict behaviour

5: Adjust process model

7: Map event to future state

8: Missing event

9: Unexpected event

Event fits to
event model

Event
expected

Mode

Successful
match

[true] [false]

[true]

[false (uncertainty mgmt.)]

[interactive]

[automatic]

[false]
[true]

Figure 39: Uncertainty management algorithm

Let RGP(q,d) denote the possible behaviour B of the process P
given by a RG starting with initial state q and prediction depth d, that
is, the set of all possible coherent sequences of state transitions of
length less or equal d starting at q. It is further assumed that d > 0.

step 1 : predict behaviour The RG is computed from the initial
state q0 of the process model. Let q := q0 and B := RGP(q,d).
Continue with step 2.

step 2 : get next event Read next event e from the observed sys-
tem’s event stream. If e fits to the event model, that is, e ∈ ΣP
(cf. Definition 10), then continue with step 4 else step 3.

103

www.manaraa.com

4.2 process monitoring and uncertainty management

step 3 : discard/log event The event e is unknown, that is, it
does not fit to the event schema used for the mapping. Depend-
ing on the audit requirements, the event will be discarded or
logged. Continue with step 2.

step 4 : map event to process state The event e is expected for
process instance i, iff there is a transition

(q, (, event = h(πPi (e))),q
′)

in RGP(q, 1).

Example 15. Figure 40 shows a situation where an event ex is re-
ceived. It has already passed the check whether it fits to the event model
but it is not part of the process behaviour in scope of the analysis.

event stream

e1

e2

ex

process model
does not contain
êxê1

ê2

ê3 ê4

ê5

past time future time

Figure 40: Event not expected in de-jure process model

If the event e is expected, then continue with step 6. If the event
e is not expected, then in interactive mode continue with step 5,
else continue with step 7.

step 5 : adjust process model The user is expected to change
the process specification, so that the event e fits to the possible
behaviour in the current state q.

Example 16. Figure 41 shows a possible adjustment of the process
model from Figure 40. In this case, the user has decided to insert a
new event êx = h(πPi (ex)) to the process specification along with a
connecting edge from the current function. This constitutes a belief
change with respect to the de-jure process model.

Continue with step 4.

step 6 : predict behaviour Let q := q ′ and B := RGP(q
′,d),

where (q, (, event = h(πPi (e))),q
′) in RGP(q, 1). Continue with

step 2.

step 7 : map event to future state A mapping to a future pro-
cess state means to find a transition (p, (, event = h(πPi (e))),p

′)

in B. If this is successful, then it is assumed that one or more

104

www.manaraa.com

4.2 process monitoring and uncertainty management

event stream

e1

e2

ex

process model
with êx

ê1

ê2

ê3 ê4

ê5

êx

past time future time

Figure 41: Adapt de-jure process model to de-facto behaviour

events have been missed and the current process state is ad-
justed, that is, q := p. If the mapping has been successful, then
continue with step 8, else continue with step 9.

Example 17. Figure 42 depicts a situation where an event e4 is re-
ceived but not expected in this state of the process. However, an ab-
stract event ê4 = h(πPi (e4)) is part of a possible continuation of the
process. Thus, it is assumed that some event e with ê3 = h(πPi (e))

has been missed.

event stream

e1

e2

e4

use process model
to predict future
eventsê1

ê2

ê3 ê4

ê5

past time future time

Figure 42: Map event to future state

Remark 3. In order to cope with the case of major deviations of ob-
served behaviour from the behaviour model it can be useful to add an-
other step to the algorithm, namely, to search for the observed event e
in the process model and not only in the close-future behaviour model.
This could reduce the number of alerts. This step is not added here
because it is assumed that it is necessary to adjust the process model
in such cases.

step 8 : unexpected event An unexpected event alert is raised; con-
tinue with step 2.

step 9 : missing event A missing event alert is raised; continue
with step 6.

PSA@R uses this algorithm utilising operational process models for
early detection and reaction to deviations of processes’ execution
from specifications, which provides a solution for research question
RQ9b.

105

www.manaraa.com

4.3 security compliance at runtime

4.3 security compliance at runtime

This section extends the idea of a model-based observing system pre-
sented above to a model-based judgemental system, thus addressing
the following research question.

RQ10 : How can security analysis at runtime exploit process models to
identify current and close-future violations of security requirements?

While the observing system provides situational awareness, the
judgemental system, in addition, makes a judgement whether the ac-
tivity or inactivity of the observed system constitutes a failure [Ran-
dell, 2003]. In this context, a failure is a violation of a given security
or dependability requirement. This judgement is based on a security
model applied at runtime to identify security relevant states. In or-
der to provide this novel capability, P14 [Eichler & Rieke, 2011] in-
troduced an approach for the validation of the actual security status
of business process instances. P19 [Rieke, Repp, Zhdanova & Eichler,
2014] substantially refined this concept by detailing the monitoring
formalism, implementation, evaluation, and context of the approach.
The security requirements to be satisfied during process execution
must be derived systematically (cf. Section 2.4) and formally specified
in terms of specific monitor automata. Monitor automata have been in-
troduced in P19 to specify the security requirements graphically.

Figure 43 illustrates all steps of the PSA@R approach. In addition to
the nine steps described in the previous section, the following steps
enable the runtime assessment of security critical behaviour.

step 10 : analyse security related states For runtime iden-
tification of security critical states and the prediction of possi-
ble failures in the near future PSA@R proposes to use on-the-fly
checks of predicates that express the required security proper-
ties in terms of state transitions in the current or predicted be-
haviour. Basically, predicates annotated at the edges of a moni-
tor automaton are applied to state transitions of the RG (cf. Sec-
tion 2.2).

Example 18. The predicate

(, (, event = ′critical_temperature ′),)

is true with respect to a state transition (pi, (ej, ik),ql), if the con-
stant ′critical_temperature ′ is bound to the interpretation vari-
able event of the interpretation ik. No condition for the predecessor
and successor state pi, ql and the elementary automaton ej is given
in this example.

A failure is detected if the predicate matches the current state tran-
sition and the state reached in the monitor automaton is marked

106

www.manaraa.com

4.3 security compliance at runtime

Situational awareness

Compliance

1: Predict behaviour

2: Get next event

4: Map event to process state

3: Discard/Log event

6: Predict behaviour

5: Adjust process model

7: Map event to future state

8: Missing event

9: Unexpected event

10: Analyse security related states

11: Failure detected

12: Failure predicted

Event fits to
event model

Event
expected

Mode

Successful
match

Failure
found

Failure
predicted

[true] [false]

[true]

[false (uncertainty mgmt.)]

[interactive]

[automatic]

[false]
[true]

[true]

[false]

[true][false]

Figure 43: Predictive security analysis at runtime

as critical state. A failure is predicted if the predicate matches
the current state transition and some state of the monitor au-
tomaton that is reachable by a path in the predicted behaviour
(within the prediction depth) is marked as critical state.

step 11 : failure detected A security alert is raised if a security
critical situation has been detected. These alerts are mapped to
corresponding events and fed into the runtime environment for
delivery to decision support and reaction systems.

step 12 : failure predicted A predictive alert is raised when the
current situation might escalate to a security critical situation in
the close future.

Examples for the application of this analysis of security related
states are given in P14 and P19 (cf. Section 4.5.3).

107

www.manaraa.com

4.4 tool architecture and integration approach

4.4 tool architecture and integration approach

Based on P19 [Rieke, Repp, Zhdanova & Eichler, 2014], this section
describes the architecture of a tool called Predictive Security Anal-
yser (PSA) that implements the PSA@R approach. Furthermore, the
integration of PSA@R into a systemic approach for security strategy
management that has been published in P19 [Rieke, Repp, Zhdanova
& Eichler, 2014] is outlined. This work contributes to answer the fol-
lowing research question.

RQ11 : How can security analysis at runtime be integrated in a security
management strategy?

To gain experience with different modelling strategies in PSA@R

with respect to applicability and performance in industrial scenarios,
a prototype PSA has been implemented by Fraunhofer SIT headed
by the author of this thesis. The PSA supports the complete life-cycle
of security analysis at runtime from formal process specification to
exhaustive validation, including visualisation and inspection of the
computed RGs and monitor automata.

4.4.1 The Predictive Security Analyser (PSA) prototype

Figure 44 shows the architecture of the PSA consisting of two main
parts: the PSA Modeller that provides functionality for process formal-
isation and the PSA Core that performs process security analysis.

PSA Modeller

Models

State

Event Stream

Alerts

Event
Modeller

Process
Modeller

Security
Modeller

Event
Schema

Process
Specification

Security Re-
quirements

Alert
Mapping

Situational awareness

Compliance

1: Predict behaviour

2: Get next event

4: Map event to process state

3: Discard/Log event

6: Predict behaviour

5: Adjust process model

7: Map to future state

8: Missing event

9: Unexpected event

10: Analyse security related states

11: Failure detected

12: Failure predicted

Event fits to
event model

Event
expected

Mode

Successful
match

Failure
found

Failure
predicted

[true] [false]

[true]

[false (uncertainty mgmt.)]

[interactive]

[automatic]

[false]
[true]

[true]

[false]

[true][false]

Decision Support &
Reaction System

PSA CoreObserved Systems

Figure 44: Architecture of the predictive security analyser

108

www.manaraa.com

4.4 tool architecture and integration approach

The PSA Modeller components support the configuration and adap-
tation of the PSA to the observed system, the runtime environment
and the security requirements.

The Event Modeller supports the creation of an event abstraction
and a mapping of events to the corresponding process instance. The
event model is derived from given event schemata (cf. Figure 48) for
interpretation of runtime events.

The Process Modeller allows to formalise process specifications based
on given Event-driven Process Chain (EPC) or Business Process Exe-
cution Language (BPEL) specifications. It also supports the import of
Petri Net Markup Language (PNML) process specifications [Weber &
Kindler, 2003] from process discovery tools, for example, from the
ProM tool [van der Aalst et al., 2009; Verbeek et al., 2011].

The Security Modeller provides a graphical interface for the specifi-
cation of security properties that an observed process must fulfil (a
security model in form of monitor automata) (cf. Figure 49a).

When the PSA service is started, the models and their initial con-
figurations (e.g., the initial state of a process model) are compiled
and loaded into the PSA Core. During the monitoring and analysis
stage the PSA Core components execute the PSA@R method depicted
in Figure 43. In addition to the behaviour described in Section 4.2
and Section 4.3 for the steps 8 (unexpected event), 9 (missing event),
11 (failure detected), and 12 (failure predicted), a mapping to external
alerts according to the needs of the runtime environment and the deci-
sion support and reaction system is provided, for example, messages
in Intrusion Detection Message Exchange Format (IDMEF) format.

If a legitimate event does not comply with the model (see step 5

in Figure 43), the PSA supports an adjustment of the model on-the-fly
within the process modeller utilising backward references from the
compiled process model. Backward references within the compiled
security model allow to visualise the current security state within the
Security Modeller at runtime.

The implementation language of the PSA is Common LISP [Steele,
1990]. Extensive technical information about the PSA (e.g., technical
requirements) is provided in Repp & Rieke [2013].

4.4.2 Integration into security management architecture

Within the project MASSIF, the author of this thesis has been involved
in the definition of an overall architecture of the advanced SIEM sys-
tem documented in Verissimo et al. [2012]. In this system, the PSA is
loosely coupled with other tools developed for the MASSIF system.

In order to improve the semantic integration of the tools used in
a security management system, in P15 [Rieke, Schütte & Hutchison,
2012] an extensible model has been proposed that spans all parts of
the security monitoring and decision support process, namely: (i) de-

109

www.manaraa.com

4.4 tool architecture and integration approach

tecting threatening events; (ii) putting them in context of the current
system state; (iii) explaining their potential impact with respect to
some security- or compliance model; and (iv) taking appropriate ac-
tions.

The operational aspects of this concept are described by a Secu-
rity Strategy Meta Model (SSMM) [Schütte, Rieke & Winkelvos, 2012]
that describes the control flow at runtime, independent from the un-
derlying event description language. A specific rule from a Security
Strategy Model (SSM) that adheres to the SSMM is called Security Direc-
tive (SD). A distinguished Security Strategy Component (SSC) controls
the execution of the SD. It can execute a SD or parts of it directly or
delegate workload to a specialised Security Strategy Processing Com-
ponent (SSPC). Depending on the outcome of the analysis of these
components, other components that implement decision support and
enforcement will be triggered. The proposed SSMM together with the
framework of SSPC could be used as a core of a technology platform
for an integrated concept for governance, risk and compliance [Racz
et al., 2010]. Furthermore, the proposed approach is considered to
be applicable within the design of a cyber attack information system
[Skopik et al., 2012], which uses collaborative detection and response
mechanisms for high-level situational awareness and coordination of
local incident response.

A mapping of the SSMM to the components of a proposed moni-
toring infrastructure enables the inclusion of existing engines, which
need not know about the overall security strategy but only receive
specific tasks in their respective language.

Conceptually, the implementation of the processing of the SSMM is
composed of SSPC. The main components and some optional compo-
nents of the proposed system architecture are illustrated in Figure 45.
A distinguished Security Strategy Component controls the execution of
the SD. It can execute a SD, or parts of it, directly or delegate the work-
load to specialised components. The Security Strategy Component
initially gets the SSM from the Security Information Modeller. It parses
the SD of the SSM, identifies the responsible SSPC for each subtask, and
distributes a respective configuration to the relevant SSPC. The Com-
plex Event Processing (CEP) engine normally processes the : on part
of the SD. The security monitoring probes, which are described at an
abstract level in the SSM, have to be compiled to the configuration
language of the actual CEP engine, if an engine specific specification
is not given in the : on part of the SD. Optionally, the events could be
processed directly. Furthermore, other event processing components
such as intrusion visualisation could be triggered. The : if part of the
SD can be processed by several different components, responsible for
different aspects of the domain or several domains. One component,
which will be needed in most implementations, is that responsible for
the provisioning of the network state information. Other components

110

www.manaraa.com

4.5 applicability and performance

: if

: on

: do

: why

Security

Strategy

Component

Intrusion Visuali-

sation

Sensing Events

Correlating

Events

Application State

Predicted State

Network State

Attack State

Process Visualisa-

tion

Mitigation Visuali-

sation

Decision Support

Policy Enforce-

ment
Sensor Manage-

ment

Security Informa-

tion Modeller

Strategy Visuali-

sation

Figure 45: Conceptual components of the framework

could, e.g., provide cyber-physical models, workflow specifications,
business process information or process visualisation. Thus, : if com-
ponents such as AMSEC and PSA provide situational awareness with
regard to network state, attack state, and application state.

Depending on how the : if condition evaluates, the respective : do
components will be triggered. These components can implement, e.g.,
simulative mitigation visualisation, decision support, policy enforcement or
sensor management. A sensor management component can control the
configuration of sensors in a monitored system, e.g., the (de-) acti-
vation and the adaptation of the sampling rate to an optimal level
[Baumgärtner et al., 2012].

A security information modeller component is responsible for maintain-
ing the security strategy and a strategy visualisation component can help
to assist in the : why determination.

4.5 applicability and performance

In order to evaluate the PSA@R approach in practice, requirements
from several industrial scenarios have been collected and used as
guidelines for the refinement of the PSA@R methods and the devel-
opment of the PSA prototype. Results of this requirements analysis
have been published in P16 [Prieto, Diaz, Romano, Rieke & Achemlal,
2012] and P17 [Rieke, Coppolino, Hutchison, Prieto & Gaber, 2012].

111

www.manaraa.com

4.5 applicability and performance

Besides issues like dependability, redundancy and fault tolerance,
in particular, this requirements analysis revealed a lack of capabil-
ity to model incidents at an abstract level. The following guideline
concerning advanced security services has been identified to be par-
ticularly relevant for PSA@R.

“Predictive security monitoring. Predictive security mon-
itoring allows to counter negative future actions, proac-
tively. There is a crucial demand for early warning capa-
bilities. Moreover, the limitations with regards to the Man-
aged Enterprise Service point to the fact that dealing with
unknown or unpredictable behaviour patterns is not suffi-
cient in current SIEM solutions. ”

— P17 [Rieke, Coppolino, Hutchison, Prieto & Gaber,
2012]

This requirement is precisely addressed by the PSA@R approach pro-
vided by this thesis.

4.5.1 Adaptation and evaluation in industrial scenarios

The PSA prototype has been used to answer the following research
questions.

RQ12a : Can the developed methods and tools be successfully adapted to
large scale industrial scenarios?

RQ12b : What are the performance effects of the number of events, pro-
cesses, security requirements, predicted steps, and of event abstrac-
tion?

An early version of the PSA has been applied to an Internet of
Things (IoT) scenario in the project Alliance Digital Product Flow
(ADiWa) [ADiWa Konsortium, 2012]. The results of this first applica-
tion are documented in P14 [Eichler & Rieke, 2011]. More recently, the
PSA has been applied in the European research project MAnagement
of Security information and events in Service InFrastructures (MASSIF)
[Rieke et al., 2012] to check security requirements in four industrial
domains: (i) the management of the Olympic Games IT infrastruc-
ture (OOGG) [Vianello et al., 2013], (ii) a mobile phone based Mobile
Money Transfer Service (MMTS) [Gaber et al., 2013], facing high-level
threats such as money laundering, (iii) Managed Enterprise Service
Infrastructures (MESI), and (iv) a Critical Infrastructure Process Con-
trol (CIPC) system [Romano et al., 2012].

Results with respect to research questions RQ12a and RQ12b will
now be given in more detail for two of these scenarios, namely, MMTS

and CIPC.

112

www.manaraa.com

4.5 applicability and performance

4.5.2 Adaptation to mobile money transfer scenario

The MMTS application mainly demonstrates the event model and pro-
cess model adaptation and the application of process monitoring and
uncertainty management as described in Section 4.2 (cf. Figure 39).

In the initial learning phase, the normal behaviour pattern with
regard to the transaction characteristics has been learnt by processing
an event log without malicious content.

Figure 46: Event model for fraud detection application

The definition of the event model shown in Figure 46 reduces the
event attributes to TRANSACTION_AMOUNT, SERVICE_TYPE, and
tag. In addition, to classify the transactions with regard to the amount
of money transferred a mapping like the one in Example 13 has been
used for the attribute TRANSACTION_AMOUNT. This mapping has
been created empirically using real operational logs of the MMTS. In
the learning phase step 5 “Adjust process model” (cf. Figure 39) is
done semi-automatically and requires the user’s involvement dur-
ing runtime. All other actions are performed automatically. Figure 47

shows a subgraph of an EPC which was learned for the MMTS model.
The graph defines the control flow structure of a process as a chain
of events and functions. Rectangles with rounded corners denote EPC

functions and hexagons denote EPC events. Functions represent active
components, i.e., activities, tasks or process steps, which are triggered
by events. Events are passive, they represent the occurrence of a state
which describes the situation before, or after, a function is executed.
Logical operators (is this case an exclusive or) are used to connect

113

www.manaraa.com

4.5 applicability and performance

medium

��

EPC_medium

��

normal

��

EPC_normal

��

big

��

EPC_big

��

small

��

EPC_small

��

tiny

��

EPC_tiny

��

��

Figure 47: Subgraph of EPC for MMTS

the basic constructs. For example, after an event medium the function
EPC_medium is triggered and the expected events after execution of
EPC_medium are {normal, medium, big}.

The tool adaptation was successful. The PSA is able to detect irreg-
ular events regarding the behaviour of the user of the MMTS system.
It is necessary to cope with False Alarms and make decisions regard-
ing the alerts. With the real log, the PSA was able to manage 640.000

process instances (one process per pair of users) without any prob-
lem. 40 minutes were enough to process 4.5 millions of events, with
the process behaviour presented and produced 0.5 millions of alerts.
Consequently, the PSA is able to manage all the logs of this operational
system in real time. P18 [Rieke, Zhdanova, Repp, Giot & Gaber, 2013]
describes the results of the experiments with the MMTS in detail.

4.5.3 Adaptation to critical infrastructure scenario

In the experiments with the MMTS scenario described above, only the
situational awareness components of the PSA have been utilised in or-
der to identify anomalies with respect to the process model. In the
CIPC scenario it was therefore of interest, to evaluate the judgemental
reasoning with respect to security compliance (cf. Section 4.3) by the
PSA. For this evaluation, a combined technical and organisational pro-
cess in a hydroelectric power plant in a dam has been selected from
the CIPC scenario. It models a misuse case related to an insider threat
that is still prevalent and posing a serious risk to critical infrastruc-
tures [Luallen, 2011].

Since dams are complex infrastructures, a huge number of param-
eters must be monitored to guarantee safety and security. Which
parameters are actually monitored, depends on the dam’s structure,
design, purpose and function (cf. Section 2.4 Example 6). Figure 48

shows a mapping (an event model) with regard to the events from
dam sensors, cameras, RFID scanners, and syslog.

Example 19. Let the security goal be given as: All safety critical actions
in the control room are carried out by a dam operator with adminis-
trative rights.

114

www.manaraa.com

4.5 applicability and performance

Figure 48: Event model for critical infrastructure scenario

Let only one monitor automaton as shown in Figure 49a be defined to
model this security goal. The initial stateCR_empty (control room is empty)
is marked by a filled circle. The critical states not_supervised_empty
and not_supervised_other are marked by a circle with a small filled
circle inside. These states reflect the situation that an action from the set
Gate_actions has been executed while the control room is either empty or
only manned with non-administrative staff.

In order to exemplify the reasoning process at runtime, it is now assumed
that the system is in a state where an operator is present in the control room,
that is, the current state of the monitor automaton is operator. A disgrun-
tled employee with a non-administrative role (e.g., cleaning staff) who is
enabled to access the control room uses stolen administrator credentials to
open dam gates. Figure 49b shows a sequence of related events that constitute
this misuse case and the reaction by PSA@R.

If at time t1 an event from a gate function is received, then the state
component of the process model representing the status of the gate will be
changed but the state of the monitor automaton will not change. The reach-
ability analysis does not “see” an upcoming security violation within the
scope ∆.

If at time t2 > t1 the event ′other_staff ′ produced by the Radio Fre-
quency IDentification (RFID) scanners of the control room is received, then
the state component of the process model representing the manning of the
control room will be changed and the monitor automaton changes the state
to both. No security violation is “seen” within the scope ∆.

If at time t3 > t2 the event ′no_operator ′ is received which indicates
that the last operator has left the control room, then the state component

115

www.manaraa.com

4.5 applicability and performance

not_supvervised_other

not_supervised_empty

both

other_staff

operator

CR_empty

 Gate_actions),);
(,(event ?

 other_staff’),);
(,(event=no_ ’operator),);

(,(event=

 ’operator’),);
(,(event=

 ’other_staff’),);
(,(event=

 Gate_actions),);
(,(event ?

 ’no_operator’),);
(,(event=

 ’no_other_staff’),);
(,(event=

 ’no_other_staff’),);
(,(event=

 ’operator’),);
(,(event=

 ’other_staff’),);
(,(event=

 ’other_staff’),);
(,(event=

 ’no_operator’),);
(,(event=

 ’operator’),);
(,(event=

(a) Monitor automaton from critical infrastructure scenario

t1 t2 t1 + ∆ t2 + ∆ t3 t4 t3 + ∆

timeline

gate event other staff no operator open Gate

failure
predicted

failure
detected

(b) Failure predicted and detected

t3 t4 t3 + ∆

no operator operator

failure
predicted

failure
avoided

(c) Failure avoided

Figure 49: Security reasoning example

of the process model representing the manning of the control room will be
changed and the monitor automaton also changes the state to other_staff.
Now in one possible process execution sequence, an event from a gate func-
tion such as ′open_Gate ′ is reachable within ∆. In this situation the reach-
ability analysis shows that this function would violate an associated security
requirement. Therefore, a failure is predicted because a broken security
requirement might lead to a security critical situation in the near future.

If at time t4 > t3 an event from a gate function such as ′open_Gate ′ is
received, the monitor automaton changes state to not_supervised_other
that is marked as critical state. Thus, a failure is detected.

Now let at time t3 + ∆ an event being received which indicates that an
operator is back in the control room and the critical state was not reached as
predicted. In this case, the predicted failure did not lead to a detected failure
(cf. Figure 49c).

PSA@R can also be applied to supervise other types of security re-
quirements such as authenticity and integrity requirements (cf. Ex-
ample 6). P14 exemplifies the approach using security requirements
from processes in the logistics domain. As an example for a different
type of security model for PSA@R, an attack path like the one depicted
in Figure 29 (cf. Section 3.2) has been used in the OOGG scenario for
the definition of a PSA security model. The results of application of
the PSA in further domains is reported in Section 5.2 of this thesis.

116

www.manaraa.com

4.6 related work

4.6 related work

The work presented in this chapter combines specific aspects of secu-
rity analysis with generic aspects of process monitoring, simulation,
and analysis. The background of those aspects is given by the utilisa-
tion of models for process security analysis at runtime, information secu-
rity management, and security information and event management. PSA@R

is a novel supplement and a link between these methods.

4.6.1 Process security analysis at runtime

A formalised approach for security risk modelling in the context of elec-
tronic business processes is given in Tjoa et al. [2011]. It affects also
the aspect of simulation, but does not incorporate the utilisation of
runtime models. A refinement methodology and modelling language
for the purpose of developing secure electronic business processes
based on early requirements analysis is proposed by Seguran et al.
[2008]. The proposal concerns runtime enforcement of security mech-
anisms but does not allow for an evaluation of the security status
of business processes at runtime. A model-driven approach focusing
on access control for business process models is provided in Wolter
et al. [2009]. It allows for the annotation of security goals to busi-
ness process models, the validation of annotated process models us-
ing model checking and the generation of configuration artifacts for
runtime components. Runtime analysis of security properties is not
addressed by this approach. Further current approaches for the analy-
sis and specification of security properties of business process models
at development time are given by Armando et al. [2012]; Arsac et al.
[2011]; Weldemariam & Villafiorita [2011]; Frankova et al. [2011].

Two approaches that focus on security models at runtime are given
in Morin et al. [2010] and Melik-Merkumians et al. [2010]. The first
approach proposes a novel methodology to synchronise an architec-
tural model reflecting access control policies with the running system.
Therefore, the methodology emphasises policy enforcement rather
than security analysis. The second approach discusses the integra-
tion of runtime and development time information on the basis of an
ontology to engineer industrial automation systems.

Process monitoring has gained some popularity recently in the in-
dustrial context prominently accompanied with the term Business
Activity Monitoring (BAM). BAM applications process events, which
are generated from multiple application systems, enterprise service
buses, or other inter-enterprise sources in real-time in order to iden-
tify critical business key performance indicators, get a better insight
into the business activities, and thereby improve the effectiveness of
business operations [McCoy, 2002]. Formal methods, such as Linear
Temporal Logic (LTL), state-charts, and related formalisms have been

117

www.manaraa.com

4.6 related work

used for runtime monitoring of concurrent distributed systems in
Kazhamiakin et al. [2006]; Massart & Meuter [2006]. However, this
work is mainly aiming at error detection, for example, concurrency re-
lated bugs. A classification for runtime monitoring of software faults
is given in Delgado et al. [2004]. Schneider [2000] analysed a class of
safety properties and related enforcement mechanisms that work by
monitoring execution steps of some target system, and terminating
the target’s execution, whenever an operation would violate the secu-
rity policy. Extensions of this approach are discussed in Bauer et al.
[2002] and Martinelli et al. [2005]. For example, in Martinelli et al.
[2005] it is proposed to integrate a local monitor component into a
grid computational service architecture. This component enforces a
fine grain security policy based on a description of the correct be-
haviour of the applications. Only the applications whose behaviour
is consistent with the security policy are executed on the computa-
tional resource. It is assumed that the application behaviour can be
monitored at the system calls interface, and the policy can be enforced
by preventing that the application can invoke some system calls. Pat-
terns and methods to allow for monitoring security properties are
developed in Serban & McMillin [1996]; Spanoudakis et al. [2007];
Tsigritis & Spanoudakis [2008]; Evesti et al. [2009].

In the context of process and application monitoring, in addition to
the features provided by the work mentioned above, this thesis pro-
poses a close-future security analysis that provides information about
possible security policy violations. This functionality is based on pro-
cess control-flow knowledge provided by the formal operational pro-
cess model. Policy enforcement is not directly addressed by the pro-
posed PSA@R approach, however, operational aspects of the integra-
tion of decision support components for enforcement and counter-
measures are described by the SSMM proposed in P15.

Different categories of tools applicable for simulation of business
processes including process modelling tools are based on different
semi-formal or formal methods such as Petri Nets [Petri, 1962; Dijk-
man et al., 2008] or EPC [Dijkman, 2008; Mendling, 2008]. Some pro-
cess management tools such as FileNet [Netjes et al., 2006] offer a sim-
ulation tool to support the design phase. Also, some general-purpose
simulation tools such as CPNTools [Rozinat et al., 2009] were proven
to be suitable for simulating business processes. The process mining
framework ProM [van der Aalst et al., 2009; Verbeek et al., 2011] sup-
ports plug-ins for different types of models and process mining tech-
niques [van der Aalst, 2011]. Process mining techniques for analysis
of large data sets and data streams aim to extract valuable process
information building on techniques from data mining and machine
learning, where knowledge discovery from data is mostly based on
various statistical methods [Fayyad et al., 1996]. Process mining can
be seen as a specialisation of data mining for the discovery of implicit

118

www.manaraa.com

4.6 related work

process knowledge in process flows. Many research efforts in this
area are concerned with the identification of unknown control-flow
of processes, referred to as process discovery. In addition, however, the
conformity of operating records to existing process models and possi-
ble improvements in the processes are examined. However, indepen-
dently from the tools and methods used, the work mentioned above
concentrates on statistical aspects, redesign, and commercial optimi-
sation of the business process. Security topics in Business Process
Management (BPM), for example, seem orthogonal to the use cases
and key concerns [van der Aalst, 2013].

Conversely, the approach proposed in this thesis builds on on-the-
fly dynamic simulation and analysis on the basis of operational APA

models introduced in Section 2.2. This includes consideration of the
current process state and the event information combined with the
corresponding steps in the process model. In P13, the first publication
on PSA@R, it was proposed to use APA to specify meta-events which
match security critical situations in order to generate alerts. However,
since this turned out to be slow and not easily usable by end-users,
it was decided to build the matching algorithm directly into the PSA.
Monitor automata have been introduced in P19 to specify the oper-
ational security requirements graphically. These automata monitor
the behaviour during runtime and check for (possible) security vio-
lations. For further work, it is considered to integrate methods using
metrics to quantify deviations from process specifications, such as the
one described in Banescu & Zannone [2011], which is, like the work
presented in this chapter, based on the concept to represent system
behaviour by the set of traces generated by a process.

With respect to the exhaustive survey of approaches in the field of
BPM given in van der Aalst [2013], PSA@R supports the “check con-
formance using event data” approach. In this approach, information
is used both from the process model and the event data in order
to identify deviations of runtime behaviour from expected behaviour.
The trend for this specific aspect of BPM, as presented in van der Aalst
[2013], shows a growing interest in the last three years. A similar ap-
proach is described in Rozinat & van der Aalst [2008] but the focus is
on quantification of inconsistencies by the formation of metrics. The
framework presented in Maggi et al. [2011] on runtime compliance
verification for business processes is considered as complementary to
the work presented here.

4.6.2 Information security management

Information security management has been addressed in P15, the
closely related work in Schütte, Rieke & Winkelvos [2012] and a re-
lated talk Hutchison & Rieke [2012] at the workshop on Cyber Se-
curity and Global Affairs and Global Security Forum 2012. Related

119

www.manaraa.com

4.6 related work

work in this area is concerned with modelling security-relevant infor-
mation in a way that creates the possibility to reason about it and link
it to the Information Security Measurement Model (ISMM) described
by the ISO27004 standard [Iso Iec, 2009]. In Fenz [2010], an approach
to create ISO27001-based metrics based on a security ontology is pro-
posed. While it lacks the automatic gathering of measurements, it
could serve as a later extension to the Security Information Meta
Model (SIMM) of P15, which is more focused on measurable techni-
cal events. Further, linking semantic attacker models to the : why part
of the SSMM could be promising (cf. the Attack Modelling and Se-
curity Evaluation Component (AMSEC) model [Kotenko et al., 2012]).
Another example for a potential information source is the Engineer-
ing Knowledge Base (EKB) [Melik-Merkumians et al., 2010], which is
an ontology relating to sensor values and combining run-time with
development time models. It is focused on the analysis of industrial
automation systems, and is used to define SPARQL Protocol and RDF
Query Language (SPARQL) or Semantic Web Rule Language (SWRL)
queries over sensor definitions. An approach like the EKB could help
defining which inconsistencies to look for in event streams, and thus
which measurement points might indicate violations of the security
requirements. Other approaches of interest to this end are the mod-
elling concepts in Innerhofer-Oberperfler & Breu [2006], where busi-
ness, application, physical, and technical information is merged and
related, as well as concepts to use event-triggered rules for sensing
and responding to business situations in Schiefer et al. [2007].

4.6.3 Security information and event management

SIEM technology provides log management and compliance reporting
as well as real-time monitoring and incident management for secu-
rity events from networks, systems, and applications. One objective
of the work presented in this chapter was to bridge the gap between
high-level security measurements and data gathered by SIEM engines,
like OSSIM [AlienVault, 2012], Prelude [Prelude - CS Group, 2014],
or Akab [Araknos, 2012]. OSSIM detects events at the network layer
and stores respective attributes like IP address or port number in a re-
lational database. Thus, while it is possible to link these attributes to
the security information model, OSSIM itself does not support rea-
soning over gathered data, nor extending its model. Similarly, Akab
[Araknos, 2012] is a SIEM appliance for monitoring network events.
It uses a proprietary event format and also stores collected events
persistently in a database. Prelude [Prelude - CS Group, 2014] is an
open source SIEM framework which relies on the open IDMEF [Debar
et al., 2007] event format. Also related to the envisaged model-based
security information measurement are commercial tools RSA Archer,
ArcSight ESM, or IBM Tivoli Security Information and Event Man-

120

www.manaraa.com

4.6 related work

ager [Buecker et al., 2010]. Although they also aim at relating inci-
dents to compliance catalogues and corporate policies, they rely on
predefined event structures, comprising specific technical attributes
[Software, 2010]. The RSA Archer Threat Monitor manages an assets
catalogue and links it to security-relevant information, such as known
vulnerabilities and patch levels. It does not, however, feature an ex-
tensible and semantic model to enable automatic reasoning regarding
the implications of a detected incident with respect to the affected
security requirements. It could also make amendments based on in-
formation from external sources like the PSA prototype.

A concise overview of current SIEM systems functionalities is pre-
sented in Nicolett & Kavanagh [2010]. In Securosis [2010], current
threats are identified and advanced monitoring techniques such as
file integrity monitoring, database activity monitoring, application
monitoring, identity monitoring, and user activity monitoring are dis-
cussed. In Securosis [2011], some challenges with respect to collecting
and analysing additional data sources and forensic analysis are out-
lined.

A new approach for the recognition, analysis and treatment of secu-
rity anomalies in virtualised computing environments is developed in
the project ACCEPT [Philipps-Universität Marburg, 2013; Baumgärtner
et al., 2012]. The security incident measurement is supported by ade-
quate sensors that are installed in the hypervisor, the VMs and in the
runtime environments of the applications. CEP technology is used for
the abstraction, correlation and aggregation of the events from all vir-
tualisation levels. Based on the results from this analysis, the system
can apply countermeasures and close potential security gaps. Offline
analysis of archived events by machine learning methods is proposed
in order to improve the quality of the results. Many of the concepts
described in this chapter will be adopted to the specific needs of the
ACCEPT environment in future work.

SIEM systems manage security events but are not primarily con-
cerned with the trustworthiness of the event sources. Compared to
traditional IT systems, securing SCADA systems poses unique chal-
lenges. In order to understand these challenges and potential dan-
gers, Zhu et al. [2011] provides a taxonomy of possible cyber attacks
– including cyber-induced cyber-physical attacks on SCADA systems.
The author of this thesis has discussed specific SCADA related security
problems Björkman [2010]; Dan et al. [2012] with Gunnar Björkman
the former leader of the VIKING project [Viking project consortium,
2012] several times in order to better understand the problems and
adapt the PSA@R concept (cf. Section 4.5.3).

In general, SIEM systems usually do not have knowledge of the ap-
plication processes, thus lacking the connection between the reported
security problems and the affected critical processes.

121

www.manaraa.com

4.7 summary of results

4.7 summary of results

This chapter addresses predictive security analysis at runtime. The
specific objective is security analysis by observing system behaviour
at runtime. A given system may fail in the sense that a judgemental
system [Randell, 2003] makes a judgement that the activity or inactiv-
ity of the given system constitutes failure. The term fault detection has
been used for the assessment of the behaviour of the observed system
by the judgemental system. The term fault prediction has been used to
express that the judgemental system predicts a possible failure of the
observed system in the near future.

With respect to the overall aim of this thesis – to provide a frame-
work for security analysis of system behaviour – this chapter ad-
dresses the “Study“ and “Act” activities in the Plan-Do-Study-Act
(PDSA) cycle (cf. Figure 4). The Study activity aims at fault detection by
assessment of the behaviour of the observed system by the judgemen-
tal system as well as fault prediction by forecasting a possible failure
of the observed system in the near future. The Act activity analyses
security consequences, determines their root causes, and triggers cor-
rective actions.

The thesis provides a method and tool to observe - de-facto - be-
haviour of processes, compare it with the planned - de-jure - behaviour,
and evaluate security compliance at runtime. Where applicable, knowl-
edge on process’ expected behaviour is used for forecasting critical
situations in the near future. The reported results also take into ac-
count other relevant context information such as the current attack
state for review and countermeasure assessment. Furthermore, a con-
cept to integrate the tool into a holistic security management strategy
is proposed.

The thesis provides methods and tools to analyse possible correc-
tive and preventive actions - based on the results of the security as-
sessment - as well as a tool to trigger their execution in order to
achieve continual improvement of the system.

4.7.1 Process monitoring and uncertainty management

Objective O9 of this thesis was to develop a security monitoring approach.
The intention to use the results of the research work on operational
models presented in the previous chapters led to the idea to leverage
this knowledge at runtime and thus initiated the research questions
RQ9a and RQ9b.

122

www.manaraa.com

4.7 summary of results

O9: Develop a
security monitoring
approach

RQ9a: How can opera-
tional models reflect the
state of observed sys-
tems and thus capture
abstractions of runtime
behaviour?

RQ9b: How can opera-
tional process models be
used for early detection of
and reaction to deviations
of process execution from
its specification?

R9: Process mon-
itoring and uncer-
tainty management
[P13,P18]

An architectural blueprint of the PSA@R approach addressing re-
search question RQ9a has first been published in P13. The control
flow of model learning and uncertainty reasoning addressing research
question RQ9b has been published in P18. In the following, the con-
tribution of these papers with respect to the above research questions
is described.

P13 . Predictive Security Analysis for Event-Driven Processes

The main constraint of current systems is the restriction of Se-
curity Information and Event Management (SIEM) [Nicolett & Ka-
vanagh, 2009] to network infrastructure, and the inability to inter-
pret events and incidents from other layers such as the service view,
or the business impact view, or on a viewpoint of the service itself.
This paper presents an approach for predictive security analysis in
a business process execution environment. It is based on operational
process models and leverages process and threat analysis and sim-
ulation techniques in order to be able to dynamically relate events
from different processes and architectural layers and evaluate them
with respect to security requirements. Based on this, a blueprint of
an architecture is presented which can provide decision support by
performing dynamic simulation and analysis while considering real-
time process changes. It allows for the identification of close-future
security-threatening process states and will output a predictive alert
for the corresponding violation.

P18 . Fraud Detection in Mobile Payment Utilizing Process

Behavior Analysis

This paper describes the control flow of model learning and uncer-
tainty reasoning for anomaly detection in PSA@R. This is exemplified
by detection of money laundering patterns in synthetic process be-
haviour composed of simulated logs based on properties captured
from real world money transaction events.

123

www.manaraa.com

4.7 summary of results

In the initial learning phase, the normal behaviour pattern with
regard to the transaction characteristics is learned by processing an
event log without malicious content. A mapping to classify the trans-
actions with regard to the amount of money transferred and the order
of such abstract events in the event log is used for this purpose. This
mapping is created empirically using real operational logs of the Mo-
bile Money Transfer (MMT) system and can change if different training
sets are used. An overview of the event processing steps of PSA@R in
the learning phase is given.

In the anomaly detection phase PSA@R is used to identify deviations
from the normal characteristics based on the values from a transac-
tion monitor. In an experimental setup, the transaction monitor has
been replaced by synthetic process behaviour composed of simulated
logs based on properties captured from real logs.

4.7.2 Close-future security violation prediction

Objective O10 of this thesis was to validate security compliance at run-
time. This motivated research question RQ10.

O10: Validate secu-
rity compliance at
runtime

RQ10: How can security
analysis at runtime ex-
ploit process models to
identify current and close-
future violations of security
requirements?

R10: Close-future
security viola-
tion prediction
[P14,P19]

The results published in P14 and P19 address this research question.
In the following, an overview of these papers with respect to the
above research questions is given.

P14 . Model-based Situational Security Analysis

Security analysis is growing in complexity with the increase in
functionality, connectivity, and dynamics of current electronic busi-
ness processes. To tackle this complexity, the application of models in
pre-operational phases is becoming standard practice. Runtime mod-
els are also increasingly applied to analyse and validate the actual
security status of business process instances. This paper presents an
approach to support not only model-based evaluation of the current
security status of business process instances, but also to allow for deci-
sion support by analysing close-future process states. The approach is
based on operational formal models derived from development-time
process and security models. This paper exemplifies the approach
utilising real world processes from the logistics domain and demon-
strates the systematic development and application of runtime mod-
els for situational security analysis.

124

www.manaraa.com

4.7 summary of results

P19 . Monitoring Security Compliance of Critical Processes

With respect to RQ10, this paper presents an approach to support
evaluation of the security status of processes at runtime. The ap-
proach is based on operational formal models derived from process
specifications and security policies comprising technical, organisa-
tional, regulatory and cross-layer aspects. A process behaviour model
is synchronised by events from the running process and utilises pre-
diction of expected close-future states to find possible security viola-
tions and allow early decisions on countermeasures.

In particular, the algorithm for the evaluation of security require-
ments at runtime is described.

4.7.3 Security strategy management

Objective O11 of this thesis aimed to integrate security management.
Research question RQ11 and the respective results contribute to this
objective by providing an architecture to integrate the PSA prototype
into a security management framework and a meta model that con-
solidates the necessary security strategy information.

O11: Integrate se-
curity management

RQ11: How can security
analysis at runtime be
integrated in a security
management strategy?

R11: Security strat-
egy management
[P15,P19]

The results published in P15 and P19 address this research question.
In the following, an overview of these papers with respect to the
above research questions is given.

P15 . Architecting a Security Strategy Measurement and Man-
agement System

This paper presents a model driven approach for architecting a
security strategy measurement and management system. Concretely, it de-
scribes the definition of security objectives for a particular system,
and a mechanism for collecting information from operational sys-
tems in a manner which enables assessment and measurement of
how well the system is fulfilling the security objectives. Existing SIEM

solutions are limited, while this approach overcomes these contextual
restrictions (typically predefined, closed models) offering an extensi-
ble and open model, encompassing all parts of the security monitor-
ing and decision support process, namely: (i) detecting threatening
events; (ii) putting them in context of the current system state; (iii)
explaining their potential impact with respect to some security- or
compliance model; and (iv) taking appropriate actions. The proposed
deployment model brings together all parts of security runtime man-
agement, namely, detection, reporting, handling, and explanation of
security incidents, which are to date covered by different systems,

125

www.manaraa.com

4.7 summary of results

such as intrusion detection systems, CEP engines [Esper contributors
and EsperTech Inc., 2012], SIEM systems [AlienVault, 2012; Prelude -
CS Group, 2014; Araknos, 2012], intrusion response systems [Shameli-
Sendi et al., 2012], cyber attack information systems [Skopik et al.,
2012], and governance, risk management, and compliance systems
[Racz et al., 2010]. So, the model supports an integration of function-
alities of these existing systems into one coherent security strategy
management framework.

P19 . Monitoring Security Compliance of Critical Processes

In this paper, the implementation of the PSA@R approach by the
prototype, the PSA, is described and results of evaluation of specific
aspects, such as effects of the number of security requirements, dif-
ferent abstraction levels and the variation of prediction depths are
provided.

4.7.4 Industrial use cases

Objective O12 of this thesis was to provide evidence for usability in large
scale industrial scenarios. Research question RQ12a thus investigated
the applicability of the developed methods in industrial scenarios and
RQ12b analysed the usability and performance of the PSA prototype.

O12: Provide
evidence for usabil-
ity in large scale
industrial scenarios

RQ12a: Can the developed
methods and tools be suc-
cessfully adapted to large
scale industrial scenarios?

RQ12b: What are the
performance effects of
the number of events,
processes, security require-
ments, predicted steps, and
of event abstraction?

R12: Industrial use
cases [P14,P16,
P17, P18, P19]

The results published in P16, P17, P18, and P19 address this re-
search questions. In the following, an overview of these papers with
respect to the above research questions is given.

P16 . MASSIF: A Promising Solution to Enhance Olympic Ga-
mes IT Security

This paper addresses the security management challenges that arise
in the cyber-security of Olympic Games and how advanced SIEM can
help to improve it. Nowadays, Olympic Games have become one of
the most profitable global media events, becoming at the same way
more and more attractive target from the terrorist perspective due
to their media diffusion and international dimension. Critical for the

126

www.manaraa.com

4.7 summary of results

success of such a highly visible event is protecting and securing the
business and the supporting cyber-infrastructure enabling it. In this
context, the MASSIF project aims to provide a new generation SIEM

framework for service infrastructures supporting intelligent, scalable,
and multilevel/multi-domain security event processing and predic-
tive security monitoring.

P17 . Security and Reliability Requirements for Advanced Se-
curity Event Management

This paper addresses security information management in complex
application scenarios. SIEM systems collect and examine security re-
lated events, with the goal of providing a unified view of the moni-
tored systems’ security status. While various SIEMs are in production,
there is scope to extend the capability and resilience of these sys-
tems. The use of SIEM technology in four disparate scenario areas is
used in this paper as a catalyst for the development and articulation
of Security and Reliability requirements for advanced security event
management. The scenarios relate to infrastructure management for
a large real-time sporting event, a mobile money payment system,
a managed services environment and a cyber-physical dam control
system. The diversity of the scenarios enables elaboration of a com-
prehensive set of security and reliability requirements which can be
used in the development of future SIEM systems.

P18 . Fraud Detection in Mobile Payment Utilizing Process

Behavior Analysis

In this paper the applicability of the PSA@R approach is exemplified
by a MMT scenario. MMT systems are systems where electronic money
is issued to different roles in order to perform various types of trans-
actions. As with any payment system, this service can be an attrac-
tive target for attackers and fraudsters. For legal and service security
issues it is mandatory to observe the transactions for potential abnor-
mal activities. The work presented in this paper utilises alerts gen-
erated by the uncertainty reasoning component of the PSA prototype
to detect money laundering patterns in synthetic process behaviour
composed of simulated logs based on properties captured from real
world transaction events. In particular, it is shown that the PSA is
able to raise alerts in a simulated scenario of fraud with mules. For
this simulated scenario, the detection is efficient, but show that such
system could be sensitive to noise in a real world system. It would
be necessary to improve the resistance to noise through a correlation
of the generated alerts or by an application of specific evaluation of
the process states when an alert is generated. The applicability of
the proposed approach is evaluated and provides measurements on
computational and recognition performance of the tool.

127

www.manaraa.com

4.7 summary of results

P19 . Monitoring Security Compliance of Critical Processes

In this paper, the applicability of the PSA@R approach is exempli-
fied by a misuse case scenario from a hydroelectric power plant that
was analysed in the European research project MASSIF. Security re-
quirements are taken from a combined technical and organisational
process from a hydroelectric power plant in a dam [Romano et al.,
2012]. Since dams are complex infrastructures, a huge number of pa-
rameters must be monitored to guarantee safety and security. Which
parameters are actually monitored, depends on the dam’s structure,
design, purpose and function [Coppolino et al., 2012].

In particular, the algorithm for the evaluation of security require-
ments at runtime is described and an extensive example concerning
safety critical actions in the control room is given.

In the project MASSIF [Rieke et al., 2012] PSA@R is currently ap-
plied to check security requirements in four industrial domains: (i)
the management of the Olympic Games IT infrastructure [Vianello
et al., 2013]; (ii) a mobile phone based MMTS [Gaber et al., 2013], fac-
ing high-level threats such as money laundering; (iii) managed IT out-
source services for large distributed enterprises and (iv) an IT system
supporting a critical infrastructure (dam) [Romano et al., 2012]. The
hydroelectric power plant scenario (iv) has been used to demonstrate
the capability of the PSA prototype to process and correlate events
from heterogeneous sources. To evaluate the PSA prototype with re-
spect to performance issues, however, event logs from scenario (ii)
have been used as a resource intensive application which requires
high throughput.

The measurements presented evaluate the execution time and the
number of events received by the PSA. Four aspects important from
the application perspective have been examined: (i) effects of the num-
ber of security requirements to the execution time; (ii) effects of the
abstraction level to analysis; (iii) effects of cycle reduction in a RG; (iv)
effects of changing prediction depths.

During the experiment the security requirements were successfully
checked in all combinations.

4.7.5 Conclusion

In summary, the work presented in this chapter provides an inte-
grated approach called PSA@R to analyse the security status of a pro-
cess and to identify possible violations of the security policy in close
future. The approach also provides early awareness about deviations
of a running process from expected behaviour as specified by the
model. When such anomalies refer to process misbehaviour or disrup-
tion, alarms will be raised for decision support and reaction. More-
over, it is described how to extend process behaviour computation
with algorithms for on-the-fly security compliance checks and predic-

128

www.manaraa.com

4.7 summary of results

tion of close-future security violations. Thus, the proposed integrated
security analysis approach identifies current and close-future viola-
tions of the security policy. As security relies on the compliance of
actual behaviour with the given specifications this early detection of
changes and reaction elevates security of the process in question. In
combination with other novel applications PSA@R enables anticipatory
impact analysis, decision support and impact mitigation by adaptive
configuration of countermeasures. A prototype PSA has been imple-
mented by Fraunhofer SIT headed by the author of this thesis in order
to evaluate the applicability and performance of different modelling
strategies in the scope of PSA@R. The approach has been validated
specifically with respect to security concerns but is also applicable to
on-the-fly analysis of generic compliance and dependability require-
ments.

Further noteworthy work of the author of this thesis with respect
to the work presented in this chapter comprises peer-reviewed pub-
lications regarding model-based security event management [Schütte
et al., 2012] and challenges for advanced security monitoring [Rieke
et al., 2012].

Invited talks related to the results of this chapter have been given
at the Cyber Security & Privacy EU Forum 2013 in Brussels [CSP EU
FORUM, 2013; Rieke & Giot, 2013], at the Second International Work-
shop on Scientific Analysis and Policy Support for Cyber Security
in ST. Petersburg 2012 [Rieke, 2012b], at the Cyber Security & Pri-
vacy EU Forum 2012 in Berlin [Rieke, 2012a,a], at the 2012 Workshop
on Cyber Security and Global Affairs and Global Security Forum in
Barcelona [Hutchison & Rieke, 2012], at the 2011 Workshop on Cyber
Security and Global Affairs in Budapest [Hutchison & Rieke, 2011], at
the Effectsplus Trustworthy ICT Research Roadmap Session Cluster
Meeting 2011 in Brussels [Rieke, 2011; Cleary, 2011a], at the “ICT
2010: Digitally Driven” in Brusels [Rieke, 2010c], and at the 2010

Workshop on Cyber Security and Global Affairs in Zurich [Rieke,
2010a].

The author of this thesis further organised a workshop on mod-
els [Cleary, 2011b] and co-organised the 2nd International Workshop
on Recent Advances in Security Information and Event Management
(RaSIEM 2013) in conjunction with the 8th International Conference
on Availability, Reliability and Security (ARES 2013). In the European
project MASSIF he was responsible for roadmapping [Rieke et al., 2011,
2012, 2013], and the lead of the activity on “Event-driven Process
Models and Attack Simulation”.

129

www.manaraa.com

www.manaraa.com

5
C O N C L U S I O N

Although I do not know how to solve the problems I have raised,
I believe that progress will be made soon on all of them, not
only on the theoretical side, but on building systems that use
sophisticated methods of reasoning about uncertainty to tackle
large, complex real-world problems. It is an exciting time to be
working on reasoning about uncertainty.

— Joseph Y. Halpern [Halpern, 2003]

aim of this chapter . The results of this thesis provide a frame-
work for security analysis of system behaviour. Operational models
are utilised for security and - to some extent - dependability analysis
at design time, configuration time and at runtime. This chapter evalu-
ates the research proposition and the outcomes planned in Chapter 1.
Furthermore, it considers current and future application domains for
the approach, open issues, and lessons learnt.

5.1 summary

The starting point of this cumulative thesis has been the overall aim
to provide a modelling framework that is suitable for security and de-
pendability analysis throughout the life cycle of a system: for design,
configuration, and monitoring during operation as well as in the con-
text of system adaptations to changing requirements and application
context. The work in this thesis has been partitioned into three top-
ics, namely, security of cooperating system design, security of system
configurations, and predictive security analysis at runtime.

In the first chapter of this thesis, the research topic has been moti-
vated, research questions have been derived, and the research contri-
butions have been described.

The second chapter has introduced a specification and analysis
framework for model-based analysis of system behaviour with re-
spect to systematically deduced security and reliability requirements.
Theoretical foundations that extend this approach for the verification
of scalable systems and design principles that facilitate such verifia-
bility have been given.

The third chapter has been concerned with a systematic security as-
sessment of system configurations aiming to identify the critical com-
ponents and their interplay, to determine the threats and vulnerabili-
ties, to assess the risks, and to prioritise countermeasures where risk

131

www.manaraa.com

5.2 application domains

is unacceptable. The presented approach builds on a model-based
construction of an attack graph taking into account constraints given
by the network security policy. The most distinctive feature of this
approach is the ability to compute abstract representations of these
complex graphs that enable comparison of focussed views on the be-
haviour of the system. In order to analyse resilience of information
infrastructures against exploits of unknown vulnerabilities by zero
day attacks, generic vulnerabilities for each installed product and af-
fected service are added to the model. Furthermore, an approach for
the validation and deployment of a security policy has been given.

In the fourth chapter, the utilisation of operational models for se-
curity analysis at runtime has been considered. In particular, an ap-
proach to support model-based evaluation of the current and possible
close-future security status of process instances has been described.
An integration concept for a holistic security strategy management
has been proposed and the applicability of the approach has been
exemplified utilising processes from several industrial scenarios.

In summary, this thesis has provided the research results shown in
Figure 50.

In particular, the results R1 – R4 are concerned with model-based
verification of correct operation of Cooperating Systems (CS) with re-
spect to security and dependability and thus contribute to prevent the
introduction of faults in the early system design phase as well as fault
removal in system redesign phases.

Fault tolerance means to avoid service failures in the presence of
faults, and fault forecasting means to estimate the present number,
the future incidence, and the likely consequences of faults [Avizie-
nis et al., 2004]. The results R5 – R8 contribute to specific aspects of
fault forecasting and fault tolerance by analysis of networked system
configurations with respect to external exploitability of inherent vul-
nerabilities.

The results R9 – R12 are concerned with the utilisation of oper-
ational models for security analysis at runtime. Fault detection with
respect to the specification given by an operational model allows
the assessment of the correct behaviour of the observed system by
a judgemental system. Fault prediction, in addition, provides the abil-
ity to anticipate possible failures of the observed system with respect
to a given security model in the near future.

5.2 application domains

Due to the capability to model and analyse the critical behaviour of
discrete Systems of Systems (SoS), potential applications of the frame-
work presented in Chapter 2 are manifold. Particularly, for safety crit-
ical systems, assuring the correctness - conformance to the intended
purpose - is imperative. Some examples of successful application are

132

www.manaraa.com

5.2 application domains

Security analysis frame-
work with tool support

Results with respect
to security of system
configurations

Results with respect
to security of coopera-
ting system design

Results with respect
to predictive security
analysis at runtime

R1: APA, TL and
verification tool [P1,
P2, P3]

R2: Abstraction
based verification
[P4]

R3: Authenticity
requirements identifi-
cation [P5, P6]

R4: Parameterised
verification problem
reduced to finite
state [P7,P8]

R5: Attack graph
model [P9]

R6: Abstraction
based analysis
method [P10]

R7: Model of un-
known vulnerabilities
[P11]

R8: Policy validation
concept and tool
[P12]

R9: Process mon-
itoring and uncer-
tainty management
[P13,P18]

R10: Close-future
security violation
prediction [P14,P19]

R11: Security strat-
egy management
[P15,P19]

R12: Industrial use
cases [P14,P16,
P17, P18, P19]

Fault prevention and
removal at design time

Fault forecasting and
fault tolerance analysis
at configuration time

Fault prediction and
fault detection at run-
time

Figure 50: Research contributions

now given. The Simple Homomorphism Verification Tool (SHVT) has
been applied in an industrial setting for model-based test case gen-
eration in order to validate security, interoperability, and robustness
of the electronic health card (eGK) and the identity card for health
care professionals [Apel, Repp, Rieke & Steingruber, 2007]. In the
project ProOnline-VSDD an operational Asynchronous Product Au-
tomaton (APA) model of the communication infrastructure of the Ger-
man eHealth Card [Stroetmann & Lilischkis, 2007; Deutsche Kranken-
haus Gesellschaft, 2008] was developed by the author of this thesis to
verify several security requirements for specific applications [Rieke,
2009b]. In the project NoW [Rieke & Steinemann, 2007; Festag et al.,
2008] an operational APA model of the movement of vehicles as well
as a communication model for the WAVE service [Intelligent Trans-
portation Systems Committee of the IEEE Vehicular Technology So-
ciety, 2006] was used. The security requirements elicitation method
proposed in Chapter 2 has been used in several different application
domains. In the project EVITA [Fraunhofer SIT, 2011] it has been used

133

www.manaraa.com

5.2 application domains

to derive security requirements for vehicle-to-vehicle communication
[Ruddle et al., 2009], in the project ADiWa [ADiWa Konsortium, 2012]
to derive authenticity requirements in a logistics application (cf. P14),
and in one of the MASSIF scenarios this method has been applied in
the critical infrastructure domain (cf. P6).

An attack simulator based on the work presented in Chapter 3 has
been developed by the author of this thesis in context of a security
concept in the domain of e-service processes that was developed in
the project SKe [Sarbinowski, 2002]. The policy validation approach
presented in Chapter 3 has been applied in the project SicAri [Rieke
& Ebinger, 2008; Peters, 2013]. The attack graph approach has further-
more been the base for a successful cooperation with MASSIF partner
SPIIRAS. SPIIRAS developed the Attack Modelling and Security Evalu-
ation Component (AMSEC) component which communicates with the
Predictive Security Analyser (PSA) in the MAnagement of Security in-
formation and events in Service InFrastructures (MASSIF) framework.

In the scope of the project MASSIF, the PSA prototype has been
adapted to four industrial scenarios by the participants of the project
team. The PSA has then been evaluated as a component in different
tool chains of a Security Information and Event Management (SIEM)
framework by these project partners. The results of the adaptation of
the PSA prototype are documented in Hutchison et al. [2013]. The
PSA evaluation as integrated component in the MASSIF framework
is described in MASSIF project consortium [2013a]. The results are
promising as the following quotations from the respective MASSIF de-
liverables suggest.

“Other visual components like the AMSEC and PSA require
some initial knowledge and configuration to make them
fully operative, but once this part is completed, the regular
use is fairly simple. ”

— Comment from PSA evaluation in the Olympic Games
IT infrastructure (OOGG) scenario MASSIF project

consortium [2013a]

“The PSA requires building a model which corresponds to
the business process. In the case of the MMT scenario, it is
the user’s behaviour which is monitored. To use the PSA

with the MMT therefore required creating a way of mod-
elling the users’ behaviour. We decided to model an ex-
pected behaviour for each user and transaction type. From
the moment the model was defined, the configuration and
use of the PSA is easy.”

— Comment from PSA evaluation in the Mobile Money
Transfer (MMT) scenario in MASSIF project consortium

[2013a]

134

www.manaraa.com

5.2 application domains

“PSA has high applicability of adaptation to this particular
scenario as it can facilitate the validation of extensive pro-
cesses that are created through the collaboration of many
devices and networks managed within a central system.
In this particular case login authentication and verifica-
tion is sent from more than one device and can be used to
investigate the process for unusual activity.”

— Comment from PSA adaptation to the Managed
Enterprise Service Infrastructures (MESI) scenario in

Hutchison et al. [2013]

“The application of the PSA to the MESI scenario has shown
itself to be possible through the identification of technical
processes such as the associated procedures of logon lo-
goff authorisation. Through the description of a required
sequence of events process violations can be flagged and
raise alerts. The potential of this solution mechanism has
been confirmed through the adaptation input events avail-
able. The extension of this technique to similiar technical
processes looks promising and is an opportunity for fur-
ther testing and deployment. ”

— Comment from PSA adaptation to the MESI scenario in
Hutchison et al. [2013]

“In the Misuse Case 1 the PSA generates a warning when
WaterLevel values decrease and before the ALARM events
are generated by WaterLevelCoherence, SeepageFlowCheck,
TurbidityLevelCheck. In the Misuse Case 4, the PSA gener-
ate warning when the event 5 happens and before the wa-
ter level decreases significantly. For the misuse case 1, the
warning can be used to send reprogramming commands
toward the reaction systems. For the misuse case 4, the
warnings can be used to denying the access of the suspi-
cious role or identity to the control machine.
. . .
The PSA tool managed to generate warning messages that
can be used to reconfigure the system in a timely man-
ner and before the attacks are completed. The adaptation
gave constructive results that are useful for the scenario in
detecting the Misuse Cases 1 and 4.”

— Comment from PSA adaptation to the Critical
Infrastructure Process Control (CIPC) scenario in

Hutchison et al. [2013]

135

www.manaraa.com

5.3 lessons learnt

5.3 lessons learnt

1. APA not only scale as framework for security analysis of system
design but also fault tolerance and security at runtime.

2. Inductive proofs on the construction of a parameterised system
which show that it results in identical abstract system behaviour
for any given parameter configuration allow the verification
of parameterised systems by constructing abstract systems that
can be model checked.

3. Functional dependencies and information flow analysis can be
used to identify a comprehensive set of authenticity require-
ments.

4. Behavioural self-similarity is an important property that avoids
unwanted emergent behaviour when extending uniformly pa-
rameterised systems to large scale and thus is considered as an
important construction aim for well-behaved scalable systems.

5. The configuration of the network policy of an Information and
Communications Technology (ICT) system influences the exposi-
tion of vulnerable components to external access. Therefore, the
analysis of attack graphs and the optimisation of the network
security policy based on the results of this analysis can improve
the fault tolerance and thus the security of a system as a whole.

6. Abstract representations of an attack graph can be computed
and used to visualise and analyse compacted information fo-
cussed on interesting aspects of the behaviour. Abstractions have
to be property preserving, to assure that properties are transported
as desired from a lower to a higher level of abstraction and no
critical behaviour is hidden.

7. Abstraction-based analysis allows to assess the resilience of net-
worked information systems, and, in particular, the identifica-
tion of weak points with respect to zero day attacks.

8. Holistic policy management and validation is required to bridge
the gap between the informal specification of security policies
– what the security administrator wants to enforce – and its corre-
sponding machine-readable policy specification – what the sys-
tem actually enforces –.

9. Systems and applications need to be designed for security assess-
ment at runtime, for example, it must be possible to identify the
originating source of events up to the process instance level.

10. Model-based observing systems can be extended by security mod-
els to judgemental systems. Anticipated behaviour helps to pre-
dict possible failures.

136

www.manaraa.com

5.3 lessons learnt

11. Goals, policies, measurement information, and decision rules
used in security management need a meta model that consoli-
dates the necessary security strategy information.

12. Model-based analysis is applicable and fast enough for security
analysis of important real-world applications at runtime.

137

www.manaraa.com

www.manaraa.com

B I B L I O G R A P H Y

ADiWa Konsortium (2012). Project ADiWa (Alliance Digital Product
Flow). http://www.adiwa.net/. [Online; accessed 13-Oct-2013].
(Cited on pages 14, 68, 112, and 134.)

Aho, A. & Ullman, J. (1995). Foundations of Computer Science: C Edition.
Principles of Computer Science Series. W. H. Freeman. (Cited on
page 21.)

AlienVault (2012). AlienVault Unified SIEM. http://alienvault.com/.
[Online; accessed 16-Sep-2012]. (Cited on pages 120, 126, and 404.)

Alpern, B. & Schneider, F. B. (1985). Defining Liveness. Information
Processing Letters, 21(4), 181–185. (Cited on pages 18, 42, and 59.)

Alur, R. & Henzinger, T. A. (1995). Local liveness for compositional
modeling of fair reactive systems. In Wolper, P. (Ed.), Computer
Aided Verification (CAV) ’95, volume 939 of Lecture Notes in Com-
puter Science, (pp. 166–179). Springer. (Cited on page 58.)

Ammann, P., Wijesekera, D., & Kaushik, S. (2002). Scalable, graph-
based network vulnerability analysis. In Proceedings of the 9th
ACM conference on Computer and communications security, (pp. 217–
224). ACM Press New York, NY, USA. (Cited on page 87.)

Anderson, A. (2005). Core and hierarchical role based access control
(RBAC) profile of XACML v2.0 Oasis Standard, 1 February 2005. OA-
SIS. (Cited on page 89.)

Apel, C., Repp, J., Rieke, R., & Steingruber, J. (2007). Modellbasiertes
Testen der deutschen Gesundheitskarten. In Horster, P. (Ed.),
DACH Security 2007 - Bestandsaufnahme, Konzepte, Anwendungen,
Perspektiven., (pp. 338–346). (Cited on pages 17, 44, 64, 68, 133,
and 196.)

Apt, K. R. & Kozen, D. C. (1986). Limits for automatic verification
of finite-state concurrent systems. Inf. Process. Lett., 22(6), 307–309.
(Cited on page 63.)

Araknos (2012). Araknos website. http://www.araknos.it/en.html.
[Online; accessed 16-Sep-2012]. (Cited on pages 120, 126, and 404.)

Armando, A., Giunchiglia, E., Maratea, M., & Ponta, S. E. (2012). An
action-based approach to the formal specification and automatic
analysis of business processes under authorization constraints.
Journal of Computer and System Sciences, 78(1), 119–141. (Cited on
page 117.)

Arsac, W., Compagna, L., Pellegrino, G., & Ponta, S. (2011). Security
Validation of Business Processes via Model-Checking. In Engineer-
ing Secure Software and Systems (ESSoS 2011), volume 6542 of LNCS
(pp. 29–42). Springer. (Cited on page 117.)

139

http://www.adiwa.net/
http://www.araknos.it/en.html

www.manaraa.com

Bibliography

Auyang, S. Y. (1998). Foundations of complex-system theories: In eco-
nomics, evolutionary biology, and statistical physics. Cambridge, UK:
Cambridge University Press. (Cited on page 1.)

Avizienis, A., Laprie, J.-C., Randell, B., & Landwehr, C. E. (2004). Ba-
sic concepts and taxonomy of dependable and secure computing.
IEEE Trans. Dependable Sec. Comput., 1(1), 11–33. (Cited on pages 3,
4, 6, 9, 18, 58, 63, 94, and 132.)

Baeten, J. & Weijland, W. (1990). Process Algebra. Cambridge Univer-
sity Press. (Cited on page 39.)

Baier, C. & Katoen, J. (2008). Principles of Model Checking. Mit Press.
(Cited on page 36.)

Bandara, A., Lupu, E. C., & Russo, A. (2003). Using event calculus to
formalise policy specification and analysis. In Workshop on Policies
for Distributed Systems and Networks. IEEE. (Cited on page 61.)

Banescu, S. & Zannone, N. (2011). Measuring privacy compliance
with process specifications. In Workshop on Security Measurements
and Metrics (MetriSec 2011). IEEE. (Cited on page 119.)

Barnum, S. & Sethi, A. (2007). Attack Patterns as a Knowledge Re-
source for Building Secure Software. In OMG Software Assurance
Workshop: Cigital. (Cited on page 87.)

Basu, S. & Ramakrishnan, C. R. (2006). Compositional analysis for
verification of parameterized systems. Theor. Comput. Sci., 354(2),
211–229. (Cited on page 62.)

Bauer, L., Ligatti, J., & Walker, D. (2002). More enforceable security
policies. In Workshop on Foundations of Computer Security (FCS
2002). (Cited on page 118.)

Baumgärtner, L., Graubner, P., Leinweber, M., Schwarzkopf, R.,
Schmidt, M., Seeger, B., & Freisleben, B. (2012). Mastering Secu-
rity Anomalies in Virtualized Computing Environments via Com-
plex Event Processing. In Proceedings of the The Fourth Interna-
tional Conference on Information, Process, and Knowledge Management
(eKNOW 2011), (pp. 76–81). XPS. (Cited on pages 111 and 121.)

Bell, D. E. & LaPadula, L. J. (1974). Security computer systems: Math-
ematical foundations and model. Technical report, MITRE Corp.,
Bedford, Mass. (Cited on page 89.)

Bell, D. E. & LaPadula, L. J. (1976). Secure computer systems: Unified
exposition and multics interpretation. MTR-2997, (ESD-TR-75-
306), available as NTIS AD-A023 588, MITRE Corporation. (Cited
on page 89.)

Ben-Ari, M. (2008). Principles of the Spin Model Checker. Springer.
(Cited on page 45.)

Ben Mustapha, Y. & Debar, H. (2013). Service dependencies-aware
policy enforcement framework based on hierarchical colored petri
net. In S. Thampi, P. Atrey, C.-I. Fan, & G. Perez (Eds.), Security
in Computing and Communications, volume 377 of Communications

140

www.manaraa.com

Bibliography

in Computer and Information Science (pp. 313–321). Springer Berlin
Heidelberg. (Cited on page 90.)

Benenson, Z., Freiling, F. C., Holz, T., Kesdogan, D., & Penso, L. D.
(2006). Safety, liveness, and information flow: Dependability re-
visited. In ARCS Workshops, (pp. 56–65). (Cited on page 59.)

Bert, D. & Cave, F. (2000). Construction of finite labelled transition
systems from b abstract systems. In W. Grieskamp, T. Santen,
& B. Stoddart (Eds.), Integrated Formal Methods, volume 1945 of
Lecture Notes in Computer Science (pp. 235–254). Springer Berlin
Heidelberg. (Cited on page 36.)

Bhattacharya, K., Caswell, N. S., Kumaran, S., Nigam, A., & Wu, F. Y.
(2007). Artifact-centered operational modeling: lessons from cus-
tomer engagements. IBM Syst. J., 46(4), 703–721. (Cited on page 7.)

Bistarelli, S., Fioravanti, F., & Peretti, P. (2006). Defense trees for eco-
nomic evaluation of security investments. In ARES, (pp. 416–423).
IEEE Computer Society. (Cited on page 86.)

Bistarelli, S., Fioravanti, F., Peretti, P., & Santini, F. (2012). Evalua-
tion of complex security scenarios using defense trees and eco-
nomic indexes. J. Exp. Theor. Artif. Intell., 24(2), 161–192. (Cited on
page 86.)

Björklund, H. & Bojanczyk, M. (2007). Shuffle Expressions and Words
with Nested Data. In Mathematical Foundations of Computer Science
2007, (pp. 750–761). (Cited on pages 62 and 100.)

Björkman, G. (2010). The viking project - towards more secure scada
systems. In First Workshop on Secure Control Systems (SCS). (Cited
on pages 87, 98, and 121.)

Bodeau, D. J. (1994). System-of-Systems Security Engineering. In In
Proc. of the 10th Annual Computer Security Applications Conference,
Orlando, Florida, (pp. 228–235). IEEE Computer Society. (Cited on
pages 6 and 61.)

Bondi, A. B. (2000). Characteristics of scalability and their impact on
performance. In Workshop on Software and Performance, (pp. 195–
203). (Cited on pages 51 and 52.)

Bonzanni, N., Feenstra, K. A., Fokkink, W., & Krepska, E. (2009). What
can formal methods bring to systems biology? In Cavalcanti, A.
& Dams, D. (Eds.), FM, volume 5850 of Lecture Notes in Computer
Science, (pp. 16–22). Springer. (Cited on page 16.)

Bradfield, J. & Stirling, C. (2001). Modal logics and mu-calculi: an
introduction. (Cited on page 62.)

Bryans, J. (2005). Reasoning about XACML policies using CSP. In
SWS ’05: Proceedings of the 2005 workshop on Secure web services,
(pp. 28–35)., New York, NY, USA. ACM Press. (Cited on page 89.)

Buecker, A., Amado, J., Druker, D., Lorenz, C., Muehlenbrock, F., &
Tan, R. (2010). IT Security Compliance Management Design Guide
with IBM Tivoli Security Information and Event Manager. IBM Red-

141

www.manaraa.com

Bibliography

books. ISBN 0-7384-3446-9. (Cited on page 121.)
Bullock, S. & Cliff, D. (2004). Complexity and emergent behaviour

in ICT systems. Technical Report HP-2004-187, Hewlett-Packard
Labs. (Cited on pages 3, 8, 52, and 69.)

Bundesamt für Sicherheit in der Informationstechnik (2003). Project
Valikrypt (Validation und Verifikation von kryptographischen
Sicherheitsprotokollen unter Verwendung formaler Analysemeth-
oden). https://www.bsi.bund.de/DE/Themen/weitereThemen/

Protokollananlyse/valikrypt.html. [Online; accessed 13-Oct-
2013]. (Cited on page 44.)

Buttner, A. & Ziring, N. (2009). Common Platform Enumeration
(CPE) - Specification. http://cpe.mitre.org/specification/2.

1/cpe-specification_2.1.pdf. [Online; accessed 15-Oct-2013].
(Cited on page 89.)

Cederquist, J. & Dashti, M. T. (2011). Complexity of fairness con-
straints for the dolev-yao attacker model. In Chu, W. C., Wong,
W. E., Palakal, M. J., & Hung, C.-C. (Eds.), SAC, (pp. 1502–1509).
ACM. (Cited on page 59.)

Christey, S. & Martin, R. A. (2007). Vulnerability Type Distributions
in CVE. http://cwe.mitre.org/documents/vuln-trends/index.

html. [Online; accessed 14-Oct-2013]. (Cited on page 88.)
Cimatti, A., Clarke, E. M., Giunchiglia, E., Giunchiglia, F., Pistore,

M., Roveri, M., Sebastiani, R., & Tacchella, A. (2002). Nusmv 2:
An opensource tool for symbolic model checking. In Brinksma,
E. & Larsen, K. G. (Eds.), CAV, volume 2404 of Lecture Notes in
Computer Science, (pp. 359–364). Springer. (Cited on page 59.)

Clark, D. D. & Wilson, D. R. (1987). A comparison of commercial
and military computer security models. In In Proceedings 1987
IEEE Symposium on Security and Privacy, (pp. 184–195). (Cited on
page 89.)

Clarke, E. M., Talupur, M., & Veith, H. (2006). Environment abstrac-
tion for parameterized verification. In Emerson, E. A. & Namjoshi,
K. S. (Eds.), VMCAI, volume 3855 of Lecture Notes in Computer Sci-
ence, (pp. 126–141). Springer. (Cited on page 62.)

Clarke, Jr., E. M., Grumberg, O., & Peled, D. A. (1999). Model check-
ing. Cambridge, MA, USA: MIT Press. (Cited on pages 6, 16, 39,
and 59.)

Clarkson, M. R. & Schneider, F. B. (2008). Hyperproperties. Computer
Security Foundations Symposium, IEEE, 0, 51–65. (Cited on page 59.)

Cleary, F. (2011a). Effectsplus 1st cluster event. Technical report, Wa-
terford institute Of Technology. (Cited on page 129.)

Cleary, F. (2011b). Effectsplus 2nd cluster event. Technical report,
Waterford institute Of Technology. (Cited on page 129.)

Cleaveland, R., Parrow, J., & Steffen, B. (1993). The concurrency work-
bench: A semantics-based tool for the verification of finite-state

142

https://www.bsi.bund.de/DE/Themen/weitereThemen/Protokollananlyse/valikrypt.html
https://www.bsi.bund.de/DE/Themen/weitereThemen/Protokollananlyse/valikrypt.html
http://cpe.mitre.org/specification/2.1/cpe-specification_2.1.pdf
http://cpe.mitre.org/specification/2.1/cpe-specification_2.1.pdf
http://cwe.mitre.org/documents/vuln-trends/index.html
http://cwe.mitre.org/documents/vuln-trends/index.html

www.manaraa.com

Bibliography

systems. In TOPLAS 15, (pp. 36–72). (Cited on page 58.)
Coppolino, L., D’Antonio, S., Romano, L., & Spagnuolo, G. (2010). An

intrusion detection system for critical information infrastructures
using wireless sensor network technologies. In Critical Infrastruc-
ture (CRIS), 2010 5th International Conference on, (pp. 1 –8). (Cited
on page 61.)

Coppolino, L., Jäger, M., Kuntze, N., & Rieke, R. (2012). A Trusted
Information Agent for Security Information and Event Manage-
ment. In ICONS 2012, The Seventh International Conference on Sys-
tems, February 29 - March 5, 2012 - Saint Gilles, Reunion Island (pp.
6–12). IARIA. (Cited on pages 18, 128, 265, and 444.)

CSP EU FORUM (2013). Cyber Security & Privacy EU Forum 2013.
https://www.cspforum.eu/2013/programme/presentations-day-

2. [Online; accessed 16-Oct-2013]. (Cited on page 129.)
Cuppens, F., Cuppens-Boulahia, N., Sans, T., & Miège, A. (2004). A

formal approach to specify and deploy a network security policy.
In Second Workshop on Formal Aspects in Security and Trust (FAST).
(Cited on pages 72 and 90.)

Dan, G., Sandberg, H., Ekstedt, M., & Björkman, G. (2012). Challenges
in power system information security. IEEE Security & Privacy,
10(4), 62–70. (Cited on pages 87 and 121.)

Debar, H., Curry, D., & Feinstein, B. (2007). The Intrusion Detection
Message Exchange Format (IDMEF). RFC 4765 (Experimental).
(Cited on page 120.)

Debar, H., Kheir, N., Cuppens-Boulahia, N., & Cuppens, F. (2010).
Service dependencies in information systems security. In Kotenko,
I. V. & Skormin, V. A. (Eds.), MMM-ACNS, volume 6258 of Lecture
Notes in Computer Science, (pp. 1–20). Springer. (Cited on page 88.)

Delgado, N., Gates, A., & Roach, S. (2004). A taxonomy and catalog
of runtime software-fault monitoring tools. IEEE Transactions on
Software Engineering, 30(12), 859–872. (Cited on page 118.)

Deming, W. E. (1993). The new economics for industry, government, edu-
cation / W. Edwards Deming. Massachusetts Institute of Technology,
Center for Advanced Engineering Study, Cambridge, MA :. (Cited
on pages 14 and 31.)

Derepas, F. & Gastin, P. (2001). Model checking systems of replicated
processes with SPIN. In Dwyer, M. B. (Ed.), Proceedings of the 8th
International SPIN Workshop on Model Checking Software (SPIN’01),
volume 2057 of Lecture Notes in Computer Science, (pp. 235–251).,
Toronto, Canada. Springer. (Cited on page 62.)

Deutsche Krankenhaus Gesellschaft (2008). Übersicht Gesundheit-
skarte Version 2008-03a. Technical report, Deutsche Krankenhaus
Gesellschaft. [Online; accessed 14-Jun-2013]. (Cited on page 133.)

Dijkman, R. M. (2008). Diagnosing differences between business pro-
cess models. In Business Process Management (BPM 2008), volume

143

https://www.cspforum.eu/2013/programme/presentations-day-2
https://www.cspforum.eu/2013/programme/presentations-day-2

www.manaraa.com

Bibliography

5240 of LNCS, (pp. 261–277). Springer. (Cited on page 118.)
Dijkman, R. M., Dumas, M., & Ouyang, C. (2008). Semantics and

analysis of business process models in BPMN. Information and
Software Technology, 50(12), 1281–1294. (Cited on page 118.)

Döhring, M., Zimmermann, B., & Karg, L. (2011). Flexible workflows
at design- and runtime using BPMN2 adaptation patterns. In
Business Information Systems (BIS 2011), volume 87 of LNBIP (pp.
25–36). Springer. (Cited on page 97.)

Durham, D., Boyle, J., Cohen, R., Herzog, S., Rajan, R., & Sastry, A.
(2000). The COPS (Common Open Policy Service) Protocol. RFC
2748 (Proposed Standard). Updated by RFC 4261. (Cited on
page 11.)

Edge, K. S., Raines, R. A., Grimaila, M. R., Baldwin, R. O., Bennington,
R. W., & Reuter, C. E. (2007). The use of attack and protection trees
to analyze security for an online banking system. In HICSS, (pp.
144). IEEE Computer Society. (Cited on page 86.)

Eichler, J. & Rieke, R. (2011). Model-based Situational Security Anal-
ysis. In Proceedings of the 6th International Workshop on Mod-
els@run.time at the ACM/IEEE 14th International Conference on Model
Driven Engineering Languages and Systems (MODELS 2011), volume
794 of CEUR Workshop Proceedings (pp. 25–36). RWTH Aachen.
(Cited on pages 24, 100, 106, 112, and 389.)

Eilenberg, S. (1974). Automata, Languages and Machines, volume A.
New York: Academic Press. (Cited on page 44.)

Emerson, E. A. (1990). Temporal and modal logic. In van Leeuwen,
J. (Ed.), Formal Models and Semantics, volume B of Handbook of
Theoretical Computer Science, (pp. 995–1072). Elsevier. (Cited on
page 39.)

Esper contributors and EsperTech Inc. (2012). Esper – Complex Event
Processing. http://esper.codehaus.org/. [Online; accessed 16-
Sep-2012]. (Cited on pages 126 and 404.)

Evesti, A., Ovaska, E., & Savola, R. (2009). From security modelling
to run-time security monitoring. In European Workshop on Security
in Model Driven Architecture (SECMDA 2009), (pp. 33–41). CTIT.
(Cited on page 118.)

Fabian, B., Gürses, S., Heisel, M., Santen, T., & Schmidt, H. (2010).
A comparison of security requirements engineering methods. Re-
quirements engineering, 15(1), 7–40. (Cited on page 61.)

Fayyad, U. M., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data
mining to knowledge discovery in databases. AI Magazine, 17(3),
37–54. (Cited on page 118.)

Fenz, S. (2010). Ontology-based generation of it-security metrics.
In Proceedings of the 2010 ACM Symposium on Applied Computing,
SAC ’10, (pp. 1833–1839)., New York, NY, USA. ACM. (Cited on
page 120.)

144

http://esper.codehaus.org/

www.manaraa.com

Bibliography

Ferraiolo, D. & Kuhn, R. (1992). Role-based access controls. (Cited on
page 89.)

Ferraiolo, D. F., Kuhn, D. R., & Chandramouli, R. (2003). Role-Based
Access Control. Computer Security Series. Boston: Artech House.
(Cited on page 89.)

Ferraiolo, D. F., Sandhu, R., Gavrila, S., Kuhn, R., & Chandramouli, R.
(2001). Proposed NIST Standard for Role-Based Access Control.
ACM Transactions on Information and System Security, 4(3), 224–274.
http://csrc.nist.gov/rbac/rbacSTD-ACM.pdf. (Cited on page 89.)

Festag, A., Noecker, G., Strassberger, M., Lübke, A., Bochow, B.,
Torrent-Moreno, M., Schnaufer, S., Eigner, R., Catrinescu, C., &
Kunisch, J. (2008). NoW—network on wheels: Project objectives,
technology and achievements. In Proceedings of the 6th Interna-
tional Workshop on Intelligent Transportation. TU Hamburg. (Cited
on pages 13 and 133.)

Firesmith, D. (2003). Engineering security requirements. Journal of
Object Technology, 2(1), 53–68. (Cited on pages 18, 60, 66, and 240.)

FIRST.org, Inc. (2013). Common Vulnerability Scoring System. http:

//www.first.org/cvss. [Online; accessed 13-Oct-2013]. (Cited on
pages 73 and 89.)

Fisler, K., Krishnamurthi, S., Meyerovich, L. A., & Tschantz, M. C.
(2005). Verification and change-impact analysis of access-control
policies. In Proceedings of the 27th international conference on Soft-
ware engineering, ICSE ’05, (pp. 196–205)., New York, NY, USA.
ACM. (Cited on page 89.)

Frankova, G., Seguran, M., Gilcher, F., Trabelsi, S., Dörflinger, J., &
Aiello, M. (2011). Deriving business processes with service level
agreements from early requirements. Journal of Systems and Soft-
ware, 84(8), 1351–1363. (Cited on page 117.)

Fraunhofer SIT (2009). Simple Homomorphism Verification Tool – Manual.
Darmstadt: Fraunhofer Institute for Secure Information Technol-
ogy SIT. (Cited on pages 16 and 37.)

Fraunhofer SIT (2011). Project EVITA (E-safety Vehicle Intrusion pro-
Tected Applications). http://www.evita-project.org/. [Online;
accessed 13-Oct-2013]. (Cited on pages 13, 48, 87, and 133.)

Fuchs, A. & Rieke, R. (2009). Identification of authenticity require-
ments in systems of systems by functional security analysis. In
Workshop on Architecting Dependable Systems (WADS 2009), in Pro-
ceedings of the 2009 IEEE/IFIP Conference on Dependable Systems and
Networks, Supplemental Volume. (Cited on pages 66, 68, and 239.)

Fuchs, A. & Rieke, R. (2010). Identification of Security Require-
ments in Systems of Systems by Functional Security Analysis. In
A. Casimiro, R. de Lemos, & C. Gacek (Eds.), Architecting Depend-
able Systems VII, volume 6420 of Lecture Notes in Computer Science
(pp. 74–96). Springer. (Cited on pages 17 and 239.)

145

http://www.first.org/cvss
http://www.first.org/cvss
http://www.evita-project.org/

www.manaraa.com

Bibliography

Gaber, C., Hemery, B., Achemlal, M., Pasquet, M., & Urien, P. (2013).
Synthetic logs generator for fraud detection in mobile transfer
services. In Proceedings of the 2013 International Conference on Col-
laboration Technologies and Systems (CTS2013). (Cited on pages 112,
128, and 444.)

gematik (2007a). Einführung der Gesundheitskarte – Fachkonzept
Versichertenstammdatenmanagement (VSDM), Version 2.2.0.
Spezifikation, gematik. (Cited on page 45.)

gematik (2007b). Übergreifendes Sicherheitskonzept der Telematik-
infrastruktur, Version 1.9.0. Spezifikation, gematik. (Cited on
pages 7, 45, and 52.)

gematik (2009). Pressemitteilung: eGK besteht Online-Test. (Cited on
page 7.)

Gerlach, M. (2005). Trusted Network on Wheels . ERCIM News, (63),
32–33. (Cited on pages 6 and 52.)

Gerth, R., Peled, D., Vardi, M. Y., & Wolper, P. (1996). Simple on-the-
fly automatic verification of linear temporal logic. In Dembinski,
P. & Sredniawa, M. (Eds.), Protocol Specification, Testing, and Verifi-
cation XV ’95, (pp. 3–18). Chapman & Hall. (Cited on pages 16, 40,
43, and 59.)

Giorgini, P., Massacci, F., Mylopoulos, J., & Zannone, N. (2004). Re-
quirements engineering meets trust management: Model, method-
ology, and reasoning. In In Proc. of iTrust 04, LNCS 2995, (pp. 176–
190). Springer-Verlag. (Cited on page 61.)

Godefroid, P. (1997). Model checking for programming languages us-
ing verisoft. In Proceedings of the 24th ACM symposium on principles
of programming languages, (pp. 174–186). ACM Press. (Cited on
page 45.)

Grimm, R. & Ochsenschläger, P. (2001). Binding Cooperation. A For-
mal Model for Electronic Commerce. Computer Networks, 37, Is-
sue 2, 171–193. Preliminary version http://sit.sit.fraunhofer.

de/smv/publications/download/GMD_report_96.pdf. (Cited on
page 7.)

Gürgens, S., Ochsenschläger, P., & Rudolph, C. (2002). Authentic-
ity and provability - a formal framework. In Infrastructure Secu-
rity Conference InfraSec 2002, volume 2437 of LNCS, (pp. 227–245).
Springer. (Cited on pages 48 and 59.)

Gürgens, S., Ochsenschläger, P., & Rudolph, C. (2005). On a formal
framework for security properties. Computer Standards & Interfaces,
27, 457–466. (Cited on pages 18 and 59.)

Guttman, J. D. & Herzog, A. L. (2005). Rigorous automated network
security management. International Journal of Information Security,
4(1-2), 29–48. (Cited on page 89.)

Guttman, J. D., Herzog, A. L., & Ramsdell, J. D. (2003). Information
flow in operating systems: Eager formal methods. IFIP WG 1.7

146

http://sit.sit.fraunhofer.de/smv/publications/download/GMD_report_96.pdf
http://sit.sit.fraunhofer.de/smv/publications/download/GMD_report_96.pdf

www.manaraa.com

Bibliography

Workshop on Issues in the Theory of Security. (Cited on page 59.)
Haidar, D. A., Cuppens-Boulahia, N., Cuppens, F., & Debar, H. (2006).

An extended rbac profile of xacml. In Juels, A., Damiani, E., &
Gabillon, A. (Eds.), SWS, (pp. 13–22). ACM. (Cited on page 90.)

Haley, C. B., Laney, R. C., Moffett, J. D., & Nuseibeh, B. (2008). Se-
curity requirements engineering: A framework for representation
and analysis. IEEE Trans. Software Eng., 34(1), 133–153. (Cited on
page 60.)

Halpern, J. Y. (2003). Reasoning about Uncertainty. The MIT Press.
(Cited on page 131.)

Harrison, M. A., Ruzzo, W. L., & Ullman, J. D. (1975). On protection
in operating systems. In SOSP ’75: Proceedings of the fifth ACM
symposium on Operating systems principles, (pp. 14–24)., New York,
NY, USA. ACM Press. (Cited on page 89.)

Hartel, P., Butler, M., Currie, A., Henderson, P., Leuschel, M., Martin,
A., Smith, A., Ultes-Nitsche, U., & Walters, B. (1999). Questions
and Answers About Ten Formal Methods. In Proc. 4th Int. Work-
shop on Formal Methods for Industrial Critical Systems, volume II,
(pp. 179–203)., Pisa, Italy. ERCIM, STAR/CNR. (Cited on pages 16

and 58.)
Hatebur, D. & Heisel, M. (2009). A foundation for requirements anal-

ysis of dependable software. In Proceedings of the International
Conference on Computer Safety, Reliability and Security (SAFECOMP),
LNCS 5775, (pp. 311–325). Springer. (Cited on page 60.)

Hatebur, D., Heisel, M., & Schmidt, H. (2008). Analysis and
component-based realization of security requirements. In Proceed-
ings of the International Conference on Availability, Reliability and Se-
curity (AReS), (pp. 195–203). IEEE Computer Society. (Cited on
page 60.)

Hawley, M., Howard, P., Koelle, R., & Saxton, P. (2013). Collaborative
security management: Developing ideas in security management
for air traffic control. In Proceedings of 2013 International Conference
on Availability, Reliability and Security, ARES 2013 (pp. 808–806).
IEEE Computer Society. (Cited on page 6.)

Heinemann, A., Oetting, J., Peters, J., Rieke, R., Rochaeli, T., Ruppert,
M., Steinemann, B., & Wolf, R. (2006). Enforcement of security
policies within the sicari-platform. Technical Report PF5, SicAri
Consortium. (Cited on page 361.)

Herfert, M., Schmidt, A. U., Ochsenschläger, P., Repp, J., Rieke, R.,
Schmucker, M., Vettermann, S., Böttge, U., Escaleira, C., & Rüdi-
ger, D. (2004). Implementierung von Security Policies in offenen
Telekollaborationen. In Horster, P. (Ed.), D-A-CH Security 2004,
(pp. 37–39). Syssec. (Cited on pages 44 and 68.)

Herrmann, D. (2007). Complete Guide to Security And Privacy Met-
rics: Measuring Regulatory Compliance, Operational Resilience, and

147

www.manaraa.com

Bibliography

Roi. Auerbach Publishers, Incorporated. (Cited on page 89.)
Hopcroft, J. E. & Ullman, J. D. (1979). Introduction to Automata Theory,

Languages and Computation (first ed.). Reading, Mass.: Addison-
Wesley. (Cited on page 10.)

Hutchison, A., Dennie, K., Khan, H., et al. (2013). D2.2.1 - Tool Adap-
tation. Technical report, FP7-257475 MASSIF European project.
(Cited on pages 134 and 135.)

Hutchison, A. & Rieke, R. (2011). Management of Security Informa-
tion and Events in Future Internet. In 2011 Workshop on Cyber
Security and Global Affairs, Budapest. (Cited on pages 129 and 421.)

Hutchison, A. & Rieke, R. (2012). Measuring Progress in Cyber-
Security: An Open Architecture for Security Measurement Con-
solidation. In 2012 Workshop on Cyber Security and Global Affairs
and Global Security Forum, Barcelona. (Cited on pages 119, 129,
and 403.)

Ingols, K., Chu, M., Lippmann, R., Webster, S., & Boyer, S. (2009).
Modeling modern network attacks and countermeasures using
attack graphs. In Computer Security Applications Conference, 2009.
ACSAC ’09. Annual, (pp. 117–126). (Cited on pages 21 and 88.)

Ingols, K., Lippmann, R., & Piwowarski, K. (2006). Practical attack
graph generation for network defense. In ACSAC, (pp. 121–130).
IEEE Computer Society. (Cited on page 88.)

Innerhofer-Oberperfler, F. & Breu, R. (2006). Using an enterprise ar-
chitecture for it risk management. In Eloff, J. H. P., Labuschagne,
L., Eloff, M. M., & Venter, H. S. (Eds.), ISSA, (pp. 1–12). ISSA,
Pretoria, South Africa. (Cited on page 120.)

Intelligent Transportation Systems Committee of the IEEE Vehicular
Technology Society (2006). IEEE Trial-Use Standard for Wireless
Access in Vehicular Environments– Security Services for Applica-
tions and Management Messages. IEEE Std 1609.2-2006. (Cited
on page 133.)

Ip, C. N. & Dill, D. L. (1999). Verifying Systems with Replicated
Components in Murϕ. Formal Methods in System Design, 14(3),
273–310. (Cited on page 62.)

Iso Iec (2005). ISO/IEC 27001:2005 - Information technology - Se-
curity techniques - Information security management systems -
Requirements. ISOIEC. (Cited on page 3.)

Iso Iec (2009). ISO/IEC 27004:2009 - Information technology - Se-
curity techniques - Information security management - Measure-
ment. ISOIEC. (Cited on page 120.)

Jansen, W. A. (2009). Directions in security metrics research. Gaithers-
burg, MD: National Institute of Standards and Technology. (Cited
on page 89.)

Jantzen, M. (1985). Extending Regular Expressions with Iterated Shuf-
fle. Theor. Comput. Sci., 38, 223–247. (Cited on pages 62 and 100.)

148

www.manaraa.com

Bibliography

Jaquith, A. (2007). Security Metrics: Replacing Fear, Uncertainty, and
Doubt. Addison-Wesley Professional. (Cited on page 89.)

Jedrzejowicz, J. & Szepietowski, A. (2001). Shuffle languages are in P.
Theor. Comput. Sci., 250(1-2), 31–53. (Cited on page 62.)

Jha, S., Sheyner, O., & Wing, J. M. (2002). Two formal analyses of at-
tack graphs. In 15th IEEE Computer Security Foundations Workshop
(CSFW-15 2002), 24-26 June 2002, Cape Breton, Nova Scotia, Canada,
(pp. 49–63). IEEE Computer Society. (Cited on page 87.)

Kaindl, H., Jäntti, M., Mannaert, H., Nakamatsu, K., & Rieke, R.
(2012). Requirements Engineering for Software vs. Systems in
General. In ICONS 2012, The Seventh International Conference on
Systems, February 29 - March 5, 2012 - Saint Gilles, Reunion Island
(pp. 190–192). IARIA. (Cited on page 68.)

Kalam, A. A. E. & Deswarte, Y. (2006). Multi-orbac: a new access
control model for distributed, heterogeneous and collaborative
systems. In 8th IEEE International Symposium on Systems and In-
formation Security (SSI 2006). (Cited on page 90.)

Kazhamiakin, R., Pistore, M., & Santuari, L. (2006). Analysis of com-
munication models in web service compositions. In World Wide
Web (WWW 2006), (pp. 267–276). ACM. (Cited on page 118.)

Khan, M. A., Banerjee, M., & Rieke, R. (2013). An update logic for in-
formation systems. International Journal of Approximate Reasoning,
(0), –. (Cited on page 68.)

Kheir, N., Cuppens-Boulahia, N., Cuppens, F., & Debar, H. (2010). A
service dependency model for cost-sensitive intrusion response.
In Gritzalis, D., Preneel, B., & Theoharidou, M. (Eds.), ESORICS,
volume 6345 of Lecture Notes in Computer Science, (pp. 626–642).
Springer. (Cited on page 88.)

Kissel, R. (2013). Glossary of key information security terms. NIST
Interagency Reports NIST IR 7298 Revision 2, National Institute
of Standards and Technology. (Cited on page 3.)

Kordy, B., Mauw, S., Radomirović, S., & Schweitzer, P. (2011). Founda-
tions of attack-defense trees. In Proceedings of the 7th International
conference on Formal aspects of security and trust, FAST’10, (pp. 80–
95)., Berlin, Heidelberg. Springer-Verlag. (Cited on page 86.)

Kordy, B., Pietre-Cambacedes, L., & Schweitzer, P. (2013). Dag-based
attack and defense modeling: Don’t miss the forest for the attack
trees. CoRR, abs/1303.7397. (Cited on page 88.)

Kotenko, I. & Chechulin, A. (2012). Attack modeling and security
evaluation in SIEM systems. In International Transactions on Sys-
tems Science and Applications, volume 8. SIWN Press. (Cited on
pages 11, 21, 81, 82, and 88.)

Kotenko, I., Chechulin, A., & Doynikova, E. (2011). Analytical attack
modeling. Deliverable D4.3.1, MASSIF Project. (Cited on page 88.)

149

www.manaraa.com

Bibliography

Kotenko, I., Chechulin, A., & Novikova, E. (2012). Attack Modelling
and Security Evaluation for Security Information and Event Man-
agement. In Samarati, P., Lou, W., & Zhou, J. (Eds.), SECRYPT,
(pp. 391–394). SciTePress. (Cited on pages 88 and 120.)

Kotenko, I., Saenko, I., Polubelova, O., & Doynikova, E. (2013). The
ontology of metrics for security evaluation and decision support
in siem systems. In Proceedings of 2013 International Conference on
Availability, Reliability and Security, ARES 2013 (pp. 638–645). IEEE
Computer Society. (Cited on page 89.)

Kotenko, I. & Stepashkin, M. (2006). Analyzing Network Security
using Malefactor Action Graphs. International Journal of Computer
Science and Network Security, 6. (Cited on page 87.)

Kotenko, I. & Ulanov, A. (2007). Multi-agent Framework for Simula-
tion of Adaptive Cooperative Defense against Internet Attacks. In
In Proceedings of International Workshop on Autonomous Intelligent
Systems: Agents and Data Mining (AIS-ADM-07). Lecture Notes in
Artificial Intelligence, Vol.4476. (Cited on page 87.)

Kotenko, I. V., Stepashkin, M., & Doynikova, E. (2011). Security analy-
sis of information systems taking into account social engineering
attacks. In PDP, (pp. 611–618). (Cited on page 86.)

Kuntze, N., Rieke, R., Diederich, G., Sethmann, R., Sohr, K., Mustafa,
T., & Detken, K.-O. (2010). Secure mobile business informa-
tion processing. In Embedded and Ubiquitous Computing (EUC),
2010 IEEE/IFIP 8th International Conference on, (pp. 672 –678).,
Hongkong, China. IEEE/IFIP. (Cited on page 95.)

Kurshan, R. P. (1994). Computer-Aided Verification of Coordinating Pro-
cesses (first ed.). Princeton, New Jersey: Princeton University Press.
(Cited on pages 39 and 58.)

Lakhnech, Y., Bensalem, S., Berezin, S., & Owre, S. (2001). Incremen-
tal verification by abstraction. In Margaria, T. & Yi, W. (Eds.),
TACAS, volume 2031 of Lecture Notes in Computer Science, (pp. 98–
112). Springer. (Cited on page 62.)

Landwehr, C. E. (1981). Formal models for computer security. ACM
Comput. Surv., 13(3), 247–278. (Cited on page 6.)

Laprie, J.-C. (1995). Dependable computing: concepts, limits, chal-
lenges. In Proceedings of the Twenty-Fifth international conference on
Fault-tolerant computing, FTCS’95, (pp. 42–54)., Washington, DC,
USA. IEEE Computer Society. (Cited on page 4.)

Liu, L., Yu, E., & Mylopoulos, J. (2002). Analyzing security require-
ments as relationships among strategic actors. In 2nd Symposium
on Requirements Engineering for Information Security (SREIS’02).
(Cited on page 61.)

Llanes, M., Prieto, E., Diaz, R., , Coppolino, L., Sergio, A., Cristaldi,
R., Achemlal, M., Gharout, S., Gaber, C., Hutchison, A., & Dennie,
K. (2011). Scenario requirements (public version). Deliverable

150

www.manaraa.com

Bibliography

D2.1.1, FP7-257475 MASSIF European project. (Cited on pages 49

and 50.)
Luallen, M. E. (2011). Managing Insiders in Utility Control Environ-

ments. A SANS Whitepaper in Association with SANS SCADA
Summits, Q1, 2011, SANS. (Cited on page 114.)

Maggi, F. M., Montali, M., Westergaard, M., & van der Aalst, W.
M. P. (2011). Monitoring business constraints with linear temporal
logic: An approach based on colored automata. In Business Pro-
cess Management (BPM 2011), volume 6896 of LNCS, (pp. 132–147).
Springer. (Cited on page 119.)

Manadhata, P. K. & Wing, J. M. (2011). A formal model for a system’s
attack surface. Moving Target Defense, 1–28. (Cited on page 88.)

Martin, B. et al. (2013). Open Sourced Vulnerability Database. http:

//www.osvdb.org/. [Online; accessed 13-Oct-2013]. (Cited on
page 88.)

Martin, R. A. & Barnum, S. (2008). Common weakness enumeration
(CWE) status update. j-SIGADA-LETTERS, 28(1), 88–91. (Cited
on pages 83 and 88.)

Martinelli, F., Mori, P., & Vaccarelli, A. (2005). Towards continuous
usage control on grid computational services. In Joint Interna-
tional Conference on Autonomic and Autonomous Systems and Inter-
national Conference on Networking and Services (ICAS/ICNS 2005).
IEEE. (Cited on page 118.)

Massart, T. & Meuter, C. (2006). Efficient online monitoring of LTL
properties for asynchronous distributed systems. Technical report,
Université Libre de Bruxelles. (Cited on page 118.)

MASSIF project consortium (2013a). Acquisition and evaluation of the
results. Deliverable D2.3.3, FP7-257475 MASSIF European project.
(Cited on page 134.)

MASSIF project consortium (2013b). Project MASSIF (MAnagement
of Security information and events in Service InFrastructures).
http://www.massif-project.eu/. [Online; accessed 13-Oct-2013].
(Cited on pages 14 and 23.)

Mauw, S. & Oostdijk, M. (2006). Foundations of attack trees. In Pro-
ceedings of the 8th international conference on Information Security and
Cryptology, ICISC’05, (pp. 186–198)., Berlin, Heidelberg. Springer-
Verlag. (Cited on page 86.)

McCoy, D. W. (2002). Business Activity Monitoring: Calm Before
the Storm. http://www.gartner.com/resources/105500/105562/

105562.pdf. [Online; accessed 15-Jan-2014]. (Cited on page 117.)
Mead, N. R. (2007). How To Compare the Security Quality Re-

quirements Engineering (SQUARE) Method with Other Methods
. Technical Report CMU/SEI-2007-TN-021, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA. (Cited on
pages 17 and 60.)

151

http://www.osvdb.org/
http://www.osvdb.org/
http://www.massif-project.eu/
http://www.gartner.com/resources/105500/105562/105562.pdf
http://www.gartner.com/resources/105500/105562/105562.pdf

www.manaraa.com

Bibliography

Mead, N. R. & Hough, E. D. (2006). Security requirements engineer-
ing for software systems: Case studies in support of software engi-
neering education. In CSEET ’06: Proceedings of the 19th Conference
on Software Engineering Education & Training, (pp. 149–158)., Wash-
ington, DC, USA. IEEE Computer Society. (Cited on pages 17

and 60.)
Melik-Merkumians, M., Moser, T., Schatten, A., Zoitl, A., & Biffl, S.

(2010). Knowledge-based runtime failure detection for industrial
automation systems. In Workshop Models@run.time, (pp. 108–119).
CEUR. (Cited on pages 117 and 120.)

Mell, P., Scarfone, K., & Romanosky, S. (2007). CVSS: A Complete Guide
to the Common Vulnerability Scoring System Version 2.0. FIRST: Fo-
rum of Incident Response and Security Teams. (Cited on page 89.)

Mellado, D., Blanco, C., Sánchez, L. E., & Fernández-Medina, E.
(2010). A systematic review of security requirements engineer-
ing. Computer Standards & Interfaces, 32(4), 153–165. (Cited on
page 61.)

Mellado, D., Fernández-Medina, E., & Piattini, M. (2006). Apply-
ing a security requirements engineering process. In Proceedings
of the 11th European conference on Research in Computer Security,
ESORICS’06, (pp. 192–206)., Berlin, Heidelberg. Springer-Verlag.
(Cited on page 60.)

Mellado, D., Fernández-Medina, E., & Piattini, M. (2007). A common
criteria based security requirements engineering process for the
development of secure information systems. Computer Standards
& Interfaces, 29(2), 244–253. (Cited on pages 17 and 60.)

Mendling, J. (2008). Metrics for Process Models: Empirical Foundations of
Verification, Error Prediction, and Guidelines for Correctness, volume 6

of LNBIP. Springer. (Cited on page 118.)
Milner, R. (1989). Communication and Concurrency. International Series

in Computer Science. NY: Prentice Hall. (Cited on page 62.)
Milner, R. (1999). Communicating and mobile systems - the Pi-calculus.

Cambridge University Press. (Cited on page 36.)
Mitchell, C. (2005). Trusted Computing. Iet. (Cited on page 62.)
MITRE Corporation (2013a). Common Attack Pattern Enumeration

and Classification. http://capec.mitre.org/. [Online; accessed
13-Oct-2013]. (Cited on page 87.)

MITRE Corporation (2013b). Common Vulnerabilities and Exposures.
http://cve.mitre.org/. [Online; accessed 13-Oct-2013]. (Cited
on pages 73 and 88.)

MITRE Corporation (2013c). Common Weakness Scoring System.
http://cwe.mitre.org/cwss/. [Online; accessed 13-Oct-2013].
(Cited on page 89.)

MITRE Corporation (2013d). The Common Weaknesses Enumeration
(CWE) Initiative. http://cwe.mitre.org/. [Online; accessed 13-

152

http://capec.mitre.org/
http://cve.mitre.org/
http://cwe.mitre.org/cwss/
http://cwe.mitre.org/

www.manaraa.com

Bibliography

Oct-2013]. (Cited on pages 83 and 88.)
Morin, B., Mé, L., Debar, H., & Ducassé, M. (2002). M2d2: a formal

data model for ids alert correlation. In Proceedings of the 5th interna-
tional conference on Recent advances in intrusion detection, RAID’02,
(pp. 115–137)., Berlin, Heidelberg. Springer-Verlag. (Cited on
pages 71 and 88.)

Morin, B., Mouelhi, T., Fleurey, F., Le Traon, Y., Barais, O., & Jézéquel,
J.-M. (2010). Security-driven model-based dynamic adaptation. In
Automated Software Engineering (ASE 2010), (pp. 205–214). ACM.
(Cited on page 117.)

Moses, T. (2005). eXtensible Access Control Markup Language
(XACML), Version 2.0. Technical report, OASIS Standard. (Cited
on page 89.)

Motahari-Nezhad, H. R., Saint-Paul, R., Casati, F., & Benatallah, B.
(2011). Event correlation for process discovery from web service
interaction logs. The VLDB Journal, 20(3), 417–444. (Cited on
page 101.)

Myers, B. K., Dutson, G. C., & Sherman, T. (2005). Utilizing Au-
tomated Monitoring for the Franzen Reservoir Dam Safety Pro-
gram. In 25th USSD Annual Meeting and Conference Proceedings
(2005). (Cited on page 61.)

Netjes, M., Reijers, H., & Aalst, W. P. v. d. (2006). Supporting the
BPM life-cycle with FileNet. In Exploring Modeling Methods for Sys-
tems Analysis and Design (EMMSAD 2006), (pp. 497–508). Namur
University Press. (Cited on page 118.)

NetUnion (2003). Project CASENET (Computer-Aided solutions
to SEcure electroNic commercE Transactions). http://www.

netunion.com/projects/casenet.php. [Online; accessed 13-Oct-
2013]. (Cited on page 44.)

Nicol, D. M., Sanders, W. H., & Trivedi, K. S. (2004). Model-based
evaluation: From dependability to security. IEEE Trans. Dependable
Secur. Comput., 1(1), 48–65. (Cited on page 9.)

Nicolett, M. & Kavanagh, K. M. (2009). Magic Quadrant for Se-
curity Information and Event Management. Gartner RAS Core
Reasearch Note. (Cited on pages 123 and 379.)

Nicolett, M. & Kavanagh, K. M. (2010). Magic Quadrant for Security
Information and Event Management. Gartner Reasearch. (Cited
on page 121.)

NIST Computer Security Resource Center (2013a). Common Con-
figuration Enumeration (CCE) Reference Data. http://nvd.nist.
gov/cce.cfm. [Online; accessed 13-Oct-2013]. (Cited on page 89.)

NIST Computer Security Resource Center (2013b). National Vulnera-
bility Database. http://nvd.nist.gov/. [Online; accessed 13-Oct-
2013]. (Cited on pages 73 and 88.)

153

http://www.netunion.com/projects/casenet.php
http://www.netunion.com/projects/casenet.php
http://nvd.nist.gov/cce.cfm
http://nvd.nist.gov/cce.cfm
http://nvd.nist.gov/

www.manaraa.com

Bibliography

NIST Computer Security Resource Center (2013c). Official Common
Platform Enumeration (CPE) Dictionary. http://nvd.nist.gov/

cpe.cfm. [Online; accessed 13-Oct-2013]. (Cited on page 88.)
Nitsche, U. (1998). Verification of Co-Operating Systems and Behaviour

Abstraction. PhD thesis, University of Frankfurt, Germany. (Cited
on page 43.)

Nitsche, U. & Ochsenschläger, P. (1996). Approximately satisfied
properties of systems and simple language homomorphisms. In-
formation Processing Letters, 60, 201–206. (Cited on pages 7, 42, 43,
and 59.)

Noel, S., Jacobs, M., Kalapa, P., & Jajodia, S. (2005). Multiple Coor-
dinated Views for Network Attack Graphs. In IEEE Workshop on
Visualization for Computer Security (VizSec’05), Los Alamitos, CA,
USA. IEEE Computer Society. (Cited on page 88.)

Noel, S. & Jajodia, S. (2004). Managing attack graph complexity
through visual hierarchical aggregation. In VizSEC/DMSEC ’04:
Proceedings of the 2004 ACM workshop on Visualization and data min-
ing for computer security, (pp. 109–118)., New York, NY, USA. ACM
Press. (Cited on page 88.)

Ochsenschläger, P. (1994). Verification of cooperating systems by sim-
ple homomorphisms using the product net machine. In Desel,
J., Oberweis, A., & Reisig, W. (Eds.), Workshop: Algorithmen und
Werkzeuge für Petrinetze, (pp. 48–53). Humboldt Universität Berlin.
(Cited on page 42.)

Ochsenschläger, P., Repp, J., & Rieke, R. (2000). Abstraction and com-
position – a verification method for co-operating systems. Journal
of Experimental and Theoretical Artificial Intelligence, 12(4), 447–459.
(Cited on pages 17, 41, 42, 68, and 195.)

Ochsenschläger, P., Repp, J., & Rieke, R. (2000a). The SH-Verification
Tool. In Proc. 13th International FLorida Artificial Intelligence Re-
search Society Conference (FLAIRS-2000), (pp. 18–22)., Orlando, FL,
USA. AAAI Press. (Cited on pages 16, 17, and 196.)

Ochsenschläger, P., Repp, J., & Rieke, R. (2000b). Verification of Co-
operating Systems – An Approach Based on Formal Languages.
In Proc. 13th International FLorida Artificial Intelligence Research So-
ciety Conference (FLAIRS-2000), (pp. 346–350)., Orlando, FL, USA.
AAAI Press. (Cited on pages 68 and 195.)

Ochsenschläger, P., Repp, J., & Rieke, R. (2002). Simple Homomorphism
Verification Tool – Tutorial. Darmstadt: Fraunhofer Institute for Se-
cure Telecooperation SIT. (Cited on page 16.)

Ochsenschläger, P., Repp, J., Rieke, R., & Nitsche, U. (1998). The SH-
Verification Tool – Abstraction-Based Verification of Co-operating
Systems. Formal Aspects of Computing, The International Journal of
Formal Method, 10, 381–404. (Cited on pages 6, 16, 17, 35, and 167.)

154

http://nvd.nist.gov/cpe.cfm
http://nvd.nist.gov/cpe.cfm

www.manaraa.com

Bibliography

Ochsenschläger, P. & Rieke, R. (2007). Abstraction Based Verification
of a Parameterised Policy Controlled System. In Gorodetsky, V.,
Kotenko, I., & Skormin, V. A. (Eds.), Computer Network Security,
volume 1 of CCIS. Springer. c© Springer. (Cited on pages 17

and 223.)
Ochsenschläger, P. & Rieke, R. (2010). Uniform Parameterisation

of Phase Based Cooperations. Technical Report SIT-TR-2010/1,
Fraunhofer SIT. (Cited on pages 56, 57, and 62.)

Ochsenschläger, P. & Rieke, R. (2011). Security properties of self-
similar uniformly parameterised systems of cooperations. In
Parallel, Distributed and Network-Based Processing (PDP), 2011 19th
Euromicro International Conference on, (pp. 640–645). (Cited on
pages 18 and 273.)

Ochsenschläger, P. & Rieke, R. (2012a). Reliability Aspects of Uni-
formly Parameterised Cooperations. In ICONS 2012, The Seventh
International Conference on Systems, February 29 - March 5, 2012 -
Saint Gilles, Reunion Island (pp. 25–34). IARIA. (Cited on pages 18

and 281.)
Ochsenschläger, P. & Rieke, R. (2012b). Security requirements for

uniformly parameterised cooperations. In Parallel, Distributed and
Network-Based Processing (PDP), 2012 20th Euromicro International
Conference on, (pp. 288–292). (Cited on pages 43, 68, and 281.)

Ochsenschläger, P. & Rieke, R. (2014). Construction Principles for
Well-behaved Scalable Systems. In ICONS 2014, The Ninth Inter-
national Conference on Systems, February 23 - 27, 2014 - Nice, France
(pp. 32–39). IARIA. (Cited on pages 57, 58, and 63.)

Ochsenschläger, P., Rieke, R., & Velikova, Z. (2008). Die elektronis-
che Krankenakte - Eine Sicherheitsstrategie. In Horster, P. (Ed.),
DACH Security 2008 - Bestandsaufnahme, Konzepte, Anwendungen,
Perspektiven., (pp. 90–100). (Cited on pages 21, 90, and 95.)

Parekh, M., Stone, K., & Delborne, J. (2010). Coordinating intelli-
gent and continuous performance monitoring with dam and levee
safety management policy. In Association of State Dam Safety Offi-
cials,Proceedings of Dam Safety Conference 2010. (Cited on page 61.)

Parmelee, M. C. (2010). Toward an ontology architecture for cyber-
security standards. In da Costa, P. C. G. & Laskey, K. B. (Eds.),
STIDS, volume 713 of CEUR Workshop Proceedings, (pp. 116–123).
CEUR-WS.org. (Cited on page 88.)

Peled, D. A. (2001). Software Reliability Methods (1 ed.). Springer.
(Cited on pages 16, 35, 36, and 59.)

Perrin, D. & Pin, J.-E. (2004). Infinite Words, volume Pure and Applied
Mathematics Vol 141. Elsevier. (Cited on page 42.)

Peters, J. (2013). SicAri Platform. http://sicari.sourceforge.net/.
[Online; accessed 13-Oct-2013]. (Cited on pages 21, 44, 84, 94, 134,
361, and 362.)

155

http://sicari.sourceforge.net/

www.manaraa.com

Bibliography

Peters, J., Rieke, R., Rochaeli, T., Steinemann, B., & Wolf, R. (2005).
Protocols for policy negotiation. Technical Report PE3, Reportnr.:
05i018-FIGD, SicAri Consortium. (Cited on page 361.)

Peters, J., Rieke, R., Rochaeli, T., Steinemann, B., & Wolf, R. (2007). A
Holistic Approach to Security Policies – Policy Distribution with
XACML over COPS. In Proc. of the Second International Workshop on
Views On Designing Complex Architectures (VODCA 2006), volume
168, (pp. 143–157). Elsevier. (Cited on pages 21, 85, and 362.)

Petri, C. A. (1962). Kommunikation mit Automaten. Dissertation, TH
Darmstadt. (Cited on pages 16, 100, and 118.)

Phanse, K. S. (2003). Policy-Based Quality of Service Management
in Wireless Ad Hoc Networks. Dissertation, Virginia Polytechnic
Institute and State University. (Cited on page 90.)

Philipps-Universität Marburg (2013). Project ACCEPT (Anomaliem-
anagement in Computersystemen durch Complex Event Process-
ing Technologie). http://accept-projekt.de/. [Online; accessed
13-Oct-2013]. (Cited on pages 14 and 121.)

Phillips, C. A. & Swiler, L. P. (1998). A graph-based system for
network-vulnerability analysis. In NSPW ’98, Proceedings of the
1998 Workshop on New Security Paradigms, September 22-25, 1998,
Charlottsville, VA, USA, (pp. 71–79). ACM Press. (Cited on
page 87.)

Ponnappan, A., Yang, L., Pillai, R., & Braun, P. (2002). A Policy Based
QoS Management System for the IntServ/DiffServ Based Inter-
net. In Proc. of the IEEE 3th International Workshop on Policies for
Distributed Systems and Networks (POLICY 2002), (pp. 159ff)., Los
Alamitos, CA, USA. IEEE Computer Society. (Cited on page 90.)

Prelude - CS Group (2014). Prelude Security Information and Event
Management. http://www.prelude-ids.com. [Online; accessed
12-Jun-2014]. (Cited on pages 120, 126, and 404.)

Prieto, E., Diaz, R., Romano, L., Rieke, R., & Achemlal, M. (2012).
MASSIF: A Promising Solution to Enhance Olympic Games IT Se-
curity. In C. K. Georgiadis et al. (Eds.), Global Security, Safety and
Sustainability & e-Democracy, volume 99 of Lecture Notes of the Insti-
tute for Computer Sciences, Social Informatics and Telecommunications
Engineering (pp. 139–147). Springer Berlin Heidelberg. (Cited on
pages 25, 111, and 411.)

Racz, N., Weippl, E., & Seufert, A. (2010). A Frame of Reference for
Research of Integrated Governance, Risk and Compliance (GRC).
In Decker, B. D. & Schaumüller-Bichl, I. (Eds.), Communications
and Multimedia Security, volume 6109 of Lecture Notes in Computer
Science, (pp. 106–117). Springer. (Cited on pages 110, 126, and 404.)

Randell, B. (2003). On failures and faults. In Araki, K., Gnesi, S.,
& Mandrioli, D. (Eds.), FME, volume 2805 of Lecture Notes in
Computer Science, (pp. 18–39). Springer. (Cited on pages 4, 106,

156

http://accept-projekt.de/

www.manaraa.com

Bibliography

and 122.)
Repp, J. & Rieke, R. (2011). Formal specification of security properties.

Deliverable D4.2.1, FP7-257475 MASSIF European project. (Cited
on page 14.)

Repp, J. & Rieke, R. (2013). Predictive security analyser. Deliver-
able D4.2.3, FP7-257475 MASSIF European project. (Cited on
page 109.)

Repp, J., Rieke, R., & Steinemann, B. (2005). Evaluierung von Sicher-
heitszielen auf Basis von Policies. Technical Report PE5, SicAri
Consortium. (Cited on page 361.)

Richter, J., Kuntze, N., & Rudolph, C. (2010). Security Digital Evi-
dence. In 2010 Fifth International Workshop on Systematic Approaches
to Digital Forensic Engineering, (pp. 119–130). IEEE. (Cited on
page 62.)

Rieke, R. (2002). Projects CASENET and SKe a framework for secure
e-government. Invited talk at Telecities 2002 Winter Conference,
Sienna, Italy. (Cited on page 68.)

Rieke, R. (2003). Development of formal models for secure e-services.
In Eicar Conference 2003. (Cited on pages 17 and 203.)

Rieke, R. (2004a). Formale Spezifikation von Zielen und Vorausset-
zungen. Technical Report PE2, SicAri Consortium. (Cited on
page 361.)

Rieke, R. (2004b). Tool based formal Modelling, Analysis and Vi-
sualisation of Enterprise Network Vulnerabilities utilising Attack
Graph Exploration. In In U.E. Gattiker (Ed.), Eicar 2004 Conference
CD-rom: Best Paper Proceedings, Copenhagen. EICAR e.V. (Cited
on pages 20 and 293.)

Rieke, R. (2006). Modelling and Analysing Network Security Poli-
cies in a Given Vulnerability Setting. In Critical Information Infras-
tructures Security, First International Workshop, CRITIS 2006, Samos
Island, Greece, volume 4347 of LNCS, (pp. 67–78). Springer. c©
Springer. (Cited on pages 20 and 327.)

Rieke, R. (2007a). Improving Resilience of Critical Information In-
frastructures against Complex Threats. Invited talk at IFIP WG
10.4 Dependable Computing and Fault Tolerance, 51st Meeting,
Guadeloupe, France. (Cited on page 95.)

Rieke, R. (2007b). Wie ausführbare Modelle helfen, komplexe Systeme
zu verstehen und sicherer zu steuern. Vortragsreihe: Modelle
für die Sicherheit und Zuverlässigkeit von Systemen, J.W.Goethe-
Universität Frankfurt. (Cited on page 95.)

Rieke, R. (2008a). Abstraction-based analysis of known and unknown
vulnerabilities of critical information infrastructures. International
Journal of System of Systems Engineering (IJSSE), 1, 59–77. (Cited on
pages 21 and 341.)

157

www.manaraa.com

Bibliography

Rieke, R. (2008b). Upcoming information security threats - an end-
user perspective -. Invited talk at 1st FORWARD Workshop, Gote-
borg, Sweden. (Cited on page 95.)

Rieke, R. (2009a). Operational models for security and dependabil-
ity in electronic health systems. In Breu, R., Mitchell, J. C.,
Sztipanovits, J., & Winter, A. (Eds.), 09073 Abstracts Collection –
Model-Based Design of Trustworthy Health Information Systems, num-
ber 09073 in Dagstuhl Seminar Proceedings. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany. (Cited on pages 7

and 45.)
Rieke, R. (2009b). ProOnline-VSDD Wissenschaftliche Begleitung der

Tests von Online-Prüfung und -Aktualisierung der Versicherten-
stammdaten der eGK, Arbeitspaket Formale Modellierung und
Sicherheitsanalyse der Kommunikationsinfrastruktur, Endbericht
- Version 1.1. Technical report, Fraunhofer SIT. (Cited on pages 7,
13, 45, 68, and 133.)

Rieke, R. (2010a). Challenges for Systems of Systems Security Infor-
mation and Event Management. In 2010 Workshop on Cyber Secu-
rity and Global Affairs,ETH,Zurich. (Cited on pages 129 and 421.)

Rieke, R. (2010b). Identification of Security Requirements for Vehicu-
lar Communication Systems. CAST-Workshop on Mobile Security
for Intelligent Cars, Darmstadt, Germany. (Cited on page 68.)

Rieke, R. (2010c). Management of security information and events in
service infrastructures. Talk at the ICT 2010 Effectsplus network-
ing session, Brussels. (Cited on page 129.)

Rieke, R. (2011). SIEM systems of the future. Talk at the Effect-
splus Trustworthy ICT Research Roadmap Session Cluster Meet-
ing, Brussels. (Cited on page 129.)

Rieke, R. (2012a). Advanced security monitoring: Challenges, ad-
vances, and foundations - The MASSIF project. Talk at Cyber
Security & Privacy EU Forum 2012, Berlin, Germany. (Cited on
pages 129 and 411.)

Rieke, R. (2012b). Enhancing situational awareness, security and trust-
worthiness of processes in systems of systems. Invited talk at
Second International Workshop ’Scientific Analysis and Policy
Support for Cyber Security’, St. Petersburg, Russia. (Cited on
pages 129 and 411.)

Rieke, R., Coppolino, L., Hutchison, A., Prieto, E., & Gaber, C. (2012).
Security and reliability requirements for advanced security event
management. In I. Kotenko & V. Skormin (Eds.), Computer Net-
work Security, volume 7531 of Lecture Notes in Computer Science (pp.
171–180). Springer Berlin Heidelberg. (Cited on pages 25, 111, 112,
and 422.)

Rieke, R. & Ebinger, P. (2008). Eine Sicherheitsarchitektur und deren
Werkzeuge zur ubiquitären Internetnutzung: SicAri ; Erfolgskon-

158

www.manaraa.com

Bibliography

trollbericht. Technical report, Fraunhofer. (Cited on pages 14, 44,
84, 94, 134, 361, and 362.)

Rieke, R. & Giot, R. (2013). Predictive security analysis - concepts,
implementation, first results in industrial scenario. Talk at Cyber
Security & Privacy EU Forum 2013, Brussels, Belgium. (Cited on
pages 129 and 433.)

Rieke, R., Perez, E. P., & Debar, H. (2012). Research and roadmapping
report year 2. Deliverable D1.2.2, FP7-257475 MASSIF European
project. (Cited on page 129.)

Rieke, R., Perez, E. P., Debar, H., & Gharout, S. (2011). Research and
roadmapping report year 1. Deliverable D1.2.1, FP7-257475 MAS-
SIF European project. (Cited on page 129.)

Rieke, R., Perez, E. P., Debar, H., Hutchison, A., Achemlal, M., &
Jimenez, R. (2013). Research and Roadmapping Report Year 3.
Deliverable D1.2.3, FP7-257475 MASSIF European project. (Cited
on page 129.)

Rieke, R., Prieto, E., Diaz, R., Debar, H., & Hutchison, A. (2012). Chal-
lenges for advanced security monitoring – the MASSIF project. In
S. Fischer-Hübner, S. Katsikas, & G. Quirchmayr (Eds.), Trust, Pri-
vacy and Security in Digital Business, volume 7449 of Lecture Notes
in Computer Science (pp. 222–223). Springer Berlin / Heidelberg.
(Cited on pages 112, 128, 129, and 444.)

Rieke, R., Repp, J., & Zhdanova, M. (2012). Process model and dy-
namic simulation and analysis modelling framework. Deliver-
able D4.2.2, FP7-257475 MASSIF European project. (Cited on
page 100.)

Rieke, R., Repp, J., Zhdanova, M., & Eichler, J. (2014). Monitoring se-
curity compliance of critical processes. In Parallel, Distributed and
Network-Based Processing (PDP), 2014 22th Euromicro International
Conference on, (pp. 525–560). IEEE Computer Society. (Cited on
pages 24, 25, 106, 108, and 443.)

Rieke, R., Schütte, J., & Hutchison, A. (2012). Architecting a security
strategy measurement and management system. In Proceedings of
the Workshop on Model-Driven Security, MDsec ’12, (pp. 2:1–2:6).,
New York, NY, USA. ACM. (Cited on pages 24, 109, and 403.)

Rieke, R. & Steinemann, B. (2007). Projektbericht SimuSec-NoW,
Ein Modell zur Simulation einer Warnmeldung-Anwendung für
Fahrzeuge mit NoW-Technologie - Studie im Auftrag von BMW
im Rahmen des BMBF Projektes Network on Wheels (NoW) -.
Technical report, Fraunhofer SIT. (Cited on pages 13 and 133.)

Rieke, R. & Stoynova, Z. (2010). Predictive security analysis for event-
driven processes. In Computer Network Security, volume 6258 of
LNCS (pp. 321–328). Springer. (Cited on pages 23, 99, and 379.)

Rieke, R., Zhdanova, M., Repp, J., Giot, R., & Gaber, C. (2013). Fraud
detection in mobile payment utilizing process behavior analysis.

159

www.manaraa.com

Bibliography

In Availability, Reliability and Security (ARES), 2013 Eighth Interna-
tional Conference on, (pp. 662–669). IEEE Computer Society. (Cited
on pages 23, 25, 114, and 433.)

Ritchey, R. W. & Ammann, P. (2000). Using model checking to ana-
lyze network vulnerabilities. In IEEE Symposium on Security and
Privacy, (pp. 156–165). IEEE Computer Society. (Cited on page 87.)

Romano, L., Antonio, S. D., Formicola, V., & Coppolino, L. (2012).
Enhancing SIEM technology to protect critical infrastructures. In
CRITIS 2012, the seventh CRITIS Conference on Critical Information
Infrastructures Security. (Cited on pages 112, 128, and 444.)

Roy, A., Kim, D. S., & Trivedi, K. S. (2012). Attack countermeasure
trees (act): towards unifying the constructs of attack and defense
trees. Security and Communication Networks, 5(8), 929–943. (Cited
on page 86.)

Rozinat, A. & van der Aalst, W. (2008). Conformance checking of
processes based on monitoring real behavior. Information Systems,
33(1), 64 – 95. (Cited on page 119.)

Rozinat, A., Wynn, M. T., van der Aalst, W. M. P., ter Hofstede, A.
H. M., & Fidge, C. J. (2009). Workflow simulation for operational
decision support. Data & Knowledge Engineering, 68(9), 834–850.
(Cited on page 118.)

Ruddle, A., Ward, D., Weyl, B., Idrees, S., Roudier, Y., Friedewald,
M., Leimbach, T., Fuchs, A., Gürgens, S., Henniger, O., Rieke, R.,
Ritscher, M., Broberg, H., Apvrille, L., Pacalet, R., & Pedroza, G.
(2009). Security requirements for automotive on-board networks
based on dark-side scenarios. EVITA Deliverable D2.3, EVITA
project. (Cited on pages 14, 48, 87, and 134.)

Sakarovitch, J. (2009). Elements of Automata Theory. Cambridge Uni-
versity Press. (Cited on pages 23, 33, and 41.)

Sandhu, R. (1998). Role activation hierarchies. In Proceedings of the
third ACM workshop on Role-based access control. ACM Press. (Cited
on page 89.)

Sarbinowski, H. (2002). Project SKE (Durchgängige Sicher-
heitskonzeption mit dynamischen Kontrollmechanis-
men für e-Service-Prozesse). http://www.egov-zentrum.

fraunhofer.de/projects_extern_detail.php3?sessionid=

775647c320baeda188711eae0ecca6e7&id=12. (Cited on pages 14

and 134.)
Scarfone, K. & Mell, P. (2009). An analysis of cvss version 2 vulnerabil-

ity scoring. In Proceedings of the 2009 3rd International Symposium
on Empirical Software Engineering and Measurement, ESEM ’09, (pp.
516–525)., Washington, DC, USA. IEEE Computer Society. (Cited
on page 89.)

Schiefer, J., Rozsnyai, S., Rauscher, C., & Saurer, G. (2007). Event-
driven rules for sensing and responding to business situations. In

160

http://www.egov-zentrum.fraunhofer.de/projects_extern_detail.php3?sessionid=775647c320baeda188711eae0ecca6e7&id=12
http://www.egov-zentrum.fraunhofer.de/projects_extern_detail.php3?sessionid=775647c320baeda188711eae0ecca6e7&id=12
http://www.egov-zentrum.fraunhofer.de/projects_extern_detail.php3?sessionid=775647c320baeda188711eae0ecca6e7&id=12

www.manaraa.com

Bibliography

Jacobsen, H.-A., Mühl, G., & Jaeger, M. A. (Eds.), DEBS, volume
233 of ACM International Conference Proceeding Series, (pp. 198–205).
ACM. (Cited on page 120.)

Schiffmann, M. (2005). A Complete Guide to the Common Vulner-
ability Scoring System (CVSS). http://www.first.org/cvss/cvss-
guide.html. (Cited on page 89.)

Schneider, F. B. (2000). Enforceable security policies. ACM Trans-
actions on Information and System Security, 3(1), 30–50. (Cited on
page 118.)

Schneider, S. (1996). Security Properties and CSP. In IEEE Sympo-
sium on Security and Privacy, (pp. 174–187). IEEE Computer Society.
(Cited on pages 33 and 52.)

Schneier, B. (1999). Attack Trees: Modeling Security Threats. Dr.
Dobb’s Journal. (Cited on page 86.)

Schneier, B. (2000). Secrets and Lies: Digital Security in a Networked
World. John Wiley and Sons. (Cited on page 86.)

Schütte, J., Rieke, R., & Winkelvos, T. (2012). Model-based security
event management. In I. Kotenko & V. Skormin (Eds.), Computer
Network Security, volume 7531 of Lecture Notes in Computer Science
(pp. 181–190). Springer Berlin Heidelberg. (Cited on pages 110,
119, 129, and 403.)

Securosis (2010). Monitoring up the Stack: Adding Value to SIEM.
White paper, Securosis L.L.C., Phoenix, AZ. (Cited on page 121.)

Securosis (2011). Applied Network Security Analysis: Moving from
Data to Information. White paper, Securosis L.L.C., Phoenix, AZ.
(Cited on page 121.)

Seguran, M., Hebert, C., & Frankova, G. (2008). Secure workflow
development from early requirements analysis. In European Con-
ference on Web Services (ECOWS 2008), (pp. 125–134). IEEE. (Cited
on page 117.)

Serban, C. & McMillin, B. (1996). Run-time security evaluation (RTSE)
for distributed applications. In Symposion on Security and Privacy,
(pp. 222–232). IEEE. (Cited on page 118.)

Shameli-Sendi, A., Ezzati-Jivan, N., Jabbarifar, M., & Dagenais, M.
(2012). Intrusion response systems: survey and taxonomy. SIG-
MOD Rec, 12, 1–14. (Cited on pages 126 and 404.)

Sheyner, O., Haines, J. W., Jha, S., Lippmann, R., & Wing, J. M. (2002).
Automated generation and analysis of attack graphs. In 2002 IEEE
Symposium on Security and Privacy, May 12-15, 2002, Berkeley, Cal-
ifornia, USA, (pp. 273–284). IEEE Comp. Soc. Press. (Cited on
page 87.)

Shirey, R. (2007). Internet Security Glossary, Version 2. RFC 4949

(Informational). (Cited on page 3.)

161

www.manaraa.com

Bibliography

Skopik, F., Ma, Z., Smith, P., & Bleier, T. (2012). Designing a cyber
attack information system for national situational awareness. In
N. Aschenbruck, P. Martini, M. Meier, & J. Tölle (Eds.), Future Se-
curity, volume 318 of Communications in Computer and Information
Science (pp. 277–288). Springer. (Cited on pages 110, 126, and 404.)

Sobocinski, P. (2007). A well-behaved lts for the pi-calculus: (abstract).
Electr. Notes Theor. Comput. Sci., 192(1), 5–11. (Cited on page 36.)

Software, L. (2010). Common event format configuration guide.
(Cited on page 121.)

Spanoudakis, G., Kloukinas, C., & Androutsopoulos, K. (2007). To-
wards security monitoring patterns. In Symposium on Applied com-
puting (SAC 2007), (pp. 1518–1525). ACM. (Cited on page 118.)

Steele, Jr., G. L. (1990). Common LISP: the language (2nd ed.). Newton,
MA, USA: Digital Press. (Cited on page 109.)

Stirling, C. (1989). An introduction to modal and temporal logics
for CCS. In Yonezawa, A. & Ito, T. (Eds.), Concurrency: Theory,
Language, and Architecture, volume 391 of Lecture Notes in Computer
Science. Springer Verlag. (Cited on page 58.)

Stroetmann, K. A. & Lilischkis, S. (2007). ehealth strategy and im-
plementation activities in germany. (Cited on pages 7, 45, 52,
and 133.)

Suzuki, I. (1988). Proving properties of a ring of finite-state machines.
Inf. Process. Lett., 28(4), 213–214. (Cited on page 63.)

Swiler, L. P., Phillips, C., Ellis, D., & Chakerian, S. (2001). Computer-
attack graph generation tool. In DARPA Information Survivabil-
ity Conference and Exposition (DISCEX II’01) Volume 2,June 12 - 14,
2001, Anaheim, California, (pp. 1307–1321). IEEE Computer Society.
(Cited on page 87.)

Tallon, P. (2008). Inside the adaptive enterprise: an information tech-
nology capabilities perspective on business process agility. Infor-
mation Technology and Management, 9(1), 21–36. (Cited on page 97.)

Talupur, M. (2006). Abstraction Techniques for Parameterized Verification.
PhD thesis, Computer Science Department, Carnegie Mellon Uni-
versity. CMU-CS-06-169. (Cited on page 62.)

Tjoa, S., Jakoubi, S., Goluch, G., Kitzler, G., Goluch, S., & Quirchmayr,
G. (2011). A formal approach enabling risk-aware business pro-
cess modeling and simulation. IEEE Transactions on Services Com-
puting, 4(2), 153–166. (Cited on page 117.)

Toktar, E., Jamhour, E., & Maziero, C. (2004). RSVP Policy Control
using XACML. In Proc. of the IEEE 5th International Workshop on
Policies for Distributed Systems and Networks (POLICY 2004), (pp.
87ff)., Los Alamitos, CA, USA. IEEE Computer Society. (Cited on
page 90.)

Tsigritis, T. & Spanoudakis, G. (2008). Diagnosing runtime violations
of security & dependability properties. In Software Engineering and

162

www.manaraa.com

Bibliography

Knowledge Engineering (SEKE 2008), (pp. 661–666). KSI. (Cited on
page 118.)

Turner, D. (2007). Symantec Internet Security Threat Report: Trends
for January–June 07. Technical report, Symantec Corporation.
(Cited on page 10.)

Uribe, T. E. (2000). Combinations of Model Checking and Theorem
Proving. In FroCoS ’00: Proceedings of the Third International Work-
shop on Frontiers of Combining Systems, (pp. 151–170)., London, UK.
Springer. (Cited on page 62.)

van der Aalst, W. M. P. (2011). Process Mining: Discovery, Conformance
and Enhancement of Business Processes. Berlin: Springer. (Cited on
pages 97 and 118.)

van der Aalst, W. M. P. (2013). Business process management: A
comprehensive survey. ISRN Software Engineering, 37. (Cited on
page 119.)

van der Aalst, W. M. P., van Dongen, B. F., Günther, C., Rozinat, A.,
Verbeek, H. M. W., & Weijters, A. J. M. M. (2009). Prom: The
process mining toolkit. In BPM 2009 Demonstration Track, volume
489, (pp. 1–4). CEUR. (Cited on pages 109 and 118.)

van Lamsweerde, A. (2004). Elaborating security requirements by
construction of intentional anti-models. In ICSE ’04: Proceedings of
the 26th International Conference on Software Engineering, (pp. 148–
157)., Washington, DC, USA. IEEE Computer Society. (Cited on
pages 8, 47, and 60.)

Verbeek, H., Buijs, J., Dongen, B., & Aalst, W. (2011). Xes, xesame, and
prom 6. In P. Soffer & E. Proper (Eds.), Information Systems Evo-
lution, volume 72 of Lecture Notes in Business Information Process-
ing (pp. 60–75). Springer Berlin Heidelberg. (Cited on pages 109

and 118.)
Verissimo, P., Neves, N., Goller, A., Limancero, A. R., González,

S., Torres, R., Romano, L., D’Antonio, S., Debar, H., Rieke, R.,
Stoynova, Z., Kotenko, I., Chechulin, A., Jimenez-Peris, R., Sori-
ente, C., Kheir, N., & Viinikka, J. (2012). Massif architecture doc-
ument. Technical report, FP7-257475 MASSIF European project.
(Cited on page 109.)

Vianello, V., Gulisano, V., Jimenez-Peris, R., Patino-Martinez, M., Tor-
res, R., Diaz, R., & Prieto, E. (2013). A scalable siem correlation
engine and its application to the olympic games it infrastructure.
In Availability, Reliability and Security (ARES), 2013 Eighth Interna-
tional Conference on, (pp. 625–629). IEEE Computer Society. (Cited
on pages 112, 128, and 444.)

Viega, J. & McGraw, G. (2002). Building Secure Software. Boston:
Addison-Wesley Professional Computer Series. (Cited on
pages 64 and 203.)

163

www.manaraa.com

Bibliography

Viking project consortium (2012). Project VIKING. http://www.

vikingproject.eu/. [Online; accessed 13-Oct-2013]. (Cited on
pages 87 and 121.)

Wang, J., Whitley, J. N., Phan, R. C.-W., & Parish), D. J. (2011). Uni-
fied parametrizable attack tree. International Journal for Information
Security Research (IJISR), 1, 20–26. (Cited on page 87.)

Wang, L., Jajodia, S., Singhal, A., & Noel, S. (2010). k-zero day safety:
measuring the security risk of networks against unknown attacks.
In Proceedings of the 15th European conference on Research in computer
security, ESORICS’10, (pp. 573–587)., Berlin, Heidelberg. Springer-
Verlag. (Cited on pages 21, 81, and 88.)

Wang, W., Hidvégi, Z., Bailey, Jr., A. D., & Whinston, A. B. (2000).
E-process design and assurance using model checking. IEEE Com-
puter, 33(10), 48–53. (Cited on page 44.)

Weber, M. & Kindler, E. (2003). The petri net markup language. In
Petri Net Technology for Communication-Based Systems, volume 2472

of LNCS (pp. 124–144). Springer. (Cited on page 109.)
Weinman, J. (2011). Axiomatic Cloud Theory. http:

//www.joeweinman.com/Resources/Joe_Weinman_Axiomatic_

Cloud_Theory.pdf. (Cited on pages 8 and 52.)
Weldemariam, K. & Villafiorita, A. (2011). Procedural security anal-

ysis: A methodological approach. Journal of Systems and Software,
84(7), 1114–1129. (Cited on page 117.)

Wolter, C., Menzel, M., Schaad, A., Miseldine, P., & Meinel, C. (2009).
Model-driven business process security requirement specification.
Journal of Systems Architecture, 55(4), 211–223. (Cited on page 117.)

Xie, F. & Liu, H. (2007). Unified property specification for hardware/-
software co-verification. In COMPSAC (1), (pp. 483–490). IEEE
Computer Society. (Cited on page 58.)

Zegzhda, P., Zegzhda, D., & Nikolskiy, A. (2012). Using graph theory
for cloud system security modeling. In I. Kotenko & V. Skormin
(Eds.), Computer Network Security, volume 7531 of Lecture Notes
in Computer Science (pp. 309–318). Springer Berlin / Heidelberg.
(Cited on pages 33 and 52.)

Zhu, B., Joseph, A., & Sastry, S. (2011). Taxonomy of Cyber At-
tacks on SCADA Systems. In Proceedings of CPSCom 2011: The
4th IEEE International Conference on Cyber, Physical and Social Com-
puting, Dalian, China. (Cited on pages 61 and 121.)

Zonouz, S. A., Khurana, H., Sanders, W. H., & Yardley, T. M. (2009).
Rre: A game-theoretic intrusion response and recovery engine. In
DSN, (pp. 439–448). IEEE. (Cited on page 86.)

Zonouz, S. A., Sharma, A., Ramasamy, H. V., Kalbarczyk, Z. T., Pfitz-
mann, B., McAuliffe, K. P., Iyer, R. K., Sanders, W. H., & Cope,
E. (2011). Managing business health in the presence of malicious
attacks. In DSN Workshops, (pp. 9–14). IEEE. (Cited on page 86.)

164

http://www.vikingproject.eu/
http://www.vikingproject.eu/
http://www.joeweinman.com/Resources/Joe_Weinman_Axiomatic_Cloud_Theory.pdf
http://www.joeweinman.com/Resources/Joe_Weinman_Axiomatic_Cloud_Theory.pdf
http://www.joeweinman.com/Resources/Joe_Weinman_Axiomatic_Cloud_Theory.pdf

www.manaraa.com

Part III

P E E R - R E V I E W E D P U B L I C AT I O N S

This calls to mind one of the most wonderful features of reason-
ing, and one of the most important philosophemes in the doc-
trine of science, of which, however, you will search in vain for
any mention in any book I can think of; namely, that reasoning
tends to correct itself, and the more so, the more wisely its plan
is laid. Nay, it not only corrects its conclusions, it even corrects
its premises.

— Charles Sanders Peirce, The First Rule of Logic (1898)

www.manaraa.com

www.manaraa.com

P1
T H E S H - V E R I F I C AT I O N T O O L –
A B S T R A C T I O N - B A S E D V E R I F I C AT I O N O F
C O - O P E R AT I N G S Y S T E M S

Title The SH-Verification Tool – Abstraction-
Based Verification of Co-operating Systems

Authors Peter Ochsenschläger, Jürgen Repp, Roland
Rieke, and Ulrich Nitsche

Publication Formal Aspects of Computing, The International
Journal of Formal Method, 10:381–404, 1998.

ISBN/ISSN ISSN 0934-5043

DOI http://dx.doi.org/10.1007/

s001650050023

Status Published

Publisher Springer-Verlag London Limited

Publication Type Journal

Copyright 1998, BCS

Contribution of
Roland Rieke

Co-Author with significant contribution.
Specific contributions are: (1) the design of
the model checking algorithms for tempo-
ral logic properties; (2) implementation of
these algorithms within the Simple Homo-
morphism Verification Tool (SHVT), e.g., con-
struction of a Büchi-Automaton representing
the property given by a Propositional Linear
Temporal Logic (PLTL) formula, construction
of the synchronous product of the automa-
ton of property and system behaviour, con-
struction of the complement automaton, con-
struction of the intersection with the automa-
ton representing the behaviour, and check
whether the resulting automaton is empty.

Table 6: Fact Sheet Publication P1

Publication P1 [Ochsenschläger, Repp, Rieke & Nitsche, 1998] ad-
dresses the following research question:

RQ1 How can it be proven that components of cooperating systems securely
work together?

167

http://dx.doi.org/10.1007/s001650050023
http://dx.doi.org/10.1007/s001650050023

www.manaraa.com

the sh-verification tool – abstraction-based verification

This paper gives an overview about the main functions of the SHVT.
The aim of the SHVT is to support the verification of cooperating sys-
tems. Cooperating systems are specific distributed Systems of Sys-
tems (SoS) which are characterised by freedom of decision and loose
coupling of their components. This causes a high degree of nonde-
terminism which has to be handled by the analysis methods. Typical
examples of cooperating systems are telephone systems, communi-
cation protocols, smartcard systems, electronic money, and contract
systems. In that context, verification is the proof that system compo-
nents work together in a desired manner. At that, the main strength
of the tool is the combination of an inherent fairness assumption in
the satisfaction relation, an abstraction technique compatible with ap-
proximate satisfaction, and a suitable compositional and partial order
method for the construction of only a partial state space.

168

www.manaraa.com

With kind permission of Springer Science+Business Media.
This is an author-created version of: Formal Aspects of Computing; April 1998, Volume
10, Issue 4, pp 381-404; The SH-Verification Tool – Abstraction-Based Verification of Co-
operating Systems; P. Ochsenschläger, J. Repp, R. Rieke, U. Nitsche; c© 1998 BCS; DOI:
10.1007/s001650050023; Print ISSN: 0934-5043; Online ISSN: 1433-299X; Journal no. 165.
The original publication is available at www.springerlink.com.
http://link.springer.com/article/10.1007%2Fs001650050023

Formal Aspects of Computing (1998) 3: 1–000
c© 1998 BCS

The SH-Verification Tool —
Abstraction-Based Verification of
Co-operating Systems

P. Ochsenschlägera, J. Reppa, R. Riekea and U. Nitscheb

a GMD — German National Research Centre for Computer Science, Institute for
Telecooperation Technology, Germany

b Department of Electronics and Computer Science, University of Southampton,
Southampton,

Keywords: Simple language homomorphisms; Asynchronous product automata;
Approximate satisfaction of safety and liveness properties; Model checking; Ver-
ification tools

Abstract. The sh-verification tool comprises computing abstractions of finite-
state behaviour representations as well as automata and temporal logic based ver-
ification approaches. To be suitable for the verification of so called co-operating
systems, a modified type of satisfaction relation (approximate satisfaction) is con-
sidered. Regarding abstraction, alphabetic language homomorphisms are used to
compute abstract behaviours. To avoid loss of important information when mov-
ing to the abstract level, abstracting homomorphisms have to satisfy a certain
property called simplicity on the concrete (i.e. not abstracted) behaviour. The
well known state space explosion problem is tackled by a compositional method
combined with a partial order method.

1. Introduction

The aim of the sh-verification tool (sh means simple homomorphisms, which will
be explained below) is to support the verification of co-operating systems. By
co-operating systems we mean distributed systems which are characterized by
freedom of decision and loose coupling of their components. This causes a high

Correspondence and offprint requests to: Peter Ochsenschläger, GMD — German National
Research Centre for Computer Science, Institute for Telecooperation Technology, Rheinstr. 75,
D-64295 Darmstadt, Germany email: ochsenschlaeger@darmstadt.gmd.de

www.manaraa.com

2 P. Ochsenschläger, J. Repp, R. Rieke and U. Nitsche

degree of nondeterminism which is handled by our methods. Typical examples
of co-operating systems are telephone systems, communication protocols, smart-
card systems, electronic money, contract systems, etc.

In that context verification is the proof that system components work together in
a desired manner. So the dynamic behaviour of the system has to be investigated.
One usual approach is to start with a formal specification of the dynamic be-
haviour of the system which is represented by a labelled transition system (LTS),
and then to prove properties of such an LTS. But for real life applications the
corresponding LTS are often too complex to apply this naive approach.

In contrast to the immense number of transitions of such an LTS usually only a
few characteristic actions of the system are of interest with respect to verifica-
tion. So it is evident to define abstractions with respect to the actions of interest
and to compute a representation of such an abstract behaviour, which usually is
much smaller than the LTS of the specification. For such a small representation
dynamic properties can be proven more efficiently. Now, under certain condi-
tions, properties of the system specification can be deduced from properties of
the abstract behaviour.

For such an approach the following questions have to be answered:

Question 1: What does it formally mean, that a system satisfies a property
(especially in the context of co-operating systems)?

Question 2: How can we formally define abstractions?

Question 3: For what kind of abstractions is there a sufficiently strong re-
lation between system properties and properties of the abstract
behaviour?

Question 4: How can we compute a representation of the abstract behaviour
efficiently?

The present article is an extended and completed version of [ORRN97].

2. Approximately Satisfied Properties

As a small but typical example to illustrate our answers to these questions, we
consider a system that consists of a client and a server as its main components.
The client sends requests to the server, expecting the server to produce particular
results. Nevertheless, for some reasons, the server may not always respond a
request by sending a result, but may, as well, reject a request. The main actions
that are important with respect to the client’s behaviour, are sending a request
and receiving a result or rejection. These actions are depicted as REQ, RES,
and REJ in Figure 1. We will regard the whole system running properly, if the
client, at no time, is prohibited completely from receiving a result after having
sent a request.
For the moment, we regard the server as a black box; i.e. we neither consider its
internal structure nor look at its internal actions. Not caring about particular ac-
tions of a specification when regarding the specification’s behaviour is behaviour
abstraction. If we define a suitable abstraction for the client/server system with
respect to our correctness criterion, we only keep actions REQ, RES, and REJ

www.manaraa.com

The SH-Verification Tool 3

Server

Client

REJRESREQ

Fig. 1. Client Server Example

visible, hiding all other actions.

To formalise behaviour abstraction we use terms of formal language theory. An
LTS is completely determined by the set of its paths starting at the initial state.
This set is a formal language, called the local language of the LTS [Eil74]. Its
letters are the transitions (state, transition label, successor-state) of the LTS.
Σ denotes the set of all transitions of the LTS. Consequently, there is a one-
to-one correspondence between the LTS and its local language L ⊂ Σ∗ , where
Σ∗ is the set of all sequences of elements of Σ including the empty sequence
ǫ. Now behaviour abstraction can be formalized by language homomorphisms,
more precisely by alphabetic language homomorphisms h : Σ∗ → Σ′∗ (answer
to question 2). By these homomorphisms certain transitions are ignored and
others are renamed, which may have the effect, that different transitions are
identified with one another. A mapping h : Σ∗ → Σ′∗ is called a language ho-
momorphism if h(ǫ) = ǫ and h(yz) = h(y)h(z) for each y, z ∈ Σ∗. It is called
alphabetic, if h(Σ) ⊂ Σ′ ∪ {ǫ}.

An automaton representation (minimal automaton [Eil74]) for the abstract be-
haviour of a specification (homomorphic image of the LTS’s local language) can
be computed by the sh-verification tool. Applying the abstraction described
above to the concrete (i.e. not abstracted) behaviour of a specification of the
client/server system leads to an automaton representation of abstract behaviour
as presented in Figure 2. For this example Σ′ = {REQ,RES,REJ} .

A-2
A-1
start:

(REJ)

(RES)

(REQ)

Fig. 2. Minimal Automaton.

The abstract behaviour obviously satisfies the correctness requirement mentioned
above that, at no time, the client can be prohibited from receiving a result to
a request. The usual concept of linear satisfaction of properties [AS85] (each
infinite run of the system satisfies the property) is not suitable in this context
since it considers also the extreme executions like “a request is always rejected”.
Obviously, the problem occurs because no fairness constraints are considered. We
put a very abstract notion of fairness into the satisfaction relation for properties,

www.manaraa.com

4 P. Ochsenschläger, J. Repp, R. Rieke and U. Nitsche

which considers that “independent of a finitely long computation of the system,
it is always possible that a request is responded by result”. To formalise such
“possibility properties”, which are of interest when considering what we call co-
operating systems, the notion of approximate satisfaction of properties is defined
in [NO96] (answer to question 1):

Definition 2.1. An automaton approximately satisfies a property if and only if
each finite path of transitions of the automaton can be continued to an infinite
path, which satisfies the property.

As it is well known [AS85], system properties are divided into two types: safety
(what happens is not wrong) and liveness properties (eventually something de-
sired happens). For safety properties linear satisfaction and approximate sat-
isfaction are equivalent [NO96]. Approximately satisfied liveness properties are
liveness properties with respect to the universe of a system’s behaviour. They
are related to linear satisfaction of properties under strong fairness constraints
for the sake of adding behaviour invariant state information [NW97].

3. Simple Homomorphisms as an Abstraction Concept

It is now the question of main interest, whether, by investigating an abstract
behaviour, we may verify the correctness of the underlying concrete behaviour.
We will answer this question positively, requiring a restriction of the permit-
ted abstraction techniques. To deduce approximately satisfied properties of a
specification from properties of its abstract behaviour an additional property of
abstractions is required: called simplicity of homomorphisms on a specification
[Och92, Och94b]. Simplicity of homomorphisms on specifications is a very tech-
nical condition concerning the possible continuations of finite behaviours.

Concerning abstractions h : Σ∗ → Σ′∗ the crucial point are the liveness prop-
erties of a Language L ⊂ Σ∗ . To define simplicity formally we need w−1(L) =
{y ∈ Σ∗|wy ∈ L} , the set of continuations of a word w in a language L [Eil74].
These continuations in some sense “represent” the liveness properties of L. Gen-
erally h(x−1(L)) is a (proper) subset of h(x)−1(h(L)) , but we want to have that
h(x−1(L)) “eventually” equals h(x)−1(h(L)) .

Definition 3.1. A homomorphism h is called simple on L, if for each x ∈ L
there exists w ∈ h(x)−1(h(L)) such that w−1(h(x−1(L))) = (h(x)w)−1(h(L)) .

For regular languages simplicity of a homomorphism is a decidable property.
Necessary and sufficient conditions for a homomorphism to be simple exist on
the state graph level which are practically motivated and can be checked very
efficiently. We will discuss this in more detail subsequently. The following theo-
rem [NO96] shows that approximate satisfaction of properties and simplicity of
homomorphisms exactly fit together for verifying co-operating systems (answer
to question 3):

Theorem 3.2. Simple homomorphisms define exactly the class of such Abstrac-
tions, for which holds that each property is approximately satisfied by the abstract
behaviour if and only if the “corresponding“ property is approximately satisfied
by the concrete behaviour of the system.

www.manaraa.com

The SH-Verification Tool 5

Formally, the “corresponding“ property is expressed by the inverse image of the
abstract property with respect to the homomorphism.

Our verification method, which is based on the very general notions of approx-
imate satisfaction of properties and simple language homomorphisms, does not
depend on a specific formal specification method. It can be applied to all speci-
fication techniques with an LTS-semantics.

To point out and motivate in more detail the necessity of considering approxi-
mate satisfaction of properties and of restricting suitable abstraction techniques
to simple homomorphisms, we have to look more closely at the structure the
server may have.

The server’s answer (result or rejection) to a client’s request may depend on
whether a resource is available. If the resource is free, the server will respond a
request by sending a result, if the resource is locked when the server is requested,
the server will reject the request. Assuming that the server cannot control the
resource, there is no guarantee at all that the resource is not locked all the time
the client sends a request. Therefore, for some quite extreme computation sce-
narios, a request may always be rejected. So the best we can expect is that, in
principle, there is always the possibility that a request is answered by eventually
producing a result. This type of requirements is exactly captured by the defini-
tion of approximate satisfaction of properties. We revisit the correctness criterion
for the client/server specification: the client is never prohibited completely from
receiving a result after having sent a request.

If the resource behaves properly, i.e. it would change infinitely often from state
locked to state free and vice versa in an infinite amount of time, the client/server
specification will be correct with respect to the above requirement. Hence, since
Figure 2 represents the abstract behaviour of the specification, the abstract as
well as the concrete behaviour meet the correctness requirement. One may con-
jecture that the satisfaction of correctness criteria is preserved when moving from
the abstract to the concrete behaviour.

Let us now consider a resource not showing a proper behaviour. A formal speci-
fication in terms of Petri nets is given in Section 7. For some reason, the resource
may eventually be locked forever. Indeed, we consider now a resource that con-
tains an error. If the resource vanishes forever, the client will never receive a
result again. Thus this modified client/server specification does not meet the
correctness requirement anymore. Regarding that the modified system may be-
have correct as well as after some time may behave incorrect, when coming to
abstraction, the correct behaviour hides the incorrect one. This is, because the
incorrect behaviour is a subset of the correct one, and therefore, when brought to-
gether by looking only at actions REQ, RES, and REJ , the abstract behaviour
of the system is still represented in Figure 2. Here, the considered correctness
requirement is not preserved when changing the viewpoint from the abstract to
the concrete behaviour.

The problem of a correct subbehaviour hiding an incorrect subbehaviour under
abstraction can be most easily explained when looking at the strongly connected
components of the LTS that represents the concrete behaviour. For the incorrect

www.manaraa.com

6 P. Ochsenschläger, J. Repp, R. Rieke and U. Nitsche

client/server specification, Figure 3 shows the LTS representing the behaviour
of the client/server specification such that the strongly connected components
of the LTS are differently marked. When drawing our attention to abstraction,
the strongly connected component that contains the initial state corresponds to
a correct abstract subbehaviour of the specification. The second strongly con-
nected component, which is a bottom component (no outgoing transitions from
this component), corresponds to an incorrect abstract subbehaviour. When com-
puting the minimal representation for the abstract behaviour (it is naturally the
minimal representation of the abstract behaviour that we are interested in the
abstraction framework), the two strongly connected components are “shuffled“
in such a way that the resulting LTS shows the maximal possible behaviour with
respect to the shuffling. Hence the first component covers the second one and
the incorrect behaviour is hidden.

T_3

T_3

T_2

T_2

T_2

T_2

REJ

T_3

T_3

RES

 S_1 S_3

 S_1 S_4

 S_1 S_5

 S_1 S_6

 S_2 S_3

 S_2 S_4

 S_2 S_5

S_2 S_6
 start:

 S_3

 S_4

 S_5

 S_6

VANISH

T_4

REQ

VANISH

VANISH T_4

REJ

T_7

T_4

REJ

REQ
T_7 REQ

VANISH

T_7

Fig. 3. LTS

In the considered example, the so far discussed problem can be detected easily
when computing a graph representation of the strongly connected components
of the concrete LTS, called the component graph. Each node in this graph repre-
sentation is a strongly connected component and we have an arc from one node
to another, if there exists a transition to move from one strongly connected com-
ponent to the other. We label these nodes with abstract actions that can occur
in the corresponding strongly connected components with respect to the defined
abstraction.

The component graph of an LTS can be computed by the sh-verification tool
and Figure 4 shows this graph representation for our example. Realizing that
in the second node, which is a leaf because it represents a strongly connected
bottom component, the action RES is missing compared to the first node. We
obtain that in the strongly connected bottom component a request cannot be
answered with a result anymore, which reveals exactly the violation of the re-

www.manaraa.com

The SH-Verification Tool 7

quirement that we considered. There are reachable states wherefrom REQ can
never be responded with RES.

(REQ)
(REJ)
A-2

(REQ)
(RES)
(REJ)
A-1
start:

(VANISH)

Fig. 4. Connected Components

It is rather obvious that we can only be interested in abstractions where hiding
of an incorrect subbehaviour by a correct one cannot occur. For this purpose,
simplicity of homomorphisms on behaviours has been defined. And, indeed, sim-
plicity of homomorphisms is a necessary and sufficient condition for the preserva-
tion of approximately satisfied properties when changing the point of view from
the abstract to the concrete behaviour.

Inspecting the strongly connected components of an LTS simplicity of an abstrac-
tion can be investigated. In [Och92, Och94b] the following sufficient condition
for simplicity has been proven:

Theorem 3.3. Let L be a Language recognized by a finite automaton A and let
h be a homomorphism on L. If for each x ∈ L there exists y ∈ x−1(L) leading
to a dead component of A , such that each z ∈ L with h(z) = h(xy) leads to
the same dead component, then h is simple on L. This condition is satisfied for
example, if each dead component contains a label a of an edge with h(a) 6= ǫ, such
that no edge exists outside of this component, whose label has the same image
h(a). If A is strongly connected, then each homomorphism is simple on L.

To prove non-simplicity a necessary condition for simplicity is needed.
If h(x−1(L)) = {ǫ} for a homomorphism h : Σ∗ → Σ′∗, L ⊂ Σ∗ and x ∈ L then h
is simple on L in x only if h(x)−1(h(L)) = {ǫ}. In earlier papers [Och88, Och90,
Och91b] this situation has been formalized by so called deadlock languages.
They consider abstract behaviours leading to states where no visible (under the
abstraction) continuations exist.

Definition 3.4. The deadlock language DL of a language L with respect to a
homomorphism h is defined by DL = {u ∈ h(L) | there exist x ∈ L with u =
h(x) and h(x−1(L)) = {ǫ}} .

The minimal automaton of the deadlock language is called deadlock automaton.
It can be computed by the sh-verification tool. If in our erroneous example all but
action RES are hidden by a homomorphism t : Σ∗ → Σ′′∗ , with Σ′′ = {RES},
the corresponding deadlock automaton, as well as the minimal automaton of
t(L), is shown in Figure 5. The deadlock automaton of the correct example is
empty.

A-1*
start:

(RES)

Fig. 5. Deadlock Automaton

www.manaraa.com

8 P. Ochsenschläger, J. Repp, R. Rieke and U. Nitsche

To formulate a necessary condition for simplicity using deadlock languages the
notion termination language is needed:

Definition 3.5. The termination language TL of a language L with respect to
a homomorphism h is defined by TL = {u ∈ h(L)|u−1(h(L)) = {ǫ}}.
It is easy to see that generally TL ⊂ DL and that TL = DL if the homomor-
phism h is simple on L [Och92, Och94b].

Concerning the homomorphism t Figure 5 shows that TL = ∅ 6= DL. So t is
not simple on L. To apply the necessary condition for simplicity to our homo-
morphism h : Σ∗ → Σ′∗ with Σ′ = {REQ,RES,REJ} we have to consider
compositions of homomorphisms. Let f : Σ∗

1 → Σ∗
2 and g : Σ∗

2 → Σ∗
3 be map-

pings. The composition g ◦ f : Σ∗
1 → Σ∗

3 is defined by (g ◦ f)(x) = g(f(x)) for
each x ∈ Σ∗

1. If g and f are homomorphisms then g ◦ f is a homomorphism too.
The following theorems express the compatibility of simplicity with composition
of homomorphisms [Och92, Och94b].

Theorem 3.6. If f is simple on L ⊂ Σ∗
1 and g is simple on f(L) ⊂ Σ∗

2 then
g ◦ f is simple on L.

Theorem 3.7. If g ◦ f is simple on L ⊂ Σ∗
1 then g is simple on f(L).

Considering the homomorphism t′ : Σ′∗ → Σ′′∗ , defined by t′(RES) = RES
and t′(X) = ǫ for X 6= RES , we have t = t′ ◦ h . Now t′ is simple on h(L)
because the automaton in Figure 2 is strongly connected. By the above theorem
simplicity of h on L would imply simplicity of t on L, which is not true. So h is
not simple on L, and the defect of our erroneous specification can be detected
by simplicity investigations of appropriate homomorphisms without using the
complex decision algorithm for simplicity.

4. A Compositional Approach to Avoid State Space
Explosion

Simple homomorphisms establish the coarsest, i.e. most abstract notion of system
equivalence with respect to a given (abstract) requirement specification [NO96].
What still remains open is the question of how to construct an abstract behaviour
to a given specification without an exhaustive construction of its state space.

To handle the well known state space explosion problem, a compositional method
has been developed [Och94c, Och95, Och96] and implemented in the sh-verification
tool. In case of well structured specifications, by applying a divide and conquer
strategy this method allows to compute a representation of the abstract be-
haviour and to check simplicity of homomorphisms efficiently without having to
compute the complex LTS of the complete specification (answer to question
4). This compositional method is combined with a partial order method based
on partially commutative languages [Och97]. The main goal of our compositional
method is to compute minimal automata of homomorphic images and to check
simplicity of homomorphisms efficiently even in case of complex specifications.
The fundamental idea is to embed each component of a structured system (X and
Y in Figure 9) in a “simplified environment“ (Y’ and X’ in Figure 6), which shows
at the interface an “equivalent behaviour“ compared to the rest of the system

www.manaraa.com

The SH-Verification Tool 9

(shaded areas in Figure 6). This can be checked using special homomorphisms,
called boundary homomorphisms. The complexity of this check is reduced by our
partial order method.

X

YX’

Y’

Fig. 6.

For each of these smaller systems minimal automata related to corresponding ho-
momorphisms (which have to be finer than the boundary homomorphisms) are
computed (Figure 7) and are composed (Figure 8) to obtain the desired automa-
ton (Figure 9). This kind of composition is defined by the notion of asynchronous
product automata and co-operation products of formal languages, a restricted
kind of shuffle product. Simplicity of homomorphisms on co-operation products
is guaranteed by a particular property of the boundary homomorphisms, which
is called co-operativity For more details we refer to the next chapter and to
[Och94c, Och95, Och96].

YX’ YX

Fig. 7.

Fig. 8.

By that, compact representations of abstractions of system behaviour can be
computed and simplicity of abstractions can be checked without investigating
the complete behaviour of a complex system. In case of “well structured“ spec-
ifications this method causes considerable reductions of the state spaces. The
smaller systems with “simplified environments” avoid a lot of interleavings of
actions (“state space explosion”), which are not relevant with respect to the
considered abstraction but which are instrumental in the complex dynamics of
the system.

www.manaraa.com

10 P. Ochsenschläger, J. Repp, R. Rieke and U. Nitsche

X Y

Fig. 9.

This approach can also be used iteratively and allows induction proofs for systems
with several identical components [Och96]. Using our compositional method a
connection establishment and release protocol has been verified by investigating
automata with about 100 states instead of 100000 states.

5. Asynchronous Product Automata

As a formal basis for our compositional approach as well as a formal specification
language we now define the notion of asynchronous product automata (APA), a
very general class of communicating automata. APA can be regarded as families
of automata (elementary automata), whose sets of states are cartesian products
and whose elementary automata are “glued together” by common components
of these products.

Definition 5.1. An asynchronous product automaton (APA) consists of a family
of sets of state components (Zs)s∈S , a family of elementary automata (Φt,∆t)t∈T
and a neighbourhood relation N : T → ℘(S) (℘(X) denotes the set of all subsets
of X). For each elementary automaton (Φt,∆t)

• Φt is its alphabet and

• ∆t ⊂ Xs∈N(t)(Zs)× Φt ×Xs∈N(t)(Zs) is its set of state transition relation.

To avoid pathological cases we assume S =
⋃

t∈T (N(t)) and N(t) 6= ∅ for all

t ∈ T . The states of an APA are elements of Xs∈S(Zs) with the initial state
q0 = (q0s)s∈S ∈ Xs∈S(Zs). Formally an APA A is defined by a quadruple
A = ((Zs)s∈S , (Φt,∆t)t∈T , N, qo).

“Dynamics” of APA are defined by “occurrences” of elementary automata. An el-
ementary automaton (Φt,∆t) is activated in a state p = (ps)s∈S ∈ Xs∈S(Zs) with
respect to an interpretation i ∈ Φt, if there exists (qs)s∈N(t) ∈ Xs∈N(t)(Zs) with
((ps)s∈N(t), i, (qs)s∈N(t)) ∈ ∆t. An activated elementary automaton (Φt,∆t) may

occur and generates a successor state q = (qr)r∈S ∈ Xs∈S with qr = pr for
r ∈ S \N(t) and ((ps)s∈N(t), i, (qs)s∈N(t)) ∈ ∆t.

In this case (p, (t, i), q) denotes the corresponding occurrence step. The occur-
rence of an elementary automaton changes the state components of its neigh-
bourhood.

A sequence of the form w = (q1, (t1, i1), q2)(q2, (t2, i2), q3)...(qn, (tn, in), qn+1)
with n ≥ 1 is called an occurrence sequence. If such an occurrence sequence ex-
ist, then we say that qn+1 is reachable from q1. Additionally by definition each
state is reachable from itself. Q (the state space) denotes the set of all states

www.manaraa.com

The SH-Verification Tool 11

q ∈ Xs∈S(Zs) reachable from the initial state q0 and Σ denotes the set of all
occurrence steps, whose first component is an element of Q. The set L ⊂ Σ∗

of all occurrence sequences starting with the initial state q0 and containing the
empty sequence ε is called the occurrence language of the corresponding APA. Σ
can also be interpreted as the set of arcs of a directed graph, whose set of nodes
is Q and whose arcs are labeled by pairs (t, i) with t ∈ T and i ∈ Φt. This graph
is called the reachability graph of the corresponding APA. By that occurrence
sequences are paths in the reachability graph and the occurrence language is a
regular language (local language), if the reachability graph is finite. The occur-
rence language as well as the reachability graph is a complete description of the
dynamic behaviour of an APA.

As an example we give an APA specification of our incorrect client/server ex-
ample. It is an APA representation of the Petri net in Figure 12, consisting
of three elementary automata, T = {C, S,R} , and four state components,
S = {CS, IS, SS,RS} . Figure 10 shows the neighbourhood relation N.

CS C RRSIS S

SSCLIENT SERVER

Fig. 10. Client / Server APA

State transitions of the elementary automaton C represent actions of the client.
Correspondingly actions of the server and the resource manager are represented
by state transitions of S and R respectively. CS and SS represent “internal”
states of the client and the server. IS describes the the states of the client and
server’s interface. RS represents both, internal and interface states related to the
resource manager. Formally the APA is defined as follows:

state components:
ZCS = ZSS = {idle, active}, ZIS = {emp, req, res− rej} ,
ZRS = {avail, navail, vanished}

imitial states:
q0CS = q0SS = idle, q0IS = emp, q0RS = avail .

alphabets:
ΦC = {REQ, T7} , ΦS = {RES,REJ, T4} , ΦR = {V ANISH, T2, T3} .

state transition relations:

∆C =

{
((idle, emp), REQ, (active, req)),
((active, res− rej), T7, (idle, emp))

}
⊂ (ZCS × ZIS)×ΦC × (ZCS ×

ZIS),

www.manaraa.com

12 P. Ochsenschläger, J. Repp, R. Rieke and U. Nitsche

∆S =

((idle, req, avail), T4, (active, emp, avail)),
((idle, req, navail), T4, (active, emp, navail)),
((idle, req, vanished), T4, (active, emp, vanished)),
((active, emp, avail), RES, (idle, res− rej, avail)),
((active, emp, avail), REJ, (idle, res− rej, avail)),
((active, emp, navail), REJ, (idle, res− rej, navail)),
((active, emp, vanished), REJ, (idle, res− rej, vanished))

⊂ (ZSS×

ZIS × ZRS)× ΦS × (ZSS × ZIS × ZRS),

∆R = {
(avail, T3, navail),
(navail, T2, avail),
(navail, V ANISH, vanished)

} ⊂ ZRS × ΦR × ZRS .

State components correspond to markings of particular places of the Petri net,
as for example emp ∈ ZIS denotes the empty marking of places S-4 and S-5 in
Figure 12. The alphabets’ elements correspond to the transitions of the Petri
net. As the system is structured into three components given by the three el-
ementary automata each alphabet represents the set of “local” actions of the
corresponding component. Note that APA offer a very flexible concept for struc-
turing specifications: decreasing the number of elementary automata increases
the cardinality of the alphabets.

The reachability graph of our APA example is isomorphic to the LTS in Fig-
ure 3.

APA form a very general class of communicating automata. They are similar to
asynchronous cellular automata introduced in [Zie89] and include different kinds
of “simple” and “higher order” Petri nets as well as communicating automata as
for example SDL [SSR89] or Estelle [BD87]. The above terminology is based on
Petri nets: Elementary automata of APA correspond to transitions, state com-
ponents correspond to places and states correspond to markings of places. By
that the state transition relation is realized by the so called occurrence rule of a
Petri net.

In terms of APA we now formulate our compositional method: A distributed
system is an APA and the dynamical behaviour of the system is described by
the occurrence language of that APA. A component (subsystem, module) of a
system is defined by a subset A ⊂ T . As we often consider the complement
of A (“rest of the system” with respect to A) we use the abbreviation A for
T \ A. To consider states of an APA restricted to a subset Y ⊂ S we define
q|Y = (qs)s∈Y ∈ Xs∈Y (Zs) for a state q = (qs)s∈S ∈ Xs∈S(Zs). Two special ho-
momorphisms MA (module homomorphism) and RA (boundary homomorphism)
on the occurrence language L ⊂ Σ∗ of an APA are used to express the behaviour
of a component A of an APA and its behaviour at the interface to A respectively.

Notation. Let RDA = N(A) ∩ N(A′). A homomorphism MA : Σ∗ → Σ∗
MA

with ΣMA =MA(Σ) is defined by

www.manaraa.com

The SH-Verification Tool 13

MA((p, (t, i), q)) =

(p|N(A), (t, i), q|N(A)), if t ∈ A and
N(t) ∩RDA 6= ∅,

(p|N(A) \RDA, (t, i), q|N(A) \RDA), if t ∈ A and
N(t) ∩RDA = ∅,

ǫ, if t ∈ A.

A homomorphism RA : Σ∗ → Σ∗
RA with ΣRA = RA(Σ) is defined by

RA((p, (t, i), q)) =

{
(p|RDA, q|RDA), if t ∈ A and N(t) ∩RDA 6= ∅,
ǫ, if t ∈ A or N(t) ∩RDA = ∅.

To compare homomorphisms with respect to their “degree of abstraction” we
call a homomorphism φ : Σ∗ → ∆∗ finer than a homomorphism ψ : Σ∗ → Γ∗,
if there exists a homomorphism ν : ∆∗ → Γ∗ with ψ = ν ◦ φ. For this we use
the notation φ〈ψ. In that case the homomorphic image φ(L) contains enough
“information” to determine ψ(L). As homomorphisms are used to describe ab-
stractions we assume that they are alphabetic, i.e. φ(Σ) ⊂ ∆ ∪ {ǫ} for each
homomorphism φ.

Notation. Two homomorphisms “acting” on disjoint components of an APA
can be “combined” obtaining a new homomorphism: Let A ⊂ T and let f : Σ∗ →
Φ∗ as well as g : Σ∗ → Γ∗ be homomorphisms with MA〈f as well as MA〈g, then
the homomorphism f ⊕ g : Σ∗ → (Φ ∪ Γ)∗ is defined by (f ⊕ g)((p, (t, i), q)) =
f((p, (t, i), q)) if t ∈ A and (f ⊕ g)((p, (t, i), q)) = g((p, (t, i), q)) if t ∈ A. f ⊕ g
is called the direct sum of f and g. By the additional assumption Φ ∩ Γ = ∅ the
direct sum of two homomorphisms is finer than both homomorphisms: There
exist homomorphisms (projections) φ : (Φ∪Γ)∗ → Φ and γ : (Φ∪Γ)∗ → Γ∗ with
f = φ ◦ (f ⊕ g) and g = γ ◦ (f ⊕ g).

The homomorphic image (f ⊕ g)(L) can be “constructed” using f(L) and g(L)
if these two images contain enough information about the boundary behaviour
of A and A respectively, i.e. that f〈RA and g〈RA. To formulate a corresponding
theorem we need some further technical notions:

Notation. If f〈RA and g〈RA, then there exist homomorphisms ρA : Φ⋆ → Σ⋆
RA

and ρA : Γ⋆ → Σ⋆
RA

with RA = ρA ◦ f and RA = ρA ◦ g.
Let ΣR = ΣRA ∪ΣRA and let ρ : (Φ ∪ Γ)∗ → Σ∗

R be the homomorphism defined
by: ρ(x) = ρA(x) if x ∈ Φ and ρ(x) = ρA(x) if x ∈ Γ.
LetRC = {z ∈ Σ∗

R| if z = (p, q)y with (p, q) ∈ ΣR and y ∈ Σ∗
R, then p = q0|RDA,

and if z = x(p, q)(p′, q′)y with (p, q), (p′, q′) ∈ ΣR and x, y ∈ Σ∗
R, then p

′ = q}.
If ΣR is finite, then RC is a regular language (local language). The definition of
RC depends on ΣR. On account of f〈RA and g〈RA this set can be determined
using f(L) and g(L).

Under these assumptions the following holds:

Theorem 5.2. Let L ⊂ Σ∗ be the occurrence language of an APA and A ⊂ T . If
f : Σ∗ → Φ∗ and g : Σ∗ → Γ∗ are homomorphisms with Φ∩Γ = ∅ and MA〈f〈RA

as well as MA〈g〈RA, then (f ⊕ g)(L) = φ−1(f(L)) ∩ γ1(g(L)) ∩ ρ−1(RC).

By this representation (f ⊕ g)(L) is a regular set if L is regular. In [Och96]

www.manaraa.com

14 P. Ochsenschläger, J. Repp, R. Rieke and U. Nitsche

φ−1(f(L)) ∩ γ1(g(L)) ∩ ρ−1(RC) is called the cooperation product of f(L) and
g(L). It is easy to construct a finite automaton recognizing (f ⊕ g)(L) using
corresponding automata for f(L) and g(L). Concerning simplicity of f ⊕ g we
have

Theorem 5.3. If f and g are simple on L by the same assumptions as in the
above theorem, then f ⊕ g is simple on L too.

The proofs of these two theorems as well as the proofs of the other theorems
of this chapter can be found in [Och94c, Och96]. Essential to the statements of
this chapter is “locality” of occurrence steps, i.e. that state changes only occur
in the neighbourhood of the corresponding elementary automata. Therefore oc-
currence sequences may be “rearranged” without changing certain homomorphic
images. Such “rearrangements” are the main proof techniques for these theorems.

The above theorems form one half of our compositional method. They show how
abstractions of the behaviour of components of an APA can be “composed”. But
so far the representation of (f ⊕ g)(L) depends on f(L) and g(L). How can f(L)
and g(L) be determined without using the (complex) occurrence language L of
the complete system ? To achieve this we “embed” the components A and A in
“simplified environments”. Since a component of an APA can be viewed as an
APA too we now have to define how two APA can be “composed”.

The “gluing together” of elementary automata mentioned in the definition of
APA can also be applied to arbitrary APA.

Definition 5.4. Let therefore Ak = ((Zks)s∈Sk, (Φkt,∆kt)t∈T k, Nk, qk0) with
k ∈ {1, 2} be two APA with T 1 ∩ T 2 = ∅ and Z1s = Z2s as well as q10s = q20s
for all s ∈ S1 ∩ S2. Now the asynchronous product A1⊗A2 is defined by
A1⊗A2 = ((Zs)s∈S , (Φkt,∆kt)t∈T , N, q0) with S = S1 ∪ S2, T = T 1 ∪ T 2,
Zs = Zks and q0s = qk0s for all s ∈ Sk and (Φt,∆t) = (Φkt,∆kt) for all t ∈ T k
and N(t) = Nk(t), where k ∈ {1, 2}. We also say that A1 ⊗ A2 is constructed
from A1 and A2 by gluing together at the common state components S1 ∩ S2.
If A and A are complementary components of an APA, then this APA is the
asynchronous product of A and A. In terms of boundary behaviour the follow-
ing theorem gives a sufficient condition to “embed” a component of an APA in
different “environments” without changing its behaviour.

Let X , Y ′, X ′ and Y be four APA, for which the asynchronous products X ⊗Y ′,
X ′⊗Y and X ⊗Y are defined. Let X, Y ′, X ′ and Y are the corresponding index
sets of their elementary automata and SX, SY ′, SX ′ and SY the index sets of
their state components. Additionally we assume that SX ∩ SY ′ = SX ′ ∩ SY =
SX ∩ SY . LXY ′, LX ′Y as well as LXY may denote the occurrence languages
of X ⊗ Y ′, X ′ ⊗ Y and X ⊗ Y respectively.

Theorem 5.5. If RX(LXY ′) = RX′(LX ′Y) and Ry′(LXY ′) = RY (LX
′Y),

then MX(LXY) =MX(LXY ′) and MY (LXY) =MY (LX
′Y).

Let X ⊗Y be a representation of the APA considered in the first two theorems,
then Y = X and L = LXY . If Y ′ and X ′ are “simplified versions” of Y and X
respectively then LXY ′ and LX ′Y can be “less complex” (with an essentially
smaller state space) than L. Now applying the above theorem f(L) and g(L) can

www.manaraa.com

The SH-Verification Tool 15

be determined using LXY ′ and LX ′Y instead of L because MX〈f and MX〈g.

To derive simplicity of homomorphisms on L from investigations on LXY ′ and
LX ′Y we need a “cooperating property” of APA [Och96]:

Definition 5.6. Let LXY ′ ⊂ Ξ∗ be the occurrence language of X ⊗ Y ′ and let
f : Ξ∗ → Φ∗ be a homomorphism. X is called cooperative in X ⊗Y ′ with respect
to f , if MX〈f , Φ ∩MY ′(Ξ) = ∅ and if for each x ∈ LXY ′ there exists a finite
subset H ⊂ (f ⊕MY ′)(x)−1((f ⊕MY ′)(LXY ′)) with ǫ ∈ H such that for each
u ∈ H either
u−1((f ⊕MY ′)(x−1(LXY ′))) = ((f ⊕MY ′)(x)u)−1((f ⊕MY ′)(LXY ′))
or
u−1(H) ∩MY ′(Ξ) = ((f ⊕MY ′)(x)u)−1((f ⊕MY ′)(LXY ′)) ∩MY ′(Ξ) and
u−1(H) ∩ Φ 6= ∅ if ((f ⊕MY ′)(x)u)−1((f ⊕MY ′)(LXY ′)) ∩ Φ 6= ∅.
In combination with the previous theorem the following two theorems [Och96]
allow to derive simplicity of f and g on L = LXY from investigations on LXY ′

and LX ′Y .

Theorem 5.7. Let r and s be homomorphisms with MX〈r〈RX , MY 〈s〈RY ,
r(LXY ′) = MX′(LX ′Y) and s(LX ′Y) = MY ′(LXY ′). If X is cooperative in
X ⊗Y ′ with respect to r and if Y is cooperative in X ′ ⊗Y with respect to s, then
r ⊕ s is simple on LXY .

Theorem 5.8. Let r and s be homomorphisms with MX〈r〈RX , MY 〈s. If r ⊕ s
is simple on LXY then MX ⊕ s is simple on LXY .

Using the partial order method developed in [Och97] X ′ and Y ′ can be computed
efficiently on the basis of X ⊗ Y and simplicity of f ⊕ g on L can be checked
directly.

6. Temporal Logic and Abstraction

Our verification approach can also be combined with temporal logic [Nit94a,
Nit94c, Nit94d, Nit94b, Nit95, Nit98]. In terms of temporal logic, the automaton
of Figure 2 approximately satisfies the formula G(F(RES)) (G: always-operator,
F : eventually-operator; thus G(F(RES)) means ”infinitely often result”), but
the system in Figure 3 does not. This is indeed the case because the abstract-
ing homomorphism is not simple. Using an appropriate type of model checking,
approximate satisfaction of temporal logic formulae can be checked by the sh-
verification tool.

The Algorithm for checking approximate satisfaction of propositional linear-time
temporal logic formulae (PLTL- formulae) is based on the algorithm for linear
satisfaction of PLTL-formulae by Gerth, Peled, Vardi, and Wolper [GPVW96].
The key construction of the algorithm is the construction of a Büchi-automaton
BA to a PLTL-formula η.

The temporal logic formulae (TL-formulae) we use are constructed as follows:

• True and False are atomic TL-formulae.

www.manaraa.com

16 P. Ochsenschläger, J. Repp, R. Rieke and U. Nitsche

• The edge-labels of the automaton representing the concrete or abstracted be-
haviour of the system we are checking are atomic TL-formulae. In addition,
ε is an atomic TL-formula (atomic proposition). ε is satisfied for a concrete
action if and only if the action is mapped to the empty word by the abstrac-
tion.

• Formulae can be combined using the usual Boolean operators ∧, ∨, ¬ and
combinations thereof ⇒ and ⇔.

• Formulae can be combined using the usual temporal logic operators G (al-
ways), F (eventually), U (until), B (before) and X (next).

• Internally we use a temporal operator V which is the dual of the until-operator
U (φVψ is equivalent to ¬((¬φ)U(¬ψ))).

• In the automata that are generated during the model-checking optionally the
before-operator B (φBψ is equivalent ¬((¬φ)Uψ)) can be used instead of V
for better readability.

Algorithm. To check whether a behaviour B satisfies the property Pη repre-
sented by a PLTL-formula η approximately, one has to check whether pre(B) =
pre(B ∩ Pη). Herein, “pre(...)” designates the set of all finitely long prefixes of
ω-words in “...”. Since pre(B) ⊇ pre(B ∩ Pη) always holds, this can be reduced
to pre(B) ⊆ pre(B ∩ Pη). Algorithmically, we have to check whether pre(B)
∩ C(B ∩ Pη) is the empty set. “C(...)” denotes the complement of “...” with
respect to Σ∗ (Σ is the set of all actions of the system, i.e. the alphabet of the
ω-languages B and Pη).

An example for the automata used in the above construction as implemented
in our tool is given in the appendix.

Our experience in practical examples shows that the combination of comput-
ing a minimal automaton of an LTS and model checking on this abstraction is
significantly faster than direct model checking on the LTS.

The preservation result for approximately satisfied properties (Theorem 3.2) can
be formulated in terms of PLTL using a syntactic transformation on PLTL-
formulae [Nit94a, Nit98]. An example is given in section 8.

7. The Tool

As mentioned above, our verification method does not depend on a specific for-
mal specification technique. For practical use the sh-verification tool has to be
combined with a specification tool generating labeled transition systems. We
have done this using the product net machine, and we are now implementing
a specification environment based on asynchronous product automata (APA).
Figure 11 shows the structure of the tool.
The product net machine is a tool for the design and analysis of product nets
[Och91a]. Product nets [BOP89, OP95] are high level Petri nets with individual
tokens. Figure 12 shows a product net specification of our client/server example,
where the resource may eventually be locked forever. The shaded places are
initially marked. In Figure 12 we do not use most of product nets’ possible
features. Indeed it is just a product net representation of a Petri net. The LTS

www.manaraa.com

The SH-Verification Tool 17

LTS - Generator Homomorphism Editor

Automata

Algorithms Checking

Model

Test

Simplicity

Method

Compositional

Project Manager and Formal Specification

Fig. 11. The sh-verification tool

of Figure 3 is computed by the product net machine; it is the reachability graph
of the product net in Figure 12.

Server

Client

S_6

T_7

S_5 S_4

T_4 S_3

S_2

T_3T_2 S_1

VANISH

REQ

REJRES

<x>

<x>

<x>

<x>

<x>

<x><x>

<x>

<x>

<x>

<x><x>

<x>

<x><x>

<x>

Fig. 12. Client Server Example

Practical experiences have been gained with large specifications, for example with
ISDN-, XTP-, and smartcard protocols and by investigating service interactions
in intelligent telecommunication systems [Klu92, Sch92, Gie93, Och93, OP93,
Neb94, Och94a, OP95, CDGE+96, CDF+96]. Now our interest is focused on the
verification of binding co-operations including electronic money and contract
systems.

Technical Requirements. The sh-verification tool and the product net ma-
chine are both implemented in Allegro Common Lisp. The software is freely
available (currently for Solaris and Windows NT) for non commercial purposes,
but cannot be distributed via anonymous FTP, because of restrictions in the li-
cense agreement for the runtime library of the lisp system. For more information
please contact the authors.

www.manaraa.com

18 P. Ochsenschläger, J. Repp, R. Rieke and U. Nitsche

8. A Case Study

To demonstrate our method on a more realistic example we consider a model of
the basic call process of an intelligent telephone network (IN). This call process,
named the basic call state model(BCSM), is currently being standardized. This
standardization process is structured in eight steps. Each step leads to a more
detailed BCSM. These differently detailed standardization steps are called capa-
bility sets (CS). The currently standardized capability set is CS-1 (see [Q.1b]
and especially [Q.1a]).

In this section, we verify a product net specification of the BCSM; through-
out this section, we assume capability set CS-1 when briefly talking of BCSM
[Q.1b, Q.1a]. We do not present the specification itself, but relate finite-state sys-
tems that we computed as abstractions of the BCSM specification’s behaviour to
automata descriptions in the standardization paper [Q.1a]. The complete speci-
fication can be found in [DFGE+95]. Before starting with the verification steps,
we give a brief introduction to the BCSM.

The BCSM handles the basic call process of an IN. This call process is internally
structured, distinguishing caller and callee. The part of the BCSM related to a
caller is named originating BCSM; abbreviated: O-BCSM. The callee oriented
part is named terminating BCSM, or T-BCSM. Services in the IN, as for ex-
ample call forwarding, are add-on features. The interface between BCSM and
services is the service logic. The general structure of an IN, including caller and
callee, is depicted in Figure 13. Dashes represent communication channels.

Callee

Caller O-BCSM

T-BCSM

Service Logic

Fig. 13. The basic structure of an IN.

The BCSM is some kind of a finite-state system. The states are called points
in call (PIC). Added to PIC are detection points (DP) from where the service
logic may be invoked. The finite-state system that represents the BCSM is de-
scribed graphically as well as textually in the standard [Q.1a]. A product net
specification of the originating as well as the terminating BCSM was established
in the SERVINT-project [NO95, DFGE+95, DFGE+96]. There, ambiguities in
the standard, and contradictions between the textual and graphical description
of the BCSM are resolved.

Two abstractions of the BCSM specification’s behaviour leaving visible only the
actions related to the O-BCSM and T-BCSM respectively, lead to exactly the
resolved finite-state systems of the standard [Q.1a] representing O-BCSM and T-
BCSM. Since all abstractions mentioned are obtained by applying an abstracting
homomorphism that is simple on the concrete behaviour, approximately satis-
fied properties of the abstract behaviour represent corresponding approximately
satisfied properties of the concrete behaviour. This observation, in principle, is
sufficient to verify the correctness of the specification in comparison to [Q.1a]:

www.manaraa.com

The SH-Verification Tool 19

the components of the BCSM behave in their concrete environment in the same
way as they would behave in an idealized environment. In the subsequent para-
graphs, we look more closely at the T-BCSM’s behaviour, checking explicitly
some properties.

D
P
1
4
_
n
o
t_
a
rm

ed

D
P
1
3
_
n
o
t_
a
rm

ed

no_answer

authorized

return_DP17_to_start

disconnect

mid_callDP16_not_armed

DP15_not_armed

answer

called_party_answer

called_party_alert

called_party_busy

not_authorized

DP12_not_armed

exception

return_PIC11_to_start

Fig. 14. T-BCSM.

After applying a homomorphism that is the identity function on actions relevant
to the T-BCSM and that takes all other actions to the empty word, we obtain
the finite-state system in Figure 14 that represents the abstract behaviour of
the whole BCSM specification that is related to the T-part. As it is verified by
our tool the abstracting homomorphism is simple on the concrete behaviour. It
extracts the T-BCSM’s behaviour when the T-BCSM is embedded in the en-
vironment that is the O-BCSM. We obtain exactly the behaviour as presented
in the standard [Q.1a]. Consequently all properties that the standard demands
the T-BCSM to satisfy are indeed satisfied for the T-BCSM in the BCSM spec-
ification. Nevertheless we check explicitly a property of the T-BCSM by firstly
applying another abstraction step.

Figure 14 contains some actions that are interruptions to the straightforward
calling process. These actions are not authorized, called party busy, no answer,
and exception. Whenever one of these actions occurs, an exception handling is
necessary. The exception handling is performed by PIC 11. Occurrence of the
action return PIC11 to start indicates that a successful exception handling has

www.manaraa.com

20 P. Ochsenschläger, J. Repp, R. Rieke and U. Nitsche

taken place. To check the property “whenever an interruption of the calling pro-
cess occurs, an exception handling takes place”, we can define a suitable abstrac-
tion on the behaviour presented in Figure 14 that keeps visible the interruption
and the exception handling, and check a suitable temporal logic formula on the
abstract behaviour.

A suitable abstraction on T-BCSM’s behaviour is defined by the homomorphism
that maps not authorized, called party busy, no answer, and exception on the
abstract action interruption, that maps action return PIC11 to start on the ab-
stract action exception handling, and that takes all other actions to the empty
word. The resulting abstract behaviour is depicted in Figure 15.

interruption

exception_handling

Fig. 15. An abstraction of the T-BCSM.

Obviously, G(interruption ⇒ X exception handling) represents an approximately
satisfied property of the behaviour presented in Figure 15. Let h be the abstract-
ing homomorphism on the concrete behaviour that generates the abstract be-
haviour in Figure 14 and let h′ be the abstracting homomorphism on this abstract
behaviour that generates the more abstract behaviour presented in Figure 15.
Because h is simple on the concrete behaviour and h′ is simple on the behaviour
presented in Figure 14 (both behaviours have a strongly connected finite-state
representation), h ◦ h′ is simple on the BCSM specification’s behaviour (Theo-
rem 3.6). According to the syntactic transformation of PLTL-formulae [Nit98]
we obtain, that

G(ε ∨ (interruption ⇒ (εU(¬ε ∧ X (εUexception handling)))))

is an approximately satisfied property of the BCSM specification’s behaviour.
Simplification of this formula leads to

G(interruption ⇒ εUexception handling).

If we interpret this result, we find that the reasonable computations of the BCSM
specification (in this context the reasonable computations are once again the fair
ones) satisfy the correct exception handling property. This illustrates how step-
wise abstraction can be performed which can be regarded as an inverse stepwise
refinement.

9. Conclusions

We have presented the basic functionality of the sh-verification tool in this arti-
cle. The tool is equipped with the main features necessary to verify specifications
of co-operating systems of industrial size. It comprises a satisfaction relation with
an inherent fairness assumption and an abstraction concept adequate for the par-
ticular, practically useful satisfaction relation. Our verification method, which is
based on the very general notions of approximate satisfaction of properties and

www.manaraa.com

The SH-Verification Tool 21

simple language homomorphisms, does not depend on a specific formal specifi-
cation method. It can be applied to all those specification techniques having an
LTS-semantics.

Summarizing, using simple abstractions and approximate satisfaction verifica-
tion can be done in two ways and is supported by our tool:

• System properties are explicitly given by temporal logic formulae or Büchi-
automata. They can be checked on the abstract behaviour (under a simple
homomorphism).

• Specifications of different abstraction levels are compared by corresponding
simple homomorphisms. In that case system properties are given implicitly.

There exists a variety of verification tools which can be found in the literature.
Some are model-checking based, others are proof system based. We consider
COSPAN [Kur94] to be closest to the sh-verification tool. COSPAN is automata
based and contains a homomorphism based abstraction concept. Since the tran-
sition labels of automata in COSPAN are in a Boolean algebra notation, the
abstraction homomorphisms are Boolean algebra homomorphisms which cor-
respond to non-erasing alphabetic language homomorphisms on the automata
level. The sh-verification tool, in addition, offers erasing homomorphisms as an
abstraction concept. COSPAN also considers only linear satisfaction of proper-
ties. Thus fairness assumptions need to be made explicitly in this tool. Besides
many other tools we want to name only two more. Since it was one of the first
verification tools, CESAR should be mentioned [QS82]. A tool which uses the
modal µ-calculus as a specification language for properties [Sti89] is the concur-
rency workbench [CPS93].

We consider the main strength of our tool to be the combination of an inherent
fairness assumption in the satisfaction relation, an abstraction technique com-
patible with approximate satisfaction, and a suitable compositional and par-
tial order method for the construction of only a partial state space. The sh-
verification tool’s user interface and general handling has reached a level of
maturity that enabled its successful application in the industrial area [NO95,
DFGE+95, DFGE+96].

References

[AS85] B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters,
21(4):181–185, October 1985.

[BD87] S. Budkowski and P. Dembinski. An introduction to estelle. Computer Networks
and ISDN-Systems, 14:3–23, 1987.

[BOP89] H. J. Burkhardt, P. Ochsenschläger, and R. Prinoth. Product nets — a formal
description technique for cooperating systems. GMD-Studien 165, Gesellschaft
für Mathematik und Datenverarbeitung (GMD), Darmstadt, September 1989.

[CDF+96] C. Capellmann, R. Demant, F. Fatahi, R. Galvez-Estrada, U. Nitsche, and
P. Ochsenschläger. Verification by behavior abstraction: A case study of service
interaction detection in intelligent telephone networks. In Computer Aided Ver-
ification (CAV) ’96, volume 1102 of Lecture Notes in Computer Science, pages
466–469, New Brunswick, 1996.

[CDGE+96] C. Capellmann, R. Demant, R. Galvez-Estrada, U. Nitsche, and P. Ochsenschläger.
Case study: Service interaction detection by formal verification under behaviour
abstraction. In Tiziana Margaria, editor, Proceedings of International Workshop
on Advanced Intelligent Networks’96, pages 71–90, Passau, March 1996.

www.manaraa.com

22 P. Ochsenschläger, J. Repp, R. Rieke and U. Nitsche

[CPS93] R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench: A
semantics-based tool for the verification of finite-state systems. In TOPLAS 15,
pages 36–72, 1993.

[DFGE+95] R. Demant, F. Fatahi, R. Galvez-Estrada, U. Nitsche, and P. Ochsenschläger. Ab-
schlußbericht des GMD-/Telekom-Projekts Formale Spezifikations- und Verifika-
tionsmethoden zur Behandlung der Service-Interaction-Problematik – SERVINT.
Abschluß bericht, GMD, Dezember 1995.

[DFGE+96] R. Demant, F. Fatahi, R. Galvez-Estrada, U. Nitsche, and P. Ochsen-
schläger. Zwischenbericht des GMD-/Telekom-Projekts Formale Spezifikations-
und Verifikationsmethoden zur Behandlung der Service-Interaction-Problematik
– SERVINT2. Zwischenbericht, GMD, Juli 1996.

[Eil74] S. Eilenberg. Automata, Languages and Machines, volume A. Academic Press,
New York, 1974.

[Gie93] H. Giehl. Verifikation von Smartcard-Anwendungen mittels Produktnetzen.
GMD-Studien 225, Gesellschaft für Mathematik und Datenverarbeitung (GMD),
Darmstadt, 1993.

[GPVW96] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In P. Dembinski and M. Sredniawa, editors,
Protocol Specification, Testing, and Verification XV ’95, pages 3–18. Chapman &
Hall, 1996.

[Klu92] W. Klug. OSI-Vermittlungsdienst und sein Verhältnis zum ISDN-D-
Kanalprotokoll. Spezifikation und Analyse mit Produktnetzen. Arbeitspapiere der
GMD 676, Gesellschaft für Mathematik und Datenverarbeitung (GMD), Darm-
stadt, 1992.

[Kur94] R. P. Kurshan. Computer-Aided Verification of Coordinating Processes. Princeton
University Press, Princeton, New Jersey, first edition, 1994.

[Neb94] M. Nebel. Ein Produktnetz zur Verifikation von Smartcard-Anwendungen in
der STARCOS-Umgebung. GMD-Studien 234, Gesellschaft für Mathematik und
Datenverarbeitung (GMD), Darmstadt, 1994.

[Nit94a] U. Nitsche. Propositional linear temporal logic and language homomorphisms. In
Anil Nerode and Yuri V. Matiyasevich, editors, Logical Foundations of Computer
Science ’94, St. Petersburg, volume 813 of Lecture Notes in Computer Science,
pages 265–277. Springer Verlag, 1994.

[Nit94b] U. Nitsche. Simple homomorphisms and linear temporal logic. Arbeitspapiere der
GMD 889, GMD – Forschungszentrum Informationstechnik, Darmstadt, Decem-
ber 1994.

[Nit94c] U. Nitsche. A verification method based on homomorphic model abstraction. In
Proceedings of the 13th Annual ACM Symposium on Principles of Distributed
Computing, page 393, Los Angeles, 1994. ACM Press.

[Nit94d] U. Nitsche. Verifying temporal logic formulas in abstractions of large reachability
graphs. In J. Desel, A. Oberweis, and W. Reisig, editors, Workshop: Algorithmen
und Werkzeuge für Petrinetze. Humboldt Universität Berlin, 1994.

[Nit95] U. Nitsche. A finitary language semantics for propositional linear temporal logic
(abstract). In Preproceedings of the 2nd International Conference on Develop-
ments in Language Theory. University of Magdeburg, 1995.

[Nit98] U. Nitsche. Verification of Co-Operating Systems and Behaviour Abstraction.
PhD thesis, University of Frankfurt, Germany, 1998.

[NO95] U. Nitsche and P. Ochsenschläger. Zwischenbericht des GMD-/Telekom-Projekts
Formale Spezifikations- und Verifikationsmethoden zur Behandlung der Service-
Interaction-Problematik – SERVINT. Zwischenbericht, GMD, Juli 1995.

[NO96] U. Nitsche and P. Ochsenschläger. Approximately satisfied properties of systems
and simple language homomorphisms. Information Processing Letters, 60:201–
206, 1996.

[NW97] U. Nitsche and P. Wolper. Relative liveness and behavior abstraction (extended
abstract). In Proceedings of the 16th ACM Symposium on Principles of Dis-
tributed Computing (PODC’97), Santa Barbara, CA, 1997.

[Och88] P. Ochsenschläger. Projektionen und reduzierte Erreichbarkeitsgraphen. Ar-
beitspapiere der GMD 349, Gesellschaft für Mathematik und Datenverarbeitung
(GMD), Darmstadt, Dezember 1988.

[Och90] P. Ochsenschläger. Modulhomomorphismen. Arbeitspapiere der GMD 494,
Gesellschaft für Mathematik und Datenverarbeitung (GMD), Darmstadt, Dezem-
ber 1990.

www.manaraa.com

The SH-Verification Tool 23

[Och91a] P. Ochsenschläger. Die Produktnetzmaschine. Petri Net Newsletter, 39:11–31,
August 1991. Also appeared as a GMD Arbeitspapier Nr. 505, 1991.

[Och91b] P. Ochsenschläger. Modulhomomorphismen II. Arbeitspapiere der GMD 597,
Gesellschaft für Mathematik und Datenverarbeitung (GMD), Darmstadt, Novem-
ber 1991.

[Och92] P. Ochsenschläger. Verifikation kooperierender Systeme mittels schlichter Homo-
morphismen. Arbeitspapiere der GMD 688, Gesellschaft für Mathematik und
Datenverarbeitung (GMD), Darmstadt, Oktober 1992.

[Och93] P. Ochsenschläger. Verifikation verteilter Systeme mit Produktnetzen. PIK, 16:42–
43, 1993.

[Och94a] P. Ochsenschläger. Kompositionelle Verifikation kooperierender Systeme. Ar-
beitspapiere der GMD 885, GMD – Forschungszentrum Informationstechnik,
Darmstadt, Dezember 1994.

[Och94b] P. Ochsenschläger. Verification of cooperating systems by simple homomorphisms
using the product net machine. In J. Desel, A. Oberweis, and W. Reisig, editors,
Workshop: Algorithmen und Werkzeuge für Petrinetze, pages 48–53. Humboldt
Universität Berlin, 1994.

[Och94c] P. Ochsenschläger. Verifikation von Smartcard-Anwendungen mit Produktnetzen.
In Tagungsband des 4. SmartCard Workshops, Darmstadt, 1994.

[Och95] P. Ochsenschläger. Compositional verification of cooperating systems using simple
homomorphisms. In J. Desel, H. Fleischhack, A. Oberweis, and M. Sonnenschein,
editors, Workshop: Algorithmen und Werkzeuge für Petrinetze, pages 8–13. Uni-
versität Oldenburg, 1995.

[Och96] P. Ochsenschläger. Kooperationsprodukte formaler Sprachen und schlichte Ho-
momorphismen. Arbeitspapiere der GMD 1029, GMD – Forschungszentrum In-
formationstechnik, Darmstadt, 1996.

[Och97] P. Ochsenschläger. Schlichte Homomorphismen auf präfixstabilen partiell kom-
mutativen Sprachen. Arbeitspapiere der GMD 1106, GMD – Forschungszentrum
Informationstechnik, Darmstadt, 1997.

[OP93] P. Ochsenschläger and R. Prinoth. Formale Spezifikation und dynamische Analyse
verteilter Systeme mit Produktnetzen. In Informatik aktuell Kommunikation in
verteilten Systemen, pages 456–470, München, 1993. Springer Verlag.

[OP95] P. Ochsenschläger and R. Prinoth. Modellierung verteilter Systeme – Konzeption,
Formale Spezifikation und Verifikation mit Produktnetzen. Vieweg, Wiesbaden,
1995.

[ORRN97] P. Ochsenschläger, J. Repp, R. Rieke, and U. Nitsche. The SH-verification tool. In
Proceedings of the 2nd International Workshop on Formal Methods for Industrial
Critical Systems (FMICS’97), Cesena, Italy, 1997.

[Q.1a] Draft Revised ITU-T Recommendation Q.1214: Distributed Functional Plane for
Intelligent Network CS-1. March 1995.

[Q.1b] ITU-T Recommendations Q.12xx – Q series: Intelligent Network Recommenda-
tion. 1992.

[QS82] J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in
cesar. volume 137 of Lecture Notes in Computer Science, pages 337–351, 1982.

[Sch92] S. Schremmer. ISDN-D-Kanalprotokoll der Schicht 3. Spezifikation und Analyse
mit Produktnetzen. Arbeitspapiere der GMD 640, Gesellschaft für Mathematik
und Datenverarbeitung (GMD), Darmstadt, 1992.

[SSR89] R. Saracco, J. R. W. Smith, and R. Reed. Telecommunication Systems’ Engineer-
ing using SDL. North Holland, 1989.

[Sti89] C. Stirling. An introduction to modal and temporal logics for CCS. In A. Yonezawa
and T. Ito, editors, Concurrency: Theory, Language, and Architecture, volume 391
of Lecture Notes in Computer Science. Springer Verlag, 1989.

[Zie89] W. Zielonka. Safe executions of recognizable trace languages by asynchronous
automata. In LNCS 363. Springer Verlag, 1989.

Appendix

As an example for the temporal logic algorithms described in chapter 6 we de-
scribe the steps performed by our tool to check whether the property G(F(RES))

www.manaraa.com

24 P. Ochsenschläger, J. Repp, R. Rieke and U. Nitsche

is satisfied approximately by the “behaviour-automaton” of Figure 3.

On the automaton level, we have to perform 7 Steps:

1. Compute a Büchi-Automaton representing the property given by a PLTL-
formula according to [GPVW96]. For the formula G(F(RES)) which repre-
sents the property that “a result RES is infinitely often produced” the au-
tomaton construction is represented in two steps in Figure 16 and Figure 17.

FALSE B (FALSE B RES)

RES

TRUE U RES

FALSE B (FALSE B RES)

RES

FALSE B (FALSE B RES)

init-nodes

Fig. 16. Graph for G(F(RES))

Automaton for Formula ((G F RES))

−−> (FALSE B (FALSE B RES))

Σ = { REJ REQ RES T_2 T_3 T_4 T_7 VANISH }

ΣRESRES

FALSE B (FALSE B RES)

RES

RESΣRES

TRUE U RES

FALSE B (FALSE B RES)

Σ

ΣRES

RES

FALSE B (FALSE B RES)

RES

Fig. 17. Automaton for G(F(RES))

2. Construct the synchronous product of the automaton constructed so far and
the automaton representing the behaviour of the considered system. The
synchronous product is the construction of the intersection of languages on
the automaton level. For the “property- automaton” of Figure 17 and the

www.manaraa.com

The SH-Verification Tool 25

“behaviour-automaton” of Figure 3, the “product-automaton” is represented
in Figure 18.

T_2

T_3

T_3

RES

T_3

FALSE B (FALSE B RES)

TRUE U RES

FALSE B (FALSE B RES)

TRUE U RES

FALSE B (FALSE B RES)

TRUE U RES

RES

FALSE B (FALSE B RES)

FALSE B (FALSE B RES)

RES

FALSE B (FALSE B RES)

TRUE U RES

FALSE B (FALSE B RES)

TRUE U RES

FALSE B (FALSE B RES)

TRUE U RES

FALSE B (FALSE B RES)

TRUE U RES

FALSE B (FALSE B RES)

TRUE U RES

FALSE B (FALSE B RES)

TRUE U RES

FALSE B (FALSE B RES)

TRUE U RES

FALSE B (FALSE B RES)

TRUE U RES

FALSE B (FALSE B RES)

TRUE U RES

Start

This component will be "reduced" in step 3

T_7

VANISH

T_2

T_7

REJ

T_3

T_7

T_3

T_7

T_7

REJ

T_2VANISH

T_4

REJ

RES

RES

T_2

VANISH

T_4

REQ

T_3

REQ

T_4

VANISH

REQ

T_3 REQ

Fig. 18. The synchronous product automaton of Figure 3 and Figure 17

3. Reduce the resulting Büchi-Automaton (remove all states which are not
reachable from the initial state or from which no cycle containing an ac-
cepting state is reachable).

4. Ignore acceptance conditions (make all states accepting) and do not interpret
the automaton anymore as an automaton on infinite (ω-) words but as one on
finitely long words (this corresponds to the prefix construction (“pre(...)”).

5. Construct the complement automaton (for a finite-word automaton, not an
ω-automaton).

6. Construct the intersection with the automaton representing the behaviour.

7. Check whether the resulting automaton is empty (does not accept words).

For the considered example of the behaviour in Figure 3 and the property given
by the PLTL-formula G(F(RES)), the behaviour satisfies the property approx-
imately.

Besides the algorithm described above that checks for approximate satisfaction
we also have implemented algorithms for other kinds of satisfaction relations
(PLTL and AGEF [Nit98]).

www.manaraa.com

www.manaraa.com

P2
T H E S H - V E R I F I C AT I O N T O O L

Title The SH-Verification Tool

Authors Peter Ochsenschläger, Jürgen Repp and
Roland Rieke

Publication In Proc. 13th International Florida Artificial In-
telligence Research Society Conference (FLAIRS-
2000), pages 18–22, 2000.

ISBN/ISSN ISBN 0-1-57735-113-4

URL http://www.aaai.org/Papers/FLAIRS/

2000/FLAIRS00-004.pdf

Status Published

Publisher AAAI Press

Publication Type Conference Proceedings (FLAIRS 2000)

Copyright 2000, American Association for Artificial In-
telligence http://www.aaai.org

Contribution of
Roland Rieke

Co-Author with significant contribution, ed-
itor, and presenter at the 13th International
Florida Artificial Intelligence Research Soci-
ety Conference.
Specific contributions are: (1) temporal logic
formula editor; (2) conception and imple-
mentation of an application oriented user-
interface for input of cryptographic formu-
lae and presentation of results in this syntax.
Related contributions: Roland Rieke also
contributed to a related paper “Abstraction
and composition – a verification method
for co-operating systems“ [Ochsenschläger
et al., 2000b] that he presented at the same
conference. He further contributed to an in-
vited jounal paper “Verification of Coop-
erating Systems – An Approach Based on
Formal Languages” [Ochsenschläger et al.,
2000]. The approach published in Ochsen-
schläger et al. [2000] is supported by the
SHVT as presented in P1 and this paper P2.

Table 7: Fact Sheet Publication P2

195

http://www.aaai.org/Papers/FLAIRS/2000/FLAIRS00-004.pdf
http://www.aaai.org/Papers/FLAIRS/2000/FLAIRS00-004.pdf
http://www.aaai.org

www.manaraa.com

the sh-verification tool

Publication P2 [Ochsenschläger, Repp & Rieke, 2000a] addresses
the following research question:

RQ1 How can it be proven that components of cooperating systems securely
work together?

This paper gives an overview about the main components of the
SHVT. With the help of an illustrative example, the usage of the meth-
ods described in P1 is shown. P2 contributes to research question
RQ1 by the demonstration of the applicability of the methods devel-
oped in P1. Specifically, abstraction and temporal logic based reason-
ing is demonstrated. The SHVT’s user interface and general handling
has reached a level of maturity that enabled its successful application
in the industrial area [Apel et al., 2007].

196

www.manaraa.com

c©2000 AAAI. Reuse of the original article with kind permission of AAAI and the co-authors. Original AAAI publication: http://www.aaai.org/Papers/FLAIRS/
2000/FLAIRS00-004.pdf

The SH-Verification Tool

Peter Ochsenschläger and Jürgen Repp and Roland Rieke
SIT – Institute for Secure Telecooperation,

GMD – German National Research Center for Information Technology,
Rheinstr. 75, D-64295 Darmstadt, Germany

E-Mail: {ochsenschlaeger,repp,rieke}@darmstadt.gmd.de

Abstract

The sh-verification tool supports a verification
method for cooperating systems based on formal
languages. It comprises computing abstractions
of finite-state behaviour representations as well as
automata and temporal logic based verification
approaches. A small but typical example shows the
steps for analysing its dynamic behaviour using the
sh-verification tool.

Keywords: Cooperating Systems; Finite State
Systems, Abstraction; Simple Language Homomor-
phisms; Formal Specification; Verification

Introduction
The sh-verification tool 1 supports the method for ver-
ification of cooperating systems described in (Ochsen-
schläger, Repp, Rieke 1999). The reader is referred to
this paper for notations, definitions and theorems. Fig-
ure 1 shows the structure of the tool. The main com-
ponents of the system are the tools for specification,
the analysis kernel, the tools for abstraction and the
project manager. It is possible to extend the tool by
different application oriented user interfaces. A small
but typical example shows the steps for analysing a
systems behaviour using the sh-verification tool.

Specification
The presented verification method does not depend on
a specific formal specification technique. For practical
use the sh-verification tool has to be combined with
a specification tool generating labeled transition sys-
tems LTS 2. The current implementation uses prod-
uct nets 3 (Burkhardt, Ochsenschläger, Prinoth 1989;

1sh abbreviates simple homomorphism
2The semantics of formal specification techniques for

distributed systems is usually based on LTS.
3a special class of high level petri nets

Copyright c©2000, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

Parser

Computation + Analysis

of Reachability Graph

Automata Algorithms

Debugging + Traces

Graph Browser Statistics

Input Initial State

Application oriented

Enduser Interface Complex Evaluation Tools

Model Checking

Compositional Method +

Tools for Abstractions +
Analysis Kernel

Enduser Interface

Tools for System Specification

Preamble Editor

Net Editor APA Editor

Hierarchy Editor

Temporal Logic

Homomorphism Editor

Project Manager

Output Result

Application oriented
Presentation

Editor

Figure 1: Components of the sh-verification tool

Ochsenschläger Prinoth 1995) as specification envi-
ronment. A second specification environment based
on asynchronous product automata (APA), (Ochsen-
schläger et al. 1998) is planned.

To illustrate the usage of the methods described in
(Ochsenschläger, Repp, Rieke 1999) we consider an ex-
ample of a system that consists of a client and a server
as its main components. The client sends requests
REQ to the server, expecting the server to produce
particular results. Nevertheless, for some reasons, the
server may not always respond to a request by sending

www.manaraa.com

Figure 2: Client Server Example

a result RES, but may, as well, reject a request REJ
(Figure 4).
Figure 2 shows a product net specification of this ex-

ample. It is a global model for the systems behaviour.
Note that the resource may eventually be locked for-
ever. In Figure 2 we do not use most of product nets’
possible features. Indeed, it is a product net represen-
tation of a Petri net.
Usually complex systems are specified hierarchically.

This is supported by the project manager of the tool.
(In our simple example the specification is flat.)
The LTS in Figure 3, which is the reachability graph

of the product net in Figure 2, is computed by the tool.
This LTS consists of two strongly connected compo-
nents (marked by diffent colors). Usually the LTS of
a specification is too complex for a complete graphical
presentation; there are several features to inspect the
LTS.

Abstraction
In the example the important actions with respect to
the client’s behaviour, are sending a request and re-
ceiving a result or rejection.
We will regard the whole system running properly, if

the client, at no time, is prohibited completely from re-
ceiving a result after having sent a request (correctness
criterion).
For the moment, we regard the server as a black box;

i.e. we neither consider its internal structure nor look

M-17

M-14

M-13 M-5

M-15
M-8

M-10
M-16

M-11

M-9

M-3

M-6

M-12

M-2

M-4

M-7

M-1
start:

RSRC_2

RSRC_1

RSRC_2

RSRC_1

RSRC_2

RSRC_1

RSRC_2

RSRC_1

REQ REQ

VANISH

SRV_1 SRV_1

VANISH

REQ

SRV_3SRV_2

VANISH

SRV_3

SRV_1
REJ

RES

SRV_3

REJ

VANISH

SRV_4

REQ

REJ

SRV_4

SRV_1

SRV_4

SRV_3

SRV_4

REJ

Figure 3: LTS

�✂✁☎✄ ✆✞✝✠✟

✡☛✆✞☞✍✌✎✆✞☞

REQ RES REJ

Figure 4: Client Server Abstract View

at its internal actions. Not caring about particular
actions of a specification when regarding the specifica-
tion’s behaviour is behaviour abstraction. If we define
a suitable abstraction for the client/server system with
respect to our correctness criterion, we only keep ac-
tions REQ, RES, and REJ visible, hiding all other
actions. This is supported by the homomorphism edi-
tor of the tool (Figure 5).
An automaton 4 representing the abstract behaviour

of the specification can be computed by the sh-
verification tool (Figure 6). It obviously satisfies the
required property. The next step is to check whether
the concrete behaviour also satisfies the correctness re-
quirement mentioned above. For that purpose we have
to prove simplicity of the defined homomorphism.
Simplicity of an abstraction can be investigated in-

specting the strongly connected components of the LTS
by a sufficient condition (Ochsenschläger, Repp, Rieke
1999). The component graph in Figure 7 (combined
with the homomorphic images of the arc labels of the
corresponding graph components) does not satisfy this
condition, so nothing can be said about simplicity.
We now try to refine the homomorphism such that

the sufficient condition for simplicity can be proven.
Inspecting the edge between the two nodes of the com-

4the minimal automaton

www.manaraa.com

Figure 5: Defining an Abstraction

A-2
A-1
start:

(REJ)

(RES)

(REQ)

Figure 6: Minimal Automaton.

(REQ)
(RES)
(REJ)
A-1
start:

(REQ)
(REJ)
A-2

Figure 7: Component Graph

ponent graph shows that the action V ANISH causes
the transitions between this two components (Fig-
ure 8). The refined homomorphism, which additionally
keeps V ANISH visible, satisfies the sufficient condi-
tion for simplicity. Figure 9 shows the corresponding
automaton. This automaton obviously violates the re-
quired property, so the systems behaviour does not sat-
isfy this property.
These simplicity investigations, which are supported

by the tool, detect the error in the specification. In
(Ochsenschläger 1992; 1994a) a necessary condition for
simplicity is given. It is based on so called deadlock
languages and shows non-simplicity of our REQ-RES-

(REQ)
(REJ)
A-2

(REQ)
(RES)
(REJ)
A-1
start:

(VANISH)

Figure 8: Component Graph

A-2

A-4

A-3

A-1
start:

(REQ)

(REJ)

(REQ)

(VANISH)

(REJ)
(RES)

(VANISH)

Figure 9: Minimal Automaton (with VANISH)

REJ-homomorphism (Ochsenschläger et al. 1998).
To handle the well known state space explosion prob-

lem a compositional method (Ochsenschläger 1996) is
implemented in the sh-verification tool. This approach
can also be used iteratively and provides a basis for in-
duction proofs in case of systems with several identical
components (Ochsenschläger 1996). Using our compo-
sitional method a connection establishment and release
protocol has been verified by investigating automata
with about 100 states instead of 100000 states.

Temporal Logic
Our verification approach can also be combined with
temporal logic (Ochsenschläger et al. 1998). In terms
of temporal logic, the automaton of Figure 6 approx-
imately satisfies (Ochsenschläger et al. 1998) the for-
mula G(F(RES)) (G: always-operator, F : eventually-
operator; thus G(F(RES)) means ”infinitely often re-
sult”), but the system in Figure 3 does not. This is in-
deed the case because the abstracting homomorphism
is not simple. Using an appropriate type of model
checking, approximate satisfaction of temporal logic
formulae can be checked by the sh-verification tool.
Our experience in practical examples shows that the

combination of computing a minimal automaton of an
LTS and model checking on this abstraction is signifi-
cantly faster than direct model checking on the LTS.

Applications
Practical experiences have been gained with large spec-
ifications:

• ISDN and XTP protocols (Klug 1992; Schremmer
1992; Ochsenschläger Prinoth 1993)

www.manaraa.com

Figure 10: Temporal Logic Formula Editor

• Smartcard systems (Nebel 1994; Ochsenschläger
1994b)

• Service interactions in intelligent telecommunication
systems (Capellmann et al. 1996b; 1996a).

• The tool has also been applied to the analysis
of cryptographic protocols (Basak 1999; Rudolph
1998). In this context an application oriented user-
interface has been developed for input of crypto-
graphic formulae and presentation of results in this
syntax.

• Currently our interest is focused on the verification
of binding cooperations including electronic money
and contract systems. Recently some examples in
that context have been investigated with our tool
(Fox 1998; Roßmann 1998).

Technical Requirements

The sh-verification tool is implemented in Allegro
Common Lisp. An interpreter-based version of the
software is freely available (currently for Solaris,
Linux and Windows NT) for non commercial purposes
(http://sit.gmd.de/META/projects.html). For inves-
tigation of large systems a compiler-based version of
the tool is needed. For more information please con-
tact the authors.

Conclusions

We have presented the basic functionality of the sh-
verification tool in this article. The tool is equipped
with the main features necessary to verify specifica-
tions of cooperating systems of industrial size. It sup-

ports a verification method based on formal languages
(Ochsenschläger, Repp, Rieke 1999).
There exists a variety of verification tools which

can be found in the literature. Some are based
on model checking, others use proof systems. We
consider COSPAN (Kurshan 1994) to be closest to the
sh-verification tool. COSPAN is automata based and
contains a homomorphism based abstraction concept.
Since the transition labels of automata in COSPAN
are in a Boolean algebra notation, the abstraction
homomorphisms are Boolean algebra homomor-
phisms which correspond to non-erasing alphabetic
language homomorphisms on the automata level.
The sh-verification tool, in addition, offers erasing
homomorphisms as an abstraction concept. COSPAN
also considers only linear satisfaction of properties.
Thus fairness assumptions need to be made explicitly
in this tool. A tool which uses the modal µ-calculus as
a specification language for properties (Stirling 1989)
is the concurrency workbench (Cleaveland, Parrow,
Steffen 1993). In (Hartel et al. 1999) ten tools in this
area including ours are compared.

We consider the main strength of our tool to be
the combination of an inherent fairness assumption
in the satisfaction relation, an abstraction technique
compatible with approximate satisfaction, and a
suitable compositional and partial order method
for the construction of only a partial state space.
The sh-verification tool’s user interface and general
handling has reached a level of maturity that enabled
its successful application in the industrial area.

References

Basak, G. 1999. Sicherheitsanalyse von Authen-
tifizierungsprotokollen – model checking mit dem SH-
Verification tool. Diploma thesis, University of Frank-
furt.

Burkhardt, H. J.; Ochsenschläger, P.; and Prinoth,
R. 1989. Product nets — a formal description tech-
nique for cooperating systems. GMD-Studien 165,
Gesellschaft für Mathematik und Datenverarbeitung
(GMD), Darmstadt.

Capellmann, C.; Demant, R.; Fatahi, F.; Galvez-
Estrada, R.; Nitsche, U.; and Ochsenschläger, P.
1996a. Verification by behavior abstraction: A case
study of service interaction detection in intelligent
telephone networks. In Computer Aided Verification
(CAV) ’96, volume 1102 of Lecture Notes in Com-
puter Science, 466–469.

Capellmann, C.; Demant, R.; Galvez-Estrada, R.;
Nitsche, U.; and Ochsenschläger, P. 1996b. Case

www.manaraa.com

study: Service interaction detection by formal verifi-
cation under behaviour abstraction. In Margaria, T.,
ed., Proceedings of International Workshop on Ad-
vanced Intelligent Networks’96, 71–90.

Cleaveland, R.; Parrow, J.; and Steffen, B. 1993. The
concurrency workbench: A semantics-based tool for
the verification of finite-state systems. In TOPLAS
15, 36–72.

Fox, S. 1998. Sezifikation und Verifikation eines Sep-
aration of Duty-Szenarios als verbindliche Telekoop-
ertation im Sinne des Gleichgewichtsmodells. GMD
Research Series 21, GMD – Forschungszentrum Infor-
mationstechnik, Darmstadt.

Hartel, P.; Butler, M.; Currie, A.; Henderson, P.;
Leuschel, M.; Martin, A.; Smith, A.; Ultes-Nitsche,
U.; and Walters, B. 1999. Questions and answers
about ten formal methods. In Proc. 4th Int. Work-
shop on Formal Methods for Industrial Critical Sys-
tems, volume II, 179–203. Pisa, Italy: ERCIM.

Klug, W. 1992. OSI-Vermittlungsdienst und sein
Verhältnis zum ISDN-D-Kanalprotokoll. Spezifika-
tion und Analyse mit Produktnetzen. Arbeitspa-
piere der GMD 676, Gesellschaft für Mathematik und
Datenverarbeitung (GMD), Darmstadt.

Kurshan, R. P. 1994. Computer-Aided Verification
of Coordinating Processes. Princeton, New Jersey:
Princeton University Press, first edition.

Nebel, M. 1994. Ein Produktnetz zur Verifika-
tion von Smartcard-Anwendungen in der STARCOS-
Umgebung. GMD-Studien 234, Gesellschaft für
Mathematik und Datenverarbeitung (GMD), Darm-
stadt.

Ochsenschläger, P., and Prinoth, R. 1993. For-
male Spezifikation und dynamische Analyse verteil-
ter Systeme mit Produktnetzen. In Informatik ak-
tuell Kommunikation in verteilten Systemen, 456–
470. München: Springer Verlag.

Ochsenschläger, P., and Prinoth, R. 1995. Mod-
ellierung verteilter Systeme – Konzeption, Formale
Spezifikation und Verifikation mit Produktnetzen.
Wiesbaden: Vieweg.

Ochsenschläger, P.; Repp, J.; Rieke, R.; and Nitsche,
U. 1998. The SH-Verification Tool – Abstraction-
Based Verification of Co-operating Systems. Formal
Aspects of Computing 10:381–404.

Ochsenschläger, P.; Repp, J.; and Rieke, R. 1999.
Verification of Cooperating Systems – An Approach
Based on Formal Languages. Submitted to FLAIRS-
2000 Special Track on Validation, Verification & Sys-
tem Certification.

Ochsenschläger, P. 1992. Verifikation kooperieren-
der Systeme mittels schlichter Homomorphismen. Ar-
beitspapiere der GMD 688, Gesellschaft für Mathe-
matik und Datenverarbeitung (GMD), Darmstadt.

Ochsenschläger, P. 1994a. Verification of cooperating
systems by simple homomorphisms using the product
net machine. In Desel, J.; Oberweis, A.; and Reisig,
W., eds., Workshop: Algorithmen und Werkzeuge für
Petrinetze, 48–53. Humboldt Universität Berlin.

Ochsenschläger, P. 1994b. Verifikation von
Smartcard-Anwendungen mit Produktnetzen. In
Struif, B., ed., Tagungsband des 4. GMD-SmartCard
Workshops. GMD Darmstadt.

Ochsenschläger, P. 1996. Kooperationsprodukte for-
maler Sprachen und schlichte Homomorphismen. Ar-
beitspapiere der GMD 1029, GMD – Forschungszen-
trum Informationstechnik, Darmstadt.

Roßmann, J. 1998. Formale Analyse der Business-
Phase des First Virtual Internet Payment Systems
basierend auf Annahmen des Gleichgewichtsmodells.
Diploma thesis, University of Frankfurt.

Rudolph, C. 1998. Analyse krypotgraphischer Pro-
tokolle mittels Produktnetzen basierend auf Model-
lannahmen der BAN-Logik. GMD Research Series
13/1998, GMD – Forschungszentrum Information-
stechnik GmbH.

Schremmer, S. 1992. ISDN-D-Kanalprotokoll der
Schicht 3. Spezifikation und Analyse mit Produktnet-
zen. Arbeitspapiere der GMD 640, Gesellschaft für
Mathematik und Datenverarbeitung (GMD), Darm-
stadt.

Stirling, C. 1989. An introduction to modal and tem-
poral logics for CCS. In Yonezawa, A., and Ito, T.,
eds., Concurrency: Theory, Language, and Architec-
ture, volume 391 of Lecture Notes in Computer Sci-
ence. Springer Verlag.

www.manaraa.com

www.manaraa.com

P3
D E V E L O P M E N T O F F O R M A L M O D E L S F O R S E C U R E
E - S E R V I C E S

Title Development of formal models for secure e-
services

Authors Roland Rieke

Publication In Eicar Conference 2003.

URL http://sit.sit.fraunhofer.de/smv/

publications/download/Eicar-2003.pdf

Status Published

Publisher

Publication Type Conference

Copyright

Contribution of
Roland Rieke

Author and presenter at the Eicar Confer-
ence 2003.

Table 8: Fact Sheet Publication P3

Publication P3 [Rieke, 2003] addresses the following research ques-
tion:

RQ1 How can it be proven that components of cooperating systems securely
work together?

This paper provides an extensive example for the use of the meth-
ods and tool described in P1 and P2. From e-government applications
provided by project partners from the city of Cologne a typical exam-
ple of an e-service implementation was selected. This e-service was
modelled, augmented by an attacker model, and analysed using the
SHVT. It has been shown that even if the correct behaviour of an e-
service is proven under assumptions about the interfaces to the en-
vironment and about reasonable input it is necessary to inspect the
system behaviour and ask ’what if’ questions to check the behaviour
of the model against given attack patterns or slightly changed as-
sumptions about the environment. A vulnerability - a race condition
problem - was found that leads in the end to a misrouting effect.
Race conditions are just the most security-relevant type of concur-
rency problem [Viega & McGraw, 2002].

203

http://sit.sit.fraunhofer.de/smv/publications/download/Eicar-2003.pdf
http://sit.sit.fraunhofer.de/smv/publications/download/Eicar-2003.pdf

www.manaraa.com

Development of formal models for secure e-services

Roland Rieke

SIT – Fraunhofer - Institute for Secure Telecooperation,

Rheinstr. 75, D-64295 Darmstadt, Germany

E-Mail: rieke@sit.fraunhofer.de

January 10, 2003

Abstract

A methodology for the development of formal models for e-services is
presented. Verification of the correct behaviour when given expected in-
put and check for security properties by adding selected attack patterns is
shown. An example scenario of a typical e-service configuration is given
and the dynamic behaviour of different variants is analysed. To improve
security of a system providing a collection of e-services it is essential to
make each e-service secure using a design and verification method based
on formal methods and tools 1.

1 Introduction

The goal of the development of formal models of e-services is to achieve a
systematic and verifiable improvement of security of the system providing the
services.

Reliable security primitives already exist, but the security of complex appli-
cations essentially depends on the correct and consistent interplay of security

1This work was funded by the “Bundesministerium für Bildung und Forschung” in the
context of the SKe project (http://www.ske-projekt.de/).

www.manaraa.com

primitives and resource management.

To verify the correctness of a given e-service a formal model of its components
and their interplay is usually analysed by computing its dynamic behaviour
and automatically inspecting the generated state space for postulated safety
and liveness properties.

To additionally prove some selected security properties one can add the formal
specification of a potential attacker to the given model and check if the security
properties hold.

In section 2 the used methods and tool are presented. The methodology for
development and evaluation of formal security models for e-services is described.

In section 3 the selected portal scenario and analysed security properties are
informally described and formally specified using the presented method and
tool. After finding a violation of a security property an extended version of the
portal scenario using an additional cryptographic protocol is analysed.

In section 4 some implemented features to support attack simulations on formal
models are described.

Finally the results of this study are summarised and some perspectives for
further development are presented.

2 Outline of methodology for the development of
formal models for e-services

2.1 Methods and tool used

Modelling is based on asynchronous product automata (APA), a flexible oper-
ational specification concept for cooperating systems [10]. APA are supported
by the SH verification tool developed at Fraunhofer SIT [9, 11]. The tool pro-
vides components for the complete cycle from formal specification to exhaustive
validation.

An APA can be seen as a family of elementary automata. The set of all possible
states of the whole APA is structured as a product set; each state is divided
into state components. In the following the set of all possible states is called
state set. The state sets of elementary automata consist of components of the
state set of the APA. Different elementary automata are “glued” by shared
components of their state sets. Elementary automata can “communicate” by
changing shared state components [6].

A small example to illustrate how APA can be used to specify a system and
how to explore the computed reachability graph with the SH verification tool
is presented in the appendix.

2

www.manaraa.com

2.2 Methodology for the development of formal models for e-
services

In the context of modelling an appropriate abstraction level must be chosen, so
that a verification of the relevant security measures is still possible. In refine-
ments of the model, where a complete analysis is not possible for complexity
reasons, interesting parts of the search space can still be explored by manual
control using the simulation mode. Different models of possible attackers can
be included in the specification and the combined model can be explored to
find states where an attack succeeds.

The development of an executable formal model for an e-service application
requires the steps shown in figure 1.

to find vulnerabilities
complete analysis or simulation

additional security properties

e-service and attackers
combined models of

specifications of attackers

formal specification of properties

under normal conditions and environment
verification of correct operation

operational formal specification of e-service

redesign

redesign rethink

rethinkredesign

Figure 1: Development process for robust e-service models

Operational formal specification of the e-service
Derive an operational formal specification of the e-service from an informal
specification of the required functionality (for example an UML model).
Transfer the formal specification into the SH verification tool.
Note that specifications on different abstraction levels can be compared.

Formal specification of properties
System properties are explicitly given by break-conditions, temporal logic
formulae or Büchi-automata. Temporal logic formulae can be checked on
the abstract behaviour (under a simple homomorphism). A method for
checking approximate satisfaction of properties fits exacly to the built-in
simple homomorphism check [11].

3

www.manaraa.com

Verification of correct operation under normal conditions and environment

• To find errors early in the analysis the check for given conditions
during the computation of the reachability graph is implemented.
Many safety properties (what happens is not wrong) can be checked
this way.

• Computation of strongly connected components is very fast [8] and
gives good insight into liveness behaviour (eventually something de-
sired happens) of the model.

• Model checking can be used to search for particular states describing
a violation of a security property.

Specifications of attackers
Adequate attackers 2 have to be specified here. But what kind of attacks
should be considered here ?
A number of threat classes from the X.509 standard that computer net-
works face are detailed in [13]. These threat classes are: Identity intercep-
tion, masquerade, replay, data interception, manipulation, repudiation,
denial of service, misrouting and traffic analysis.

Many of these threats can be avoided in a given application scenario by
choosing a decent cryptographic protocol for communication.

Aditional security properties
Security is not a single property of a protocol or an e-service. Depending
on precisely what capabilities an attacker has, different properties for the
system model have to be proven.

Combined models of e-service and attackers
The SH verification tool automatically “glues” together selected parts of e-
service model and attacker. This is supported by the project management
component of the tool.

Complete analysis or simulation to find vulnerabilities
If the attacker has too many alternatives the state space of the com-
position of the e-service specification and the attacker specification and
their complex interplay may become too big to compute the complete be-
haviour. So we additionally need to be able to inspect selected parts of
the state space. Simulation of typical paths of the reachability graph of
the formal model under development is very useful and can be compared
to the debugger used to develop software using standard programming

2Strong versus weak attacker:
A weak attacker might be able to start a replay attack, a very simple form of attack where
some sequence of events or commands is observed, and then replayed in the attempt to trick
the server to perform some action so that some vulnerability of the protocol can be exploited.
A strong attacker might be able to manipulate the power line on the infrastructure or start
some sort of denial of service attack to enforce a “reset” of an e-service. A very strong attacker
might even be able to reboot the server with a completely different operating system.

4

www.manaraa.com

languages. If attack patterns are already known simulation of those at-
tacks in the extended formal model can clarify if the model resists this
threat.

3 Development of a model for the portal scenario

Looking at some typical configurations that we modelled for usage in e-government
applications we selected a typical example of an e-service implementation (called
portal scenario) to develop a formal model using the above presented method-
ology.

An APA model of the portal scenario (see figure 2) except the firewall was
implemented using the graphic editor of the SH verification tool. Domains of
state components and functions used are defined in textual form in the preamble
syntax of the tool.

Server1

User_Agent1

User_Agent2

(Angreifer)

FW

Portal

Server2

LAN

INTERNET

Figure 2: Portal scenario

3.1 Evaluation of portal scenario with attack simulation

A first version of portal scenario was entered into the SH verification tool to-
gether with the attacker model shown in figure 3. This is a weak attacker, it
has the ability to log into the e-service as a normal client and tries to get some
information sent to another client by just behaving like a normal client except
it is reading everything it can get.

5

www.manaraa.com

pid2

LoginConf2

cid(command) = ’port’
uidc(command) = ’uid2’ &

Timeout2

command = (’uid2’,’timeout’,’none’)

Logout2

command:(’uid2’,’logout’,’none’)
state > 0,

c_port2

LoginReq2

command:(’uid2’,’login’,’pwd2’)

MessageSelector2

message:(’uid2’,’pwd2’,’q2a’)

m_port_seq

status2

ReceiveReply2

uid:uidr(message(mport))
mport:get_mport(mportseq,pid),
pstate(mport) = ’reply’,

<mportseq>

<portup(mportseq,par(command))>

<pid>

<’none’>

<pid>

<’none’>

<mportseq>

<portdown(mportseq,pid)>

<pid>

<pid>

<dont_care>

<par(command)>

<1>
<2>

<command>
<’none’>

<mportseq>
<portdown(mportseq,pid)>

<dont_care1>

<0> <command>

<’none’>

<state>
<0>

<’none’>

<command>

<’none’>
<command>

<mportseq>

<portquery(mportseq,pid,message)>

<0>
<1>

<2>

<3>

<mportseq>

<portup(mportseq,pid)>

<3>

<2>

Figure 3: APA specification of attacker

Figure 4 shows the graphical interface to the simulation component of the tool
during simulation of the portal model.

6

www.manaraa.com

Figure 4: Graphical simulation using SH verification tool

After checking some properties about the correct behaviour without the at-
tacker, the attacker was added and the following security property was speci-
fied:

No data from the server database produced for one agent must be delivered to
another agent (the potential attacker).

Trying to verify this security property a sequence of 13 steps was found that
breaks the property and constitutes an attack (see figure 5).

This threat can be classified as misrouting. This is possible because it is as-
sumed that there is no end-to-end protocol between client and server but dif-
ferent protocols for client-portal and portal-server communication. Now some
problems with local management of routing information make the attack shown
here possible.

7

www.manaraa.com

(LoginReq1 (command = (uid1,login,pwd1)))

(CheckLogin (pid = pid2 command = (uid1,login,pwd1)))

(LoginConf1 (command = (uid1,port,pid2)))

(Timeout (uid = uid1 pid = pid2))

(MessageSelector1 (message = (uid1,pwd1,q1a) pid = pid2))

(MessageConsumer1 (message = (uid1,pwd1,q1a) pid = pid2))

(Timeout1 (pid = pid2))

(LoginReq2 (command = (uid2,login,pwd2)))

(CheckLogin (pid = pid2 command = (uid2,login,pwd2)))

(LoginConf2 (command = (uid2,port,pid2)))

(MessageSelector2 (message = (uid2,pwd2,q2a) pid = pid2))

(ProduceReply1 (reply = r1a sstate = (pid2,uid1,q1a)))

(ReceiveReply2 (uid = uid1 pid = pid2))

Server1PortalAttackerClient1

Figure 5: Steps of successful attack

The integrated algorithms for computation of minimal automata [4] in the SH
verification tool can be used to compute the local behaviour of the agents, the
portal and the server (see figure 6).

A-1
start:

A-2

A-4 A-3(LoginConf2 ())

(MessageSelector2 ())
(Logout2 ()) (2)
(Timeout2 ())

(ReceiveReply2 ())

(Logout2 ()) (2)
(Timeout2 ())

(LoginReq2 ())

Figure 6: Local behaviour of attacker

8

www.manaraa.com

On the basis of the computed graphs of the local behaviour of protocol agents
it can be checked whether the APA model at this level of abstraction fits to
the predefined behaviour of the protocol participants at another level given for
example by an UML model.

3.2 Portal scenario with cryptographic protocol

The portal scenario was enhanced by adding a cryptographical protocol (ab-
stracted) for client-portal communication and again possible attacks were searched.
Figure 7 shows an overview of the components. A situation where two servers
are computing answers for different queries, the portal has stored two different
keys for client-portal communications and client2 (the attacker) has posted a
query is shown.

P2: wait
P1: wait

query2

compute1

Server2

compute2

Server1

Blackbox

Portal

(Attacker)
Client2

Client1

P2 - key1
P1 - key2

Routing

control

control

control

control

query

reset

reset

reset

reset

query

answer

answer

query/state

answer/state

query/state

answer/state

encrypted Client2/Portal

encrypted Client1/Portal

not encrypted (LAN)

set state

change routes

read routes

internal actions

Figure 7: Portal scenario with cryptographic protocol

Figure 8 shows an APA specification of the enhanced portal component.

9

www.manaraa.com

CheckApplication

rcmd: check_app(ac_seq,opt_user,par(dcmd))
opt_old_chanid: get_chanid(opt_user),
opt_user: getuser4key(user_seq,key),
dcmd: dec(key,cmd),
key: findkey(sslkeys,cmd),
new_chanid: firstchanid(freechanids),
key ~= ’wrong_key’ & cid(dcmd) = ’application’,

portal2client

client2portal

SSLKeys

m_port_seq

ResetPortal

CheckLogin

rcmd: checklogin(login_seq,user_seq,par(dcmd))
dcmd: dec(key,cmd),
key: findkey(sslkeys,cmd),
key ~= ’wrong_key’ & cid(dcmd) = ’login’,

CheckLogout

opt_chanid: get_chanid(opt_user)
opt_user: getuser4key(user_seq,key),
dcmd: dec(key,cmd),
key: findkey(sslkeys,cmd),
key ~= ’wrong_key’ & cid(dcmd) = ’logout’,

Timeout

rcmd: (’timeout’,’none’)
opt_chanid: chanidu(user),
key: keyu(user),
user: user_seq,
user ~= ::,

FreeChanids

PossibleUsers

ActiveUsers

ResetPortal

AccessControl

<mports>

<port_up(mports,par(rcmd),new_chanid,opt_old_chanid)>

<d_c>

<enc(key,rcmd)>

<cmd>

<’none’>

<d_c>

<enc(key,rcmd)>

<cmd>

<’none’>

<mports>

<port_down(mports,opt_chanid)>

<d_c4>

<iset((’chanid1’,’down’,’none’).(’chanid2’,’down’,’none’))>

<d_c1>

<::>

<d_c2>

<’chanid1’.’chanid2’>

<freechanids>

<add_chanid(opt_chanid,freechanids)>

<user_seq>

<sdelete(user,user_seq)>

<user_seq>

<add_login(key,uidl(par(dcmd)),par(rcmd),user_seq)>

<login_seq>

<1>

<user_seq>

<sdelete(opt_user,user_seq)>
<freechanids>

<add_chanid(opt_chanid,freechanids)>

<cmd>

<’none’>

<ac_seq>

<user_seq>

<add_app(opt_user,par(dcmd),par(rcmd),new_chanid,user_seq)>

<sslkeys>

<freechanids>

<upd_chan(new_chanid,opt_old_chanid,par(rcmd),freechanids)>

<d_c>

<enc(key,rcmd)>

Figure 8: APA specifying the portal component

Communication channels protected by strong cryptography make poor targets.
Attackers like to go after the programs at either end of a secure communications
link because the end points are typically easier to compromise or try to utilise
knowledge about faulty implementations of strong protocols or weak configu-
ration at one side. If a strong protocol is used but some guidelines to use the
protocol securely are not followed or some faulty implementation is used it is
possible to break even a strong protocol like SSLv3 [12]. For example an at-
tacker can try as a man-in-the-middle to downgrade a client/server pair to use
a weaker version of the protocol or a weaker crypto suite and then exploit the
known weaknesses.

In the enhanced portal scenario the attack described in section 3.1 was found
again but in this case data delivered to the attacker are encrypted (with key
of original receiver). So it seems that a weakened form of the given security
property is sufficient:

No data from the server database produced for one agent must be delivered to
another agent (the potential attacker) except encrypted data that the attacker
cannot decrypt.

Nevertheless another more complex attack was found in the given model. It is
a sequence of 21 steps including a reset of the portal and the cooperation of a
second server.

10

www.manaraa.com

P2:
P1:

Server2

compute1

Server1

Blackbox

Portal

(Attacker)
Client2

wait

Client1

Routing

control

control

control

control

query

reset

reset

reset

reset

query

answer

answer

query/state

answer/state

query/state

answer/state
set state

change routes

read routes

ResetPortal

Figure 9: Attack sequence (step 10)

Figure 9 shows a situation after the reset of the portal component where client1
has posted a query and is waiting for an answer, the portal has an empty routing
and crypto-key table and no state information and server1 is computing an
answer for the previous query of client1.

P1 - key2

Routing

wait

Client1

(Attacker)
Client2

Portal

Blackbox

Server1

compute2

Server2

reply1

P2:
P1: reply1

read routes

change routes

set state
answer/state

query/state

answer/state

query/state

answer

answer

query

reset

reset

reset

reset

query

control

control

control

control

encrypt

Figure 10: Attack sequence (step 21)

Figure 10 shows a follow-up situation after client2 has exchanged a key with
the portal, logged in, posted a query that server2 is processing. Now server1
has produced a reply to the previous query (before the reset) of client1 and the
portal assigns the wrong key from its routing table to this reply and directs the

11

www.manaraa.com

blackbox to forward the encrypted reply to client2.

The vulnerability found here can also be seen as a race condition problem that
leads in the end to the misrouting effect. “Race conditions are just the most
security-relevant type of concurrency problem.”[14]

4 Implemented features to support the development
process of formal models

To implement support for the development process of formal models including
debugging and attack simulations the following features and modifications have
been implemented within the SH verification tool.

Visualisation of simulation paths on graphical presentation: Simple nav-
igation through simulation paths by mouse-clicks is implemented.

Different views: APA can be viewed on different levels to hide unnecessary
details.

Pattern based specification of components: Components of same type (for
example several servers or clients with same functionality) can be spec-
ified once and instantiated many times [5]. A parser and compiler for
pattern based specification have been implemented.

Invariants (break-conditions): To find errors early in the analysis, the check
for given conditions during the computation of the reachability graph is
implemented. So computation automatically stops if a state that matches
a given condition (violation of invariant) is found.

Project management: A very flexible selection of variants of analysis sce-
narios was implemented. In a project tree components can be selected
and deselected by mouse-click so it is easy for example to exchange li-
braries of symbolic crypto functions and analyse different versions and
combinations of formal models.
Remark about composition of components:
It would be desirable to be able to verify different components of the e-
service architecture separately and then combine the proofs to get less
state space explosion during the verification. In the analysed examples
however the functionality of the components is abstracted to a level where
all modelled functionality influences the behaviour at the interface of the
component, so it cannot (at least with our methods) be hidden somehow.

Split state components: Make it possible to insert an “intermediate layer”
of attackers in the specification without changing the specification of the
state components.

12

www.manaraa.com

A feature found to be useful but not yet implemented is, to find out if attackers
have a winning strategy against the other components of the modelled system.
Alternating time temporal logic [3] would be useful for this purpose because
it offers selective quantification over those paths that are possible outcomes of
games, such as the game in which the system and the environment alternate
moves. Currently we only find that for example there is a state where some
invariant is broken, but not if attackers alone can enforce the whole system to
reach that state.

Related work
The Murphi verification system [1] for example is a similar finite-state analysis
tool but as far as we know it only implements fully automatic model checking
and has no interactive graphical simulation mode as described in this work.
For a comparison of an older version of the tool with other formal methods and
tools see [7].

5 Conclusions

This study shows that even if the correct behaviour of an e-service is proven
under assumptions about the interfaces to the environment and about reason-
able input it is necessary to inspect the system behaviour and ask “what if”
questions to check the behaviour of the model against given attack patterns or
slightly changed assumptions about the environment.

Therefore a tool that can be used as sort of debugger on formal models is
extremely helpful for the development process especially if the robustness of
the model against given attacks is to be inspected and verified. If new attack
methods are detected later it should be easy to check for vulnerabilities of the
model by adding an appropriate module or intercepting some protocol. The SH
verification tool with some additional features and modifications described in
section 4 has been successfully applied for that purpose.

We have applied a similar approach to formal modelling and verification of se-
curity policy interaction issues in the MakoSi project [2] where the e-service
modelled was an electronic whiteboard within a distributed collaborative engi-
neering environment.

We are working to improve the current approach in the following ways:

More example scenarios will be analysed to find and classify common attack
patterns that can be provided in standard libraries or example collections.

Features found to be useful during evaluation of new scenarios will be im-
plemented within the SH verification tool. It would be nice for example to
automatically find and check “similar” simulation paths when having changed
some details of the specified system.

13

www.manaraa.com

If follow-up projects support it, possible new methods for example to reduce the
number of states that are explored when analysing the model or some theorem
proving assistance will be implemented.

Acknowledgements

I am grateful to the members of our research group META for previous work
on APA and fruitful discussions on the subject and especially to Jürgen Repp
for implementing most of the simulation support in the SH verification tool.

References

[1] http://verify.stanford.edu/dill/murphi.html.

[2] http://www.makosi.de.

[3] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time tempo-
ral logic. In Proceedings of the 38th IEEE Symposium on Foundations of
Computer Science, Florida, October 1997.

[4] S. Eilenberg. Automata, Languages and Machines, volume A. Academic
Press, New York, 1974.

[5] S. Gürgens, P. Ochsenschläger, and C. Rudolph. Authenticity and Prov-
ability - a Formal Framework. GMD Report 150, GMD – Forschungszen-
trum Informationstechnik GmbH, 2001.

[6] S. Gürgens, P. Ochsenschläger, and C. Rudolph. Authenticity and Prov-
ability - a Formal Framework. In Infrastructure Security Conference 2002,
October 2002. Copyright: c©2002, Springer Verlag.

[7] P. Hartel, M. Butler, A. Currie, P. Henderson, M. Leuschel, A. Martin,
A. Smith, U. Ultes-Nitsche, and B. Walters. Questions and answers about
ten formal methods. In Proc. 4th Int. Workshop on Formal Methods for
Industrial Critical Systems, volume II, pages 179–203, Pisa, Italy, July
1999. ERCIM, STAR/CNR.

[8] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata The-
ory, Languages and Computation. Addison-Wesley, Reading, Mass., first
edition, 1979.

[9] P. Ochsenschläger, J. Repp, and R. Rieke. The SH-Verification Tool. In
Proc. 13th International FLorida Artificial Intelligence Research Society
Conference (FLAIRS-2000), pages 18–22, Orlando, FL, USA, May 2000.
AAAI Press.

14

www.manaraa.com

[10] Peter Ochsenschläger, Jürgen Repp, and Roland Rieke. Abstraction and
composition – a verification method for co-operating systems. Journal
of Experimental and Theoretical Artificial Intelligence, 12:447–459, June
2000.

[11] Peter Ochsenschläger, Jürgen Repp, Roland Rieke, and Ulrich Nitsche. The
SH-Verification Tool Abstraction-Based Verification of Co-operating Sys-
tems. Formal Aspects of Computing, The International Journal of Formal
Method, 11:1–24, 1999.

[12] Eric Rescoria. SSL and TLS: Designing and Building Secure Systems.
Addison-Wesley, Boston, 2001.

[13] Danny Smith. Selected Aspects of Computer Security in Open Systems.
http://auscert.org.au/render.html?it=2255&cid=1920, The University of
Queensland, 1993.

[14] John Viega and Gary McGraw. Building Secure Software. Addison-Wesley
Professional Computer Series, Boston, 2002.

6 Appendix

A small example is used to illustrate how APA can be used to specify a system
and how to explore the computed reachability graph with the SH verification
tool. Let us assume we want to solve the following problem:

Given the puzzle in figure 11 construct an APA that computes all possible
positions reachable by shifting numbered squares to the empty square from the
initial state shown in figure 11 on the left and find out if the state on the right
is reachable.

6

3

5

8 7

4

1 2
?

6

3

54

1 2

7 8

Figure 11: Is it possible to change positions of the 8 and 7

The idea is to represent the actual state of the puzzle by 9 state components
corresponding to the 9 locations in the puzzle and to model the shifting of
a square by a state transition of an elementary automaton between each two
positions.

15

www.manaraa.com

Each elementary automaton has the form given in figure 12. This graphical
representation shows an elementary automaton named A 1 2 with two neigh-
bour state components S1 and S2. The circles represent state components and
a box corresponds to one elementary automaton. The full specification of an
APA includes the transition relations of the elementary automata and the ini-
tial state. A state transition of automaton A 1 2 may only change the content
of directly connected state components S1 and S2 representing two neighbour
positions in the 8-puzzle example.

S2
A_1_2

x=’e’ | y=’e’
S1

<x>

<y>

<y>

<x>

Figure 12: The elementary automaton A 1 2

In this example x is bound to the content of S1 and y to the content of S2.
The inscription x = ’e’ | y = ’e’ in the box represents a restriction for the
possible transitions of A 1 2. If one of the state components contains the value
’e’ representing the empty square then the value of the other state component
can be moved to this state component and vice versa.

The whole APA for this example is given in figure 13. Note that the squares
with numbers are not part of the APA they just illustrate the initial state.

S1
A_1_2

x=’e’ | y=’e’
S2

A_2_3

x=’e’ | y=’e’
S3

S4
A_4_5

x=’e’ | y=’e’
S5

A_5_6

x=’e’ | y=’e’
S6

S7
A_7_8

x=’e’ | y=’e’
S8

A_8_9

x=’e’ | y=’e’
S9

A_1_4

x=’e’ | y=’e’

A_4_7

x=’e’ | y=’e’

A_2_5

x=’e’ | y=’e’

A_3_6

x=’e’ | y=’e’

A_6_9

x=’e’ | y=’e’
A_6_10

x=’e’ | y=’e’

321

6

’e’78

4

5

<y>

<x>

<y>

<x>

<y>

<x>

<x>

<y>
<x>

<y>
<x>

<y>

<y>

<x>

<x>

<y>

<x>

<y>

<y>

<x>

<x>

<y>

<y>

<x>

<x>

<y>

<y>

<x>

<x>

<y>

<y>

<x>

<y>

<x>

<x>

<y>

<y>

<x>

<x>

<y>

<x>

<y>

<x>

<y>

<y>

<x>

<y>

<x>

Figure 13: An APA with 12 elementary automata and 9 state components

16

www.manaraa.com

Alternative behaviour is represented here by the asyncronicity of the possible
transitions of the elementary automata that are neighbours to the empty square.
For example in the initial position the automata labelled A 6 9 as well as A 8 9
can act. Both alternatives are evaluated by the tool. This situation can be
inspected by starting a simulation and visualising the alternatives by drawing
the node environment of the first node generated. Then on this drawn node
simulation can be continued by selecting some other node in the direction to
be inspected and compute and draw the environment of that node.

M-3

M-2

M-5

M-4

M-1 A_8_9 (y = e x = 7)

A_6_9 (y = e x = 6)

A_8_9 (y = 7 x = e)

A_7_8 (y = e x = 8)

A_6_10 (y = e x = 5)

Figure 14: Simulation of 8-puzzle example

Note that there is a built-in check for equal states, in figure 14 the state following
M -2 when shifting the square with content 7 back to the original position is
identified with M -1.

One way to find out if the 8-puzzle has the property asked for in figure 11 is,
to run a complete analysis 3 of the example and then inspect the generated
reachability graph by search queries.

To find out if the state with changed positions of the 8 and 7 is reachable it is
sufficient to evaluate the following query that describes the searched state:

(S1:<1>) & (S2:<2>) & (S3:<3>) &

(S4:<4>) & (S5:<5>) & (S6:<6>) &

(S7:<7>) & (S8:<8>);

This query will find no states matching, that is you can never reach such a state
by using the given operations. q.e.d.

The example in figure 15 shows how the 8-puzzle problem can be modelled with
the descriptional complexity shifted from the graphical structure - a complex
graph of elementary automata - to a simple structure using only one elementary
automaton but complex data structures and preamble functions. It furthermore
illustrates how the choice-operator can be used instead of multiple asynchronous
elementary automata to model alternative behaviour.

3The complete analysis of this example takes about 2.5 hours on a P700 using the Lisp-
Version with compiler included. The reachability graph has 181440 different states. 483840
transitions are computed.

17

www.manaraa.com

Position
Generate_Next_Position

next_position:possible_next_positions(position)

<position>

<next_position>

Figure 15: A different model of the 8-puzzle

Here one elementary automaton is used to compute the possible follow-up po-
sitions starting from the initial state. The whole puzzle is represented in a
data structure using a 9-tuple named Position, each tuple element represent-
ing one square. A complex preamble function possible next positions is used
to compute a sequence of the possible follow-up positions from a given position.

Alternative behaviour is represented here by the choice operator “:”, a special
syntactical form in the inscription of the elementary automaton. In this case
next position is set to one element chosen from the sequence generated by
possible next positions(position). The computation of the reachability graph
generates all possible choices at this point.

Note that this construct is often used in the modelling of agents in the proto-
col specification of e-services in the following sections. The agents have some
internal state and from that all possible follow-up states are computed. The
usage of the choice operator makes sure that all of them are explored.

18

www.manaraa.com

www.manaraa.com

P4
A B S T R A C T I O N B A S E D V E R I F I C AT I O N O F A
PA R A M E T E R I S E D P O L I C Y C O N T R O L L E D S Y S T E M

Title Abstraction Based Verification of a Parame-
terised Policy Controlled System

Authors Peter Ochsenschläger and Roland Rieke

Publication In Vladimir Gorodetsky, Igor Kotenko, and
Victor A. Skormin, editors, Computer Net-
work Security – Fourth International Conference
on Mathematical Methods, Models and Architec-
tures for Computer Network Security, MMM-
ACNS 2007 St. Petersburg, Russia, Septem-
ber 2007, Proceedings, volume 1 of Commu-
nications in Computer and Information Science,
pages 228–241, 2007.

ISBN/ISSN ISBN 978-3-540-73985-2

DOI http://dx.doi.org/10.1007/978-3-540-

73986-9_19

Status Published

Publisher Springer

Publication Type Conference Proceedings (CCIS, Vol. 1)

Copyright 2007, Springer

Contribution of
Roland Rieke

Co-Author ranking equally, editor, and pre-
senter at the MMM-ACNS conference 2007

in St. Petersburg.
Specific contributions are: (1) the analysed
collaboration scenario; (2) modelling and
analysis of the scenario in the SHVT.

Table 9: Fact Sheet Publication P4

Publication P4 [Ochsenschläger & Rieke, 2007] addresses the fol-
lowing research question:

RQ2 How can finite state verification techniques be extended to prove prop-
erties independently of concrete parameters?

This paper extends the tool supported verification techniques pre-
sented in P1 and P2 by an approach to verify entire families of critical
systems, independent of the exact number of replicated components.
This is demonstrated by an exemplary verification of security and

223

http://dx.doi.org/10.1007/978-3-540-73986-9_19
http://dx.doi.org/10.1007/978-3-540-73986-9_19

www.manaraa.com

abstraction based verification

liveness properties of a simple parameterised collaboration scenario.
Verification results for configurations with fixed numbers of compo-
nents are used to choose an appropriate property preserving abstrac-
tion that provides the basis for an inductive proof that generalises the
results for a family of systems with arbitrary settings of parameters.
The inductive proof uses the construction of the behaviour of the pa-
rameterised system to show that it results in identical abstract system
behaviour for any given parameter configuration. This allows the ver-
ification of parameterised systems by constructing abstract systems
that can be model checked.

224

www.manaraa.com

With kind permission of Springer Science+Business Media.
This is an author-created version of: Computer Network Security; Communications in Com-
puter and Information Science Volume 1, 2007, pp 228-241; Abstraction Based Verification of
a Parameterised Policy Controlled System; Peter Ochsenschläger, Roland Rieke; c© Springer-
Verlag Berlin Heidelberg 2007; DOI: 10.1007/978-3-540-73986-9 19; Print ISBN: 978-3-540-
73985-2; Online ISBN: 978-3-540-73986-9.
The original publication is available at www.springerlink.com.
http://link.springer.com/chapter/10.1007%2F978-3-540-73986-9_19

Abstraction Based Verification of a
Parameterised Policy Controlled System

Peter Ochsenschläger and Roland Rieke ?

Fraunhofer Institute for Secure Information Technology SIT, Darmstadt, Germany
{ochsenschlaeger,rieke}@sit.fraunhofer.de

Abstract. Safety critical and business critical systems are usually con-
trolled by policies with the objective to guarantee a variety of safety, live-
ness and security properties. Traditional model checking techniques allow
a verification of the required behaviour only for systems with very few
components. To be able to verify entire families of systems, independent
of the exact number of replicated components, we developed an abstrac-
tion based approach to extend our current tool supported verification
techniques to such families of systems that are usually parameterised by
a number of replicated identical components. We demonstrate our tech-
nique by an exemplary verification of security and liveness properties
of a simple parameterised collaboration scenario. Verification results for
configurations with fixed numbers of components are used to choose an
appropriate property preserving abstraction that provides the basis for
an inductive proof that generalises the results for a family of systems
with arbitrary settings of parameters.

Key words: Formal analysis of security and liveness properties, security
modelling and simulation, security policies, parameterised models.

1 Introduction

In a typical policy controlled system, a set of policy rules, posing restrictions on
the system’s behaviour, is used to enforce the required security objectives, such as
confidentiality, integrity and availability. For safety critical systems as well as for
business critical systems or parts thereof, assuring the correctness - conformance
to the intended purpose - is imperative. These systems must guarantee a variety
of safety, liveness and security properties.

The problem approached. Traditional model checking techniques can be used to
analyse such systems and to understand and verify how they behave subject
to different policy constraints. However, because of well known state explosion
problems, the usage of these techniques is limited to systems with very few
components. In this paper we propose an extension of these techniques to a

? Part of the work presented in this paper was developed within the project SicAri
being funded by the German Ministry of Education and Research.

www.manaraa.com

particularly interesting class of systems called parameterised systems. A param-
eterised system describes a family of systems that are finite-state in nature but
scalable. A formal specification of a parameterised system thus covers a family of
systems, each member of which has a different number of replicated components.
Instances of the family can be obtained by fixing the parameters. Extensions of
model checking techniques are required that support verification of properties
that are valid independently of given concrete parameters.

Contributions. To be able to verify entire families of critical systems, indepen-
dent of the exact number of replicated components, we developed an abstraction
based approach to extend our current tool supported verification techniques to
such parameterised systems. Abstraction is a fundamental and widely-used ver-
ification technique. It can be used to reduce the verification of a property over a
concrete system, to checking a related property over a simpler abstract system
[1]. In this paper however we need an inductive proof on the construction of
the behaviour of the parameterised system to show that it results in identical
abstract system behaviour for any given parameter configuration. This allows
the verification of parameterised systems by constructing abstract systems that
can be model checked.

In the case of our abstraction based approach, the key problem is the choice of
an appropriate abstraction that, (1) is property preserving, (2) results in identical
abstract system behaviour for any given parameter configuration, and, (3) is
sufficiently precise to express the required properties at the chosen abstraction
level. To solve this problem, we

– compute the system behaviour and verify the required properties for some
configurations with fixed numbers of components;

– we then use the results to choose an appropriate property preserving ab-
straction that results in identical abstract system behaviour for any given
parameter configuration;

– based on this abstraction, we provide an inductive proof (by hand) that
generalises the results for a family of systems with arbitrary settings of pa-
rameters.

In this paper we demonstrate our technique by an exemplary verification of
security and liveness properties of a simple parameterised collaboration scenario.

The subsequent paper is structured as follows. In Sect. 2 we review some
related work. Section 3 introduces a collaboration scenario that we will use
throughout this paper to illustrate the usage of the proposed method for analy-
sis of parameterised models. Section 4 describes the formal modelling technique,
the abstraction based verification concept and the verification tool while Sect. 5
presents an exemplary verification of the collaboration scenario. Finally, the pa-
per ends with conclusions and an outlook in Sect. 6.

2

www.manaraa.com

2 Related Work

Analysis of security policies. The research in the field of security policies has
gained increasing attention in the past few years. Many research papers ap-
peared that investigated security policies on its own and abstracted from the
systems needed to enforce these policies. These activities concentrated on the
examination of specific properties of policies like consistency, freedom of con-
flicts, information flow implications and effects to system safety. This allows
shifting the attention from specifics of computer system towards the analysis of
properties that are inherent to the policy itself.

In the information flow analysis approach presented in [2] for the SELinux
system, a labelled transition system (LTS) is generated from the policy speci-
fications that models the information flow policy. Temporal logic formulas are
used to specify the security goals. The NuSMV (http://nusmv.irst.itc.it/)
model-checker verifies the security goals on this LTS.

A method to enforce rigorous automated network security management using
a network access control policy is presented in [3]. This method is illustrated
using examples based on enforcement strategy by distributed packet filtering
and confidentiality/authenticity goals enforced by IPsec mechanisms.

In [4] a model-based approach focussing on the validation of network security
policies and the interplay of threats and vulnerabilities and system’s behaviour
is proposed. This approach is based on Asynchronous Product Automata (APA)
[5]. APA are also used as a basis of the work presented in this paper.

Verification approaches for parameterised systems. An extension to the Murϕ
verifier to verify systems with replicated identical components through a new
data type called RepetitiveID (with restricted usage) is presented in [6]. The
verification is performed by explicit state enumeration in an abstract state space
where states do not record the exact numbers of components. Murϕ automat-
ically checks the soundness of this abstraction and translates the system de-
scription to an abstract state graph for a system of a fixed size. During the
verification of this system, Murϕ uses a run-time check to determine if the re-
sult can be generalised for a family of systems. The soundness of the abstraction
algorithm is guaranteed by the restrictions on the use of repetitiveIDs. These
restrictions allow Murϕ to decide which components are abstractable using the
repetition constructors, enforce symmetry in the system, which enables the au-
tomatic construction of abstract states, and, enforce the repetitive property in
the system, which enables the automatic construction of the abstract successors.
A typical application area of this tool are cache coherence protocols. Many cache
coherence protocols satisfy the above restrictions.

The aim of [7] is an abstraction method through symmetry which works
also when using variables holding references to other processes which is not
possible in Murϕ. An implementation of this approach for the SPIN model-
checker (http://spinroot.com/) is described.

In [8] a methodology for constructing abstractions and refining them by
analysing counter-examples is presented. The method combines abstraction,

3

www.manaraa.com

model-checking and deductive verification and in particular, allows to use the set
of reachable states of the abstract system in a deductive proof even when the ab-
stract model does not satisfy the specification and when it simulates the concrete
system with respect to a weaker simulation notion than Milner’s. The tool InVeSt
supports this approach and makes use of PVS (http://pvs.csl.sri.com/) and
SMV (http://www.cs.cmu.edu/ modelcheck/smv.html). This approach how-
ever does not consider liveness properties.

In [9] a technique for automatic verification of parameterised systems based
on process algebra CCS [10] and the logic modal mu-calculus [11] is presented.
This technique views processes as property transformers and is based on com-
puting the limit of a sequence of mu-calculus formula generated by these trans-
formers.

The above-mentioned approaches demonstrate, that finite state methods
combined with deductive methods can be applied to analyse parameterised sys-
tems. The approaches differ in varying amounts of user intervention and their
range of application. A survey of a number of approaches to combine model
checking and theorem proving methods is given in [12].

Characteristic of our approach is the flexibility of abstractions defined by
language homomorphisms and the consideration of liveness properties.

3 Collaboration Scenario

There are manifold uses and aspects of the terms policy in general and security
policy specifically. In the context of this paper we use the concepts of the eX-
tensible Access Control Markup Language (XACML [13]) to express a security
policy, but for readability we use a much simpler syntax.

We consider three roles (classes of collaboration partners with a uniform
security policy) in this scenario namely trustworthy clients (TC), observers
(OB) and a manager (M) representing the collaboration infrastructure. There
is only one role player for the manager but an unspecified number of role play-
ers for the two types of clients. The set of subjects is defined by subject =
{trustworthy client, observer,manager}. For our collaboration scenario we now
assume that a group of trustworthy clients hold a session. The session can be
in state public (pub) or confidential (conf). The set of possible session states
is thus defined by s state = {pub, conf}. The initial session state is pub. We
furthermore assume that the set of possible actions is defined by action =
{join, leave, close, open} and that the following policy rules govern the session.

rule1 When the session is in state pub, then observers are permitted to join.
rule2 Observers are permitted to leave at any time.
rule3 When no observers participate in the session, then the manager can close

the session (change state to conf).
rule4 The manager can open the session (change state to pub) at any time.

To be able to decide whether observers are currently participating in a ses-
sion, we furthermore use a counter o count ∈ N0 for the current count of ob-
servers in the session. The initial value of o count is 0. We don’t consider any

4

www.manaraa.com

actions of the trustworthy clients in the model because we consider this irrelevant
for the security goals.

In XACML a policy is given by a set of rules and a rule-combining algorithm.
Each rule is composed of a condition, an effect, and a target. The conditions
(predicates on attributes of subject, resource, action) associated with a policy
rule specify when the policy rule is applicable. If the condition returns False, the
rule returns NotApplicable. If the condition returns True, the value of the effect
element (Permit or Deny) is returned.

For better readability we use an abbreviated syntax in this paper and define
the rules from our example now by

rulex : subject× s state× action× o count→ {permit, deny, not applicable}.

rule1(s, a, z, c) =

{
permit | s = observer ∧ a = join ∧ z = pub

not applicable | else

rule2(s, a, z, c) =

{
permit | s = observer ∧ a = leave

not applicable | else

rule3(s, a, z, c) =

{
permit | s = manager ∧ a = close ∧ c = 0

not applicable | else

rule4(s, a, z, c) =

{
permit | s = manager ∧ a = open ∧ z = conf

not applicable | else

The rule-combining algorithm we use to derive the policy result from the
given rules is the permit-overrides algorithm, if a single permit result is encoun-
tered, then the combined result is permit. So we define the policy for our example
now by

policy : subject× action× s state× o count→ {permit, deny}.

policy(s, a, z, c) =

permit | rule1(s, a, z, c) = permit ∨
rule2(s, a, z, c) = permit ∨
rule3(s, a, z, c) = permit ∨
rule4(s, a, z, c) = permit

deny | else

Generally, security policies have to guarantee certain security properties of a
system and moreover they must not prevent the system from working.

In our example we define the following security properties:

– the collaboration is in state conf only if no observer is present (security),
and

– always eventually state changes between pub and conf are possible (liveness).

These properties are formally verified in Sect. 5.

5

www.manaraa.com

4 Verification of System Properties

Our operational finite state model of the behaviour of the given collaboration
scenario is based on Asynchronous Product Automata (APA), a flexible opera-
tional specification concept for cooperating systems [5]. An APA consists of a
family of so called elementary automata communicating by common components
of their state (shared memory).

4.1 Formal Modelling Technique

We now introduce the formal modelling techniques used, and illustrate the usage
by our collaboration example.

Definition 1. An Asynchronous Product Automaton consists of

– a family of state sets Zs, s ∈ S,
– a family of elementary automata (Φe, ∆e), e ∈ E and
– a neighbourhood relation N : E→ P(S)

S and E are index sets with the names of state components and of elementary
automata and P(S) is the power set of S.

For each elementary automaton (Φe, ∆e) with Alphabet Φe, its state tran-
sition relation is ∆e ⊆ ��s∈N(e)(Zs) × Φe × ��s∈N(e)(Zs). For each element of
Φe the state transition relation ∆e defines state transitions that change only the
state components in N(e). An APA’s (global) states are elements of ��s∈S(Zs).
To avoid pathological cases it is generally assumed that S =

⋃
e∈E(N(e)) and

N(e) 6= ∅ for all e ∈ E. Each APA has one initial state q0 = (q0s)s∈S ∈
��s∈S(Zs). In total, an APA A is defined by

A = ((Zs)s∈S, (Φe, ∆e)e∈E, N, s0)

Finite state model of the collaboration scenario. The collaboration model
described in Sect. 3 is specified for the proposed analysis method using the
following APA state components:
S = {s state, o count} with Zs state = {pub, conf} and Zo count = N0,

q0 = (q0s state, q0o count) = (pub, 0).
The set of elementary automata E = {OB join,OB leave,M conf,M pub}

represents the possible actions that the subjects (manager and observers) can
take. These specifications are represented in the data structures and initial con-
figuration of the state components in the APA model. The lines in Fig. 1 between
state components and elementary automata represent the neighbourhood rela-
tion.

From Fig. 1 we conclude that N(e) = S for each e ∈ E.
For each e ∈ E we choose Φe = {#}. Therefore we can omit the middle compo-
nent of the state transition relation ∆e.

Using the abbreviation state = {pub, conf}, it holds ∆e ⊂ (state × N0) ×
(state×N0) for each e ∈ E.

6

www.manaraa.com

OB join - observer join
collaboration,

OB leave - observer
leave collaboration,

M pub - manager
changes state to
pub,

M conf - manager
changes state to conf

Fig. 1. Collaboration model

In detail:
∆OBleave

= {((x, y), (x, y − 1)) ∈ (state×N0)× (state×N0) |
y > 0 ∧ policy(observer, leave, x, y) = permit}

∆OBjoin
= {((x, y), (x, y + 1)) ∈ (state×N0)× (state×N0) |

y > maxOB ∧ policy(observer, join, x, y) = permit}
∆Mconf

= {((x, y), (conf, y)) ∈ (state×N0)× (state×N0) |
policy(manager, close, x, y) = permit}

∆Mpub
= {((x, y), (pub, y)) ∈ (state×N0)× (state×N0) |
policy(manager, open, x, y) = permit}

Note that this APA is parameterised by maxOB ∈ N0.

Definition 2. An elementary automaton (Φe, ∆e) is activated in a state q =
(qs)s∈S ∈ ��s∈S(Zs) as to an interpretation i ∈ Φe, if there are (ps)s∈N(e) ∈
��s∈N(e)(Zs) with ((qs)s∈N(e), i, (ps)s∈N(e)) ∈ ∆e. An activated elementary au-
tomaton (Φe, ∆e) can execute a state transition and produce a successor state p =
(ps)s∈S ∈ ��s∈S(Zs), if qr = pr for r ∈ S \ N(e) and (qs)s∈N(e), i, (ps)s∈N(e) ∈
∆e. The corresponding state transition is (q, (e, i), p).

For example ((conf, 0), (M pub,#), (pub, 0)) is a state transition of our ex-
ample. As mentioned above, we omit # in the sequel.

Definition 3. The behaviour of an APA is represented by all possible coher-
ent sequences of state transitions starting with initial state q0. The sequence
(q0, (e1, i1), q1) (q1, (e2, i2), q2) (q2, (e3, i3), q3) . . . (qn−1, (en, in), qn) with ik ∈
Φek represents one possible sequence of actions of an APA. qn is called the goal
of this action sequence.

State transitions (p, (e, i), q) may be interpreted as labelled edges of a directed
graph whose nodes are the states of an APA: (p, (e, i), q) is the edge leading from
p to q and labelled by (e, i). The subgraph reachable from the node q0 is called
the reachability graph of an APA.

Let Q denote the set of all states q ∈ ��s∈S(Zs) that are reachable from the
initial state q0 and let Ψ denote the set of all state transitions with the first
component in Q.

7

www.manaraa.com

The set L ⊂ Ψ∗ of all action sequences with initial state q0 including the
empty sequence ε denotes the action language of the corresponding APA. The
action language is prefix closed. By definition q0 is the goal of ε.

The reachability graph of the example depends on the parameter maxOB ∈
N0; its set of nodes is given by QmaxOB and its set of edges is ΨmaxOB .

It is QmaxOB ⊂ {pub, conf} ×N0 and ΨmaxOB ⊂ QmaxOB × E×QmaxOB .
The reachability graph formaxOB = 0 is shown in Fig. 2. The reachability graph
for maxOB = 1 is depicted by the solid lines in Fig. 3, whereas the dashed lines
in the same figure show the reachability graph for maxOB = 2.

(pub,0)(conf,0)

M_conf
M_pub

M_conf

Fig. 2. Reachability graph for maxOB = 0

(pub,0) (pub,2)(pub,1)(conf,0)

OB_joinM_conf

OB_leave

OB_join

M_pub
M_conf

OB_leave

Fig. 3. Reachability graphs for maxOB = 1 (solid lines) and maxOB = 2 (dashed)

For example ((pub, 0),M conf, (conf, 0))((conf, 0),M pub, (pub, 0)) is an el-
ement of the action language.

4.2 Abstraction Based Verification Concept

Now behaviour abstraction of an APA can be formalised by language homomor-
phisms, more precisely by alphabetic language homomorphisms h : Σ∗ → Σ′∗.

By these homomorphisms certain transitions are ignored and others are re-
named, which may have the effect, that different transitions are identified with
one another. A mapping h : Σ∗ → Σ′∗ is called a language homomorphism if
h(ε) = ε and h(yz) = h(y)h(z) for each y, z ∈ Σ∗. It is called alphabetic, if
h(Σ) ⊂ Σ′ ∪ {ε}.

It is now the question, whether, by investigating an abstract behaviour, we
may verify the correctness of the underlying concrete behaviour. Generally under
abstraction the problem occurs, that an incorrect subbehaviour can be hidden

8

www.manaraa.com

by a correct one. We will answer this question positively, requiring a restriction
to the permitted abstraction techniques [1].

As it is well known, system properties are divided into two types: safety (what
happens is not wrong) and liveness properties (eventually something desired
happens, e.g. availability) [14].

On account of liveness aspects system properties are formalised by ω-languages
(sets of infinite long words). So to investigate satisfaction of properties “infinite
system behaviour” has to be considered. This is formalised by so called Eilenberg
limits of action languages (more precisely: by Eilenberg limits of modified action
languages where maximal words are continued by an unbounded repetition of a
dummy action) [15].

The usual concept of linear satisfaction of properties (each infinite run of the
system satisfies the property) is not suitable in this context because no fairness
constraints are considered. We put a very abstract notion of fairness into the
satisfaction relation for properties, which considers that independent of a finitely
long computation of a system certain desired events may occur eventually. To
formalise such “possibility properties”, which are of interest when considering
what we call cooperating systems, the notion of approximate satisfaction of
properties is defined in [15].

Definition 4. A system approximately satisfies a property if and only if each
finite behaviour can be continued to an infinite behaviour, which satisfies the
property.

For safety properties linear satisfaction and approximate satisfaction are
equivalent [15]. To deduce approximately satisfied properties of a specification
from properties of its abstract behaviour an additional property of abstractions
called simplicity of homomorphisms on an action language [16] is required. Sim-
plicity of homomorphisms is a very technical condition concerning the possible
continuations of finite behaviours.

For regular languages simplicity is decidable. In [16] a sufficient condition
based on the strongly connected components of corresponding automata is given,
which easily can be checked. Especially: If the automaton or reachability graph
is strongly connected, then each homomorphism is simple.

The following theorem [15] shows that approximate satisfaction of properties
and simplicity of homomorphisms exactly fit together for verifying cooperating
systems.

Theorem 1. Simple homomorphisms define exactly the class of such abstrac-
tions, for which holds that each property is approximately satisfied by the abstract
behaviour if and only if the “corresponding” property is approximately satisfied
by the concrete behaviour of the system.

Formally, the “corresponding” property is expressed by the inverse image of
the abstract property with respect to the homomorphism.

In the example of this paper the desired security properties are safety and
liveness properties. Generally there are more complex security properties. In [17]

9

www.manaraa.com

and [18] it has been shown how authenticity, provability and confidentiality are
also treated in terms of prefix closed languages and property preserving language
homomorphisms.

4.3 Verification Tool

The Simple Homomorphism (SH) verification tool [5] is used to analyse the col-
laboration model for different concrete values of maxOB. It has been developed
at the Fraunhofer-Institute for Secure Information Technology. The SH verifica-
tion tool provides components for the complete cycle from formal specification to
exhaustive validation as well as visualisation and inspection of computed reach-
ability graphs and minimal automata. The applied specification method based
on Asynchronous Product Automata (APA) is supported by this tool. The tool
manages the components of the model, allows to select alternative parts of the
specification and automatically glues together the selected components to gener-
ate a combined model of the APA specification. After an initial state is selected,
the reachability graph is automatically computed by the SH verification tool.

The tool provides an editor to define homomorphisms on action languages,
it computes corresponding minimal automata [19] for the homomorphic images
and checks simplicity of the homomorphisms.

Model checking. If it is required to inspect some or all paths of the graph to
check for the violation of a security property, as it is usually the case for liveness
properties, then the tool’s temporal logic component can be used. Temporal
logic formulae can also be checked on the abstract behaviour (under a simple
homomorphism). The method for checking approximate satisfaction of properties
fits exactly to the built-in simple homomorphism check [5].

The SH verification tool successfully has been applied in several security
projects such as Valikrypt (http://www.bsi.bund.de/fachthem/valikrypt/)
and CASENET1.

5 Verification of the Collaboration Scenario

An outline of our verification concept for parameterised models, exemplary re-
alised for the collaboration scenario, is given in Fig. 4.

The abstraction based verification concept introduced in Sect. 4.2 and the
tool support described in Sect. 4.3 cover the part marked by solid lines in Fig. 4
whereas we now prove the components marked by dashed lines.

Using the graphs of Fig. 2 and Fig. 3 as induction base we will now prove
Lemma 1 below by induction on maxOB. We use the abbreviations
Tmjoin for ((pub,maxOB), OB join, (pub,maxOB + 1)) and
Tmleave for ((pub,maxOB + 1), OB leave, (pub,maxOB)).

1 The EU project CASENET (http://www.casenet-eu.org/) has provided a tool-
supported framework for the systematic specification, design and analysis of e-
commerce and e-government transactions to produce protocols with proven security
properties, and to assist in code generation for these protocols.

10

www.manaraa.com

figure 1
definition 1

modell (APA)
parameterised

figure 2 (b)
definition 3

behaviour
extended

figure 2 (a)
definition 3

behaviour

figure 4

abstract representation

abstract representation

P1, P2

properties

P1’, P2’

 properties
’corresponding’

theorem 1 lemma 4
proof:

proof: lemma 2
simple homomorphism

induction
conclude by

SH verification tool
proof by

by SH verification tool
computation and proof
simple homomorphism

parameterorder
induction on

SH verification tool
computation by
small parameters

Fig. 4. Verification concept for parameterised APA

Lemma 1. (a) QmaxOB = {(pub, i)|0 ≤ i ≤ maxOB} ∪ {(conf, 0)}
(b) ΨmaxOB+1 = ΨmaxOB ∪̇ {Tmjoin, Tmleave}

Proof. Figure 3 shows the reachability graph with maxOB = 1. Together with
Fig. 2, Fig. 3 proves the induction base.
Induction step.
By inspection of the 4 elementary automata we get: ΨmaxOB ⊂ ΨmaxOB+1.
Starting from the nodes in QmaxOB from maxOB + 1 only the additional tran-
sitions Tmjoin and Tmleave are possible.

ut
It follows by induction:

Lemma 2. For each maxOB ∈ N0 the corresponding reachability graph is finite
and strongly connected.

Let LmaxOB ⊂ Ψ∗maxOB denote the action language, then using Lemma 1(b)
we can derive

Lemma 3. (a) LmaxOB ⊂ LmaxOB+1 and
(b) for each u ∈ LmaxOB+1: h(u) ∈ LmaxOB with the homomorphism

h : Ψ∗maxOB+1 → Ψ∗maxOB

with h(Tmjoin) = ε = h(Tmleave) and h(x) = x for x ∈ ΨmaxOB

(c) The goal of u is identical to the goal of h(u) or
the goal of u is (pub,maxOB + 1) and the goal of h(u) is (pub,maxOB).

Proof of Lemma 3 (b) by induction on the length of u.
Induction base. Lemma 3(b) is true for u = ε. Note that by definition the goal
of the empty transition sequence is equal to the initial state of the APA.

Induction step. Consider ua ∈ LmaxOB+1 with a ∈ ΨmaxOB+1. From induc-
tion hypothesis there are 2 different cases:

11

www.manaraa.com

Case 1. The goal of u is equal to the goal of h(u) and therefore an element
of QmaxOB .
Therefore a ∈ ΨmaxOB ∪ {Tmjoin}.
For a ∈ ΨmaxOB holds: h(ua) = h(u)h(a) = h(u)a
Therefore from induction hypothesis h(ua) ∈ LmaxOB and goals of ua and h(ua)
are equal.
For a = Tmjoin the goal of u and therefore also the goal of h(u) is (pub,maxOB).
Now it holds that h(ua) = h(u)h(a) = h(u).
From induction hypothesis we get that h(ua) ∈ LmaxOB and goal of ua is
(pub,maxOB + 1) and goal of h(ua) is (pub,maxOB).

Case 2. The goal of u is (pub,maxOB + 1) and goal of h(u) is (pub,maxOB).
Then: a = Tmleave

And so:
h(ua) = h(u)h(a) = h(u) ∈ LmaxOB and ua and also h(ua) have the same goal,
namely (pub,maxOB). ut

Now from Lemma 3 (a) we get LmaxOB = h(LmaxOB) ⊂ h(LmaxOB+1)
and from 3 (b) we get h(LmaxOB+1) ⊂ LmaxOB

together LmaxOB = h(LmaxOB+1).
For each homomorphism f : Ψ∗maxOB+1 → Σ′∗ with f(Tmjoin) = ε = f(Tmleave)
it holds that: f(LmaxOB+1) = f(h(LmaxOB+1)) = f(LmaxOB)
and so:

Lemma 4. With the assumptions above holds: f(LmaxOB+1) = f(LmaxOB)

5.1 Proving Security and Liveness of the Collaboration Example

To consider our example’s correctness we have to observe the state changes
between pub and conf . So we define an appropriate homomorphism

c : Ψ∗maxOB → Ψ∗maxOB by
c(((x1, x2), e, (y1, y2))) = ((x1, x2), e, (y1, y2)) if x1 6= y1 , and
c(((x1, x2), e, (y1, y2))) = ε if x1 = y1 .

This homomorphism c fulfils the condition of Lemma 4 and therefore we get
c(LmaxOB+1) = c(LmaxOB).

This implies c(LmaxOB) = c(L0) for each maxOB ∈ N0.

21

((conf,0),M_pub,(pub,0))

((pub,0),M_conf,(conf,0))

Initial state is 1.
All states are final states.

Fig. 5. Minimal automaton of c(L0)

12

www.manaraa.com

It is easy to see, that the automaton of Fig. 5 is the minimal automaton of
c(L0).

This automaton shows that the collaboration is in state conf only if no
observer is present (P1). Moreover always state changes between pub and conf
are possible (P2).

By Lemma 2 c is simple on each LmaxOB and therefore (Theorem 1) corre-
sponding properties P1’ and P2’ hold for each concrete behaviour LmaxOB . In
content P1’ is the same as P1. P2’ is the property that always eventually state
changes between pub and conf are possible. The difference between P2 and P2’
is caused by actions of the concrete behaviour which are mapped to ε by the
homomorphism c. P1’ and P2’ are the desired properties of the collaboration as
formulated in Sect. 3.

6 Conclusions and Future Work

Based on property preserving abstractions (simple homomorphisms) we com-
bined our tool supported finite state methods with induction proofs to verify
security and liveness properties of a parameterised system.

We have shown how abstractions serve as a framework for individual proofs
of problem specific security properties. So our results are no contradictions to
well known undecidability properties of general security models e.g. Harrison-
Ruzzo-Ullman.

This paper focussed on properties which are independent of concrete param-
eter values. Considering parameterised abstract behaviours we will extend our
method to verify parameter dependent properties. The induction proofs in this
paper are “handmade”. So it would be desirable to support such proofs by a the-
orem prover. For that purpose our system specifications based on parameterised
APA have to be represented in a corresponding theorem prover.

Acknowledgements. We would like to thank Carsten Kunz, Carsten Rudolph
and Björn Steinemann for cooperation on early versions of this work and many
productive discussions on the subject.

References

1. Ochsenschläger, P., Repp, J., Rieke, R.: Abstraction and composition – a verifi-
cation method for co-operating systems. Journal of Experimental and Theoretical
Artificial Intelligence 12 (2000) 447–459 Copyright: c©2000, American Association
for Artificial Intelligence (www.aaai.org). All rights reserved.

2. Guttman, J.D., Herzog, A.L., Ramsdell, J.D.: Information flow in operating sys-
tems: Eager formal methods. IFIP WG 1.7 Workshop on Issues in the Theory of
Security (2003)

3. Guttman, J.D., Herzog, A.L.: Rigorous automated network security management.
International Journal of Information Security 4(1-2) (2005) 29–48

13

www.manaraa.com

4. Rieke, R.: Modelling and Analysing Network Security Policies in a Given Vulnera-
bility Setting. In: Critical Information Infrastructures Security, First International
Workshop, CRITIS 2006, Samos Island, Greece. Volume 4347 of LNCS., Springer
(2006) 67–78 c© Springer.

5. Ochsenschläger, P., Repp, J., Rieke, R., Nitsche, U.: The SH-Verification Tool
Abstraction-Based Verification of Co-operating Systems. Formal Aspects of Com-
puting, The International Journal of Formal Method 11 (1999) 1–24

6. Ip, C.N., Dill, D.L.: Verifying Systems with Replicated Components in Murϕ.
Formal Methods in System Design 14(3) (1999) 273–310

7. Derepas, F., Gastin, P.: Model checking systems of replicated processes with spin.
In: SPIN ’01: Proceedings of the 8th international SPIN workshop on Model check-
ing of software, New York, NY, USA, Springer-Verlag New York, Inc. (2001) 235–
251

8. Lakhnech, Y., Bensalem, S., Berezin, S., Owre, S.: Incremental verification by
abstraction. In Margaria, T., Yi, W., eds.: TACAS. Volume 2031 of Lecture Notes
in Computer Science., Springer (2001) 98–112

9. Basu, S., Ramakrishnan, C.R.: Compositional analysis for verification of parame-
terized systems. Theor. Comput. Sci. 354(2) (2006) 211–229

10. Milner, R.: Communication and Concurrency. International Series in Computer
Science. Prentice Hall (1989)

11. Bradfield, J., Stirling, C.: Modal logics and mu-calculi: an introduction (2001)
12. Uribe, T.E.: Combinations of model checking and theorem proving. In: FroCoS

’00: Proceedings of the Third International Workshop on Frontiers of Combining
Systems, London, UK, Springer-Verlag (2000) 151–170

13. Moses, T.: eXtensible Access Control Markup Language (XACML), Version 2.0.
Technical report, OASIS Standard (2005)

14. Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Letters
21(4) (1985) 181–185

15. Nitsche, U., Ochsenschläger, P.: Approximately satisfied properties of systems
and simple language homomorphisms. Information Processing Letters 60 (1996)
201–206

16. Ochsenschläger, P.: Verification of cooperating systems by simple homomorphisms
using the product net machine. In Desel, J., Oberweis, A., Reisig, W., eds.: Work-
shop: Algorithmen und Werkzeuge für Petrinetze, Humboldt Universität Berlin
(1994) 48–53

17. Gürgens, S., Ochsenschläger, P., Rudolph, C.: On a formal framework for security
properties. International Computer Standards & Interface Journal (CSI), Special
issue on formal methods, techniques and tools for secure and reliable applications
(2004)

18. Gürgens, S., Ochsenschläger, P., Rudolph, C.: Abstractions preserving parameter
confidentiality. In: Computer Security – ESORICS 2005. (2005) 418–437 Copy-
right: c©2005, Springer Verlag.

19. Eilenberg, S.: Automata, Languages and Machines. Volume A. Academic Press,
New York (1974)

14

www.manaraa.com

P5
I D E N T I F I C AT I O N O F S E C U R I T Y R E Q U I R E M E N T S
I N S Y S T E M S O F S Y S T E M S B Y F U N C T I O N A L
S E C U R I T Y A N A LY S I S

Title Identification of Security Requirements in
Systems of Systems by Functional Security
Analysis

Authors Andreas Fuchs and Roland Rieke

Publication In Antonio Casimiro, Rogério de Lemos, and
Cristina Gacek, editors, Architecting Depend-
able Systems VII, pages 74–96.

ISBN/ISSN ISBN 978-3-642-17244-1

DOI http://dx.doi.org/10.1007/978-3-642-

17245-8_4

Status Published

Publisher Springer Berlin Heidelberg

Publication Type Book Chapter (LNCS, Vol. 6420)

Copyright 2010, Springer

Contribution of
Roland Rieke

Co-Author ranking equally; this is an invited
book chapter that is an extended version of
[Fuchs & Rieke, 2009] by the same authors
(also ranking equally) which the author of
this thesis previously presented at the Work-
shop on Architecting Dependable Systems
(WADS 2009) in connection with the 2009

IEEE/IFIP Conference on Dependable Sys-
tems and Networks.

Table 10: Fact Sheet Publication P5

Publication P5 [Fuchs & Rieke, 2010] addresses the following re-
search question:

RQ3 How can security requirements for cooperating systems be elicited
systematically?

This book chapter is an extended version of [Fuchs & Rieke, 2009].
It provides a model-based approach to systematically identify se-
curity requirements for cooperating systems. The proposed method
comprises the tracing down of functional dependencies over system

239

http://dx.doi.org/10.1007/978-3-642-17245-8_4
http://dx.doi.org/10.1007/978-3-642-17245-8_4

www.manaraa.com

identification of security requirements

component boundaries right onto the origin of information as a func-
tional flow graph. Based on this graph, comprehensive sets of for-
mally defined authenticity requirements for the given security and
dependability objectives are systematically deduced. The proposed
method thereby avoids premature assumptions on the security ar-
chitecture’s structure as well as the means by which it is realised.
The most common problem with security requirements is that they
tend to be replaced with security-specific architectural constraints
that may unnecessarily constrain the choice of the most appropri-
ate security mechanisms [Firesmith, 2003]. Therefore, the proposed
approach avoids to break down the overall security requirements
to requirements for specific components or communication channels
prematurely. So the requirements identified by this approach are in-
dependent of decisions not only on concrete security enforcement
mechanisms to use, but also on the structure, such as hop-by-hop
versus end-to-end security measures.

240

www.manaraa.com

With kind permission of Springer Science+Business Media.
This is an author-created version of: Architecting Dependable Systems VII; Lecture Notes
in Computer Science Volume 6420, 2010, pp 74-96; Identification of Security Requirements
in Systems of Systems by Functional Security Analysis; Andreas Fuchs, Roland Rieke; c©
Springer-Verlag Berlin Heidelberg 2010; DOI:10.1007/978-3-642-17245-8 4; Print ISBN: 978-
3-642-17244-1; Online ISBN:978-3-642-17245-8;
The original publication is available at www.springerlink.com.
http://link.springer.com/chapter/10.1007%2F978-3-642-17245-8_4

Identification of Security Requirements in
Systems of Systems by Functional Security

Analysis

Andreas Fuchs and Roland Rieke

Fraunhofer Institute for Secure Information Technology (SIT)
Rheinstrasse 75, 64295 Darmstadt, Germany

{andreas.fuchs,roland.rieke}@sit.fraunhofer.de

Abstract. Cooperating systems typically base decisions on information
from their own components as well as on input from other systems.
Safety critical decisions based on cooperative reasoning however raise
severe concerns to security issues. Here, we address the security
requirements elicitation step in the security engineering process for
such systems of systems. The method comprises the tracing down of
functional dependencies over system component boundaries right onto
the origin of information as a functional flow graph. Based on this
graph, we systematically deduce comprehensive sets of formally defined
authenticity requirements for the given security and dependability
objectives. The proposed method thereby avoids premature assumptions
on the security architecture’s structure as well as the means by which
it is realised. Furthermore, a tool-assisted approach that follows the
presented methodology is described.

Key words: security requirements elicitation, systems of systems
security engineering, security analysis for vehicular communication
systems

1 Introduction

Architecting novel mobile systems of systems (SoS) poses new challenges to
getting the dependability and specifically the security requirements right as early
as possible in the system design process. Security engineering is one important
aspect of dependability [1]. The security engineering process addresses issues
such as how to identify and mitigate risks resulting from connectivity and how
to integrate security into a target architecture [2]. Security requirements need
to be explicit, precise, adequate, non-conflicting with other requirements and
complete [13].

A typical application area for mobile SoS are vehicular communication sys-
tems in which vehicles and roadside units communicate in ad hoc manner to
exchange information such as safety warnings and traffic information. As a co-
operative approach, vehicular communication systems can be more effective in
avoiding accidents and traffic congestion than current technologies where each

www.manaraa.com

2 Andreas Fuchs, Roland Rieke

vehicle tries to solve these problems individually. However, introducing depen-
dence of possibly safety-critical decisions in a vehicle on information from other
systems, such as other vehicles or roadside units, raises severe concerns to se-
curity issues. Security is an enabling technology in this emerging field because
without security some applications within those SoS would not be possible at
all. In some cases security is the main concern of the architecture [22].

The first step in the design of an architecture for a novel system of systems
is the requirements engineering process. With respect to security requirements
this process typically covers at least the following activities [17, 16, 15]

– the identification of the target of evaluation and the principal security goals
and the elicitation of artifacts (e.g. use case and threat scenarios) as well as
risk assessment

– the actual security requirements elicitation process
– a requirements categorisation and prioritisation, followed by requirements

inspection

In this paper we address the security requirements elicitation step in this
process. We present a model-based approach to systematically identify security
requirements for system architectures to be designed for cooperative applications
in a SoS context. Our contribution comprises the following distinctive features.

Identification of a Consistent and Complete Set of Authenticity Requirements.
We base our method on the following general assumption about the overall
security goal with respect to authenticity requirements:

For every safety-critical action in a system of systems, all information
that is used in the reasoning process that leads to this action has to be
authentic.

To achieve this, we first derive a functional model of a system by identification
of atomic actions and functional dependencies in a use case description. From
this model we generate a dependency graph with the safety-critical function
under consideration as root and the origins of decision relevant information as
leaves. Based on this graph, we deduce a set of authenticity requirements that
is comprehensive and defines the maximal set of authenticity requirements from
the given functional dependencies.

Security Mechanism Independence. The most common problem with security
requirements is, that they tend to be replaced with security-specific architectural
constraints that may unnecessarily constrain the choice of the most appropriate
security mechanisms [4].

In our approach we avoid to break down the overall security requirements to
requirements for specific components or communication channels prematurely.
So the requirements identified by this approach are independent of decisions
not only on concrete security enforcement mechanisms to use, but also on the
structure, such as hop-by-hop versus end-to-end security measures.

www.manaraa.com

Identification of Security Requirements by Functional Security Analysis 3

Throughout this paper we use the following terminology taken from [1]: A
system is an entity that interacts with other entities, i.e., other systems. These
other systems are the environment of the given system. A system boundary is
the common frontier between the system and its environment. Such a system
itself is composed of components, where each component is yet another system.
Furthermore, in [1] the dependence of system A on system B represents the ex-
tent to which system A’s dependability is affected by that of system B. Our work
though focuses on purely functional aspects of dependence and omits quantita-
tive reasoning. For the approach proposed, we describe the function of such a
system by a functional model and treat the components as atomic and thus we do
not make preliminary assumptions regarding their inner structure. Rather, the
adaption to a concrete architecture is considered to be a task within a follow-up
refinement and engineering process.

The subsequent paper is structured as follows. Section 2 gives an overview of
the related work on security engineering and requirements identification method-
ologies. In Sect. 3 we introduce a scenario from the automotive domain that will
serve as use case throughout the rest of this text. Section 4 introduces the pro-
posed approach to requirements identification, exemplified by application on the
given use case. Section 5 presents an tool-assisted methodology that follows this
approach utilising the scenario. Finally, the paper ends with conclusions and an
outlook in Sect. 6.

2 Related Work

The development of new security relevant systems that interact to build new SoS
requires the integration of a security engineering process in the earliest stages of
the development life-cycle. This is specifically important in the development of
systems where security is the enabling technology that makes new applications
possible. There are several common approaches that may be taken, depending
on the system architect’s background.

In order to design a secure of vehicular communication system, an archi-
tect with a background in Mobile Adhoc Networks (MANETs) would probably
first define the data origin authentication [27] of the transmitted message. In a
next step he may reason about the trustworthiness of the transmitting system.
An architect with a background in Trusted Computing [7] would first require
for the transmitting vehicle to attest for its behaviour [25]. Advanced experts
may use the Trusted Platform Module (TPM) techniques of sealing, binding,
key restrictions and TPM-CertifyKey to validate the trustworthiness and bind
the transmitted data to this key [24]. A distributed software architect may first
start to define the trust zones. This would imply that some computational means
of composing slippery wheels with temperature and position happen in an un-
trusted domain. Results may be the timestamped signing of the sensor data and
a composition of these data at the receiving vehicle.

This shall only illustrate a few different approaches that might be taken
in a security engineering process for new SoS. Very different types of security

www.manaraa.com

4 Andreas Fuchs, Roland Rieke

requirements are the outcome. Some of these leave attack vectors open, such as
the manipulation of the sending or receiving vehicle’s internal communication
and computation.

Another conclusion that can be derived from these examples is related to
premature assumptions about the implementation. Whilst in one case the vehi-
cle is seen as a single computational unit that can be trusted, in another case
it has to attest for its behaviour when sending out warnings. The trust zone
based analysis of the same use cases however requires for a direct communica-
tion link and cryptography between the sensors and the receiving vehicle and the
composition of data is moved to the receiver side. A direct result of falsely de-
fined system boundaries typically are security requirements that are formulated
against internal subsystems rather than the system at stake itself, To overcome
these problems several methods for security requirements elicitation have been
proposed.

A comprehensive concept for an overall security requirements engineering
process is described in detail in [16]. The authors propose a 9 step approach
called SQUARE (Security Quality Engineering Methodology). The elicitation of
the security requirements is one important step in the SQUARE process. In [15]
several concrete methods to carry out this step are compared. These methods are
based on misuse cases (MC), soft systems methodology (SSM), quality function
deployment (QFD), controlled requirements expression (CORE), issue-based in-
formation systems (IBIS), joint application development (JAD), feature-oriented
domain analysis (FODA), critical discourse analysis (CDA) as well as acceler-
ated requirements method (ARM). A comparative rating based on 9 different
criteria is also given but none of these criteria measures the completeness of the
security requirements elicited by the different methods.

A similar approach based on the integration of Common Criteria (ISO/IEC
15408) called SREP (Security Requirements Engineering Process) is described
in [17]. However the concrete techniques that carry out the security require-
ments elicitation process are given only very broadly. A threat driven method is
proposed but is not described in detail.

In [13] anti-goals derived from negated security goals are used to systemat-
ically construct threat trees by refinement of these anti-goals. Security require-
ments are then obtained as countermeasures. This method aims to produce more
complete requirements than other methods based on misuse cases. The refine-
ment steps in this method can be performed informally or formally.

In [4] different kinds of security requirements are identified and informal
guidelines are listed that have proven useful when eliciting concrete security
requirements. The author emphasises that there has to be a clear distinction
between security requirements and security mechanisms.

In [9] it is proposed to use Jackson‘s problem diagrams to determine security
requirements which are given as constraints on functional requirements. Though
this approach presents a methodology to derive security requirements from secu-
rity goals, it does not explain the actual refinements process, which leaves open,
the degree of coverage of requirements, depending only on expert knowledge.

www.manaraa.com

Identification of Security Requirements by Functional Security Analysis 5

In [10–12] Hatebur et al. describe a security engineering process based on se-
curity problem frames and concretised security problem frames. The two kinds
of frames constitute patterns for analysing security problems and associated
solution approaches. They are arranged in a pattern system with formal precon-
ditions and postconditions for the frames which makes dependencies between
them explicit. A method to use this pattern system to analyse a given secu-
rity problem and find solution approaches is described. The focus of [10] is on
anonymity, while [11] focusses on confidential data transmission, and [12] ad-
dresses accountability by logging and the steps of the process.

In [14] actor dependency analysis is used to identify attackers and potential
threats in order to identify security requirements. The so called i∗ approach facil-
itates the analysis of security requirements within the social context of relevant
actors. In [6] a formal framework is presented for modelling and analysis of secu-
rity and trust requirements at an organisational level. Both of these approaches
target organisational relations among agents rather than functional dependence.
Those approaches might be utilised complementary to the one presented in this
paper, as the output of organisational relations analysis may be an input to our
functional security analysis.

Though all of the approaches may lead to a sufficient level of security for the
designed architecture, there is no obvious means by which they can be compared
regarding the security requirements that they fulfil. The choice of the appropriate
abstraction level and system boundaries constitutes a rather big challenge to
SoS architecture design, especially with respect to SoS applications like the one
presented here.

The method described in Sect. 4 in this paper is based on the work presented
in [5], whereas the tool-assisted methodology that builds on this approach pre-
sented in Sect. 5 is a new contribution of this work. We are targeting here the
identification of a consistent and complete set of authenticity requirements. For
an analysis of privacy-related requirements with respect to vehicular communi-
cation systems please refer to [26].

3 Vehicular Communication Systems Scenario

The derivation of security requirements in general, especially the derivation of
authenticity requirements represents an essential building block for system de-
sign. With an increase in the severity of safety-relevant systems’ failures the
demand increases for a systematic approach of requirements derivation with a
maximum coverage. Also during the derivation of security requirements, no pre-
assumptions should be made about possible implementations. We will further
motivate this with respect to the requirements derivation process with an exam-
ple from the field of vehicle-to-vehicle communications.

3.1 Example Use Cases

In order to illustrate our approach we use a scenario taken from the project
EVITA (E-Safety Vehicle Intrusion Protected Applications) [23]. The scenario is

www.manaraa.com

6 Andreas Fuchs, Roland Rieke

based on an evaluation of security relevant use cases for vehicular communication
systems in which vehicles and roadside units communicate in an ad hoc manner
to exchange information such as safety warnings and traffic information. Op-
tionally, local danger warning information can also be provided to in-vehicular
safety concepts for further processing.

Our example system consists of vehicles V1, . . . , Vn. Each Vi has its driver Di

and is equipped with an Electronic Stability Protection (ESP) sensor ESP i and
a Global Positioning System (GPS) sensor GPS i. Within each vehicle’s on-board
network, the scenario involves a communication unit (CU) CU i for sending and
receiving messages. Furthermore, a connection to a Human Machine Interface
(HMI) HMI i is required for displaying the warning message, e.g. via audio signals
or on a display. Furthermore, the example system includes a roadside unit (RSU)
that can send cooperative awareness messages cam. For simplicity reasons we
assume that the same information is provided by all roadside units in the system,
so we can abstract from the individual entity. Our vehicle-to-vehicle scenario is
based on the following use cases:

Use case 1 A roadside unit broadcasts a cooperative awareness message.
Use case 2 A vehicle’s ESP sensor recognises that the ground is very slippery

when accelerating in combination with a low temperature. In order to warn
successive vehicles about a possibly icy road, the vehicle uses its communi-
cation unit to send out information about this danger including the GPS
position data indicating where the danger was detected.

Use case 3 A vehicle receives a cooperative awareness message, such as a warn-
ing about an icy road at a certain position, from a roadside unit or another
vehicle. It compares the information to its own position and heading and
signals the driver a warning if the dangerous area lies up front.

Use case 4 A vehicle receives a cooperative awareness message. It compares the
information to its own position and heading and retransmits the warning,
given that the position of this occurrence is not too far away.

For local danger warning applications, at least two entities are involved,
namely the vehicle receiving a critical warning message and the entity sending
such a message. The entity that sends out the message can be another vehicle,
a roadside unit or traffic light, or an infrastructure based server. The scenario
uses the actions described in table 1.

4 Functional Security Analysis

The approach described in the following can be decomposed into three basic
steps. The first one is the derivation of the functional model from the use case
descriptions in terms of an action oriented system. In a second step the system
at stake is defined and possible instantiations of the first functional model are
elaborated. In a third and final step, the actual requirements are derived in a
systematic way, resulting in a consistent and complete set of security require-
ments.

www.manaraa.com

Identification of Security Requirements by Functional Security Analysis 7

Table 1. Actions for the example system

Action Explanation

send(cam(pos)) A roadside unit broadcasts a cooperative awareness mes-
sage cam concerning a danger at position pos.

sense(ESP i, sW) The ESP sensor of vehicle Vi senses slippery wheels (sW).
pos(GPS i, pos) The GPS sensor of vehicle Vi computes its position.
send(CU i, cam(pos)) The communication unit CU i of vehicle Vi sends a coop-

erative awareness message cam concerning the assumed
danger based on the slippery wheels measurement for po-
sition pos.

rec(CU i, cam(pos)) The communication unit CU i of vehicle Vi receives a
cooperative awareness message cam for position pos from
another vehicle or a roadside unit.

fwd(CU i, cam(pos)) The communication unit CU i of vehicle Vi forwards a
cooperative awareness message cam for position pos.

show(HMI i,warn) The human machine interface HMI i of Vehicle Vi shows
its driver a warning warn with respect to the relative
position.

4.1 Functional Model

Information flow between systems and system components is highly complex,
especially given that a system can evolve via the replacement of its components.
Consequently, an important aspect of security evaluation is the analysis of the
potential information flows. We use the analysis of the potential information
flows to derive the dependencies for the functional model.

For the description of the functional model from the use cases an action-
oriented approach is chosen. The approach is based on the work from [18]. For
reasons of simplicity and readability the formal description of the model is omit-
ted here and a graphical representation is used to illustrate the behaviour of the
evaluation target.

A functional model can be derived from a use case description by identify-
ing the atomic actions in the use case description. These actions are set into
relation by defining the functional flow among them. This action oriented ap-
proach considers possible sequences of actions (control flow) and information
flow (input/output) between interdependent actions.

In the case of highly distributed systems and especially a distributed system
of distributed systems, it is very common that use cases do not cover a complete
functional cycle throughout the whole system under investigation. Rather only
certain components of the system are described regarding their behaviour. This
must be kept in mind when deriving the functional model. In order to clarify
this distinction, functional models that describe only parts of the overall system
behaviour will be called functional component model.

Figures 1(a) and 1(b) show functional component models for a roadside unit
and a vehicle respectively. These models are derived from the example use cases

www.manaraa.com

8 Andreas Fuchs, Roland Rieke

RSU

send(cam(pos))

cam

(a) Roadside Unit

Vehicle i

sense(ESPi,sW)

pos(GPSi,pos)

rec(CUi, cam(pos))

send(CUi,cam(pos))

show(HMIi,warn)

fwd(CUi, cam(pos))

camcam

(b) Vehicle

Fig. 1. Functional component models

given in Sect. 3.1. The functional flow arrows outside of the vehicle’s boundaries
refer to functional flows between different instances of the component, whilst
internal flow arrows refer to flows within the same instance of the component.
For the given example, the external flows represent data transmission of one
system to another, whilst the internal flows represent communication within a
single system.

4.2 System of Systems Instances

Based on the functional component model, one may now start to reason about
the overall system of systems which consists of a number of instances of the
functional components. The synthesis of the internal flow between the actions
within the component instances and the external flow between systems (in this
case vehicles and roadside units) builds the global system of systems behaviour.
In order to model instances of the global system of systems, all structurally
different combinations of component instances shall be considered. Isomorphic
combinations can be neglected. Finally, all possible instances may be regrouped
and the system’s boundary actions (denoting the actions that are triggered by
or influence the system environment) have to be identified. These will be the
basis for the security requirements definition in the next step.

In Fig. 2 an example for a possible SoS instance combining use cases 1 and
3 comprising a roadside unit and a vehicle is presented. In this SoS instance
vehicle Vw receives cooperative awareness message from a RSU.

4.3 Functional Security Requirements Identification

The set of possible instantiations of the functional component model is used in
a next step to derive security requirements. First, the boundary actions of the
system model instances are determined. Let the term boundary action refer to
the actions that form the interaction of the internals of the system with the
outside world. These are actions that are either triggered by occurrences outside
of the system or actions that involve changes to the outside of the system.

www.manaraa.com

Identification of Security Requirements by Functional Security Analysis 9

RSU

send(cam(pos))

Vehicle w

sense(ESPw ,sW)

pos(GPSw ,pos)

rec(CUw , cam(pos))

send(CUw ,cam(pos))

show(HMIw ,warn)

fwd(CUw , cam(pos))
cam

Fig. 2. Vehicle w receives warning from RSU

With the boundary actions being identified, one may now follow the func-
tional graph backwards. Beginning with the boundary actions by which the
system takes influence on the outside, we may propagate backwards along the
functional flow. These backwards references basically describe the functional de-
pendencies of actions among each other. From the functional dependency graph
we may now identify the end points - the boundary actions that trigger the
system behaviour that depends on them. Between these and the corresponding
starting points, the requirement exists that without such an action happening as
input to the system, the corresponding output action must not happen as well.
From this we formulate the security goal of the system at stake:

Whenever a certain output action happens, the input actions that presumably
led to it must actually have happened.

Example 1 (Boundary Actions and Dependencies). In the SoS instance in Fig. 2
we are interested to identify the authenticity requirements for the boundary
action show(HMI w,warn). Following backwards along the functional flow we
derive that the output action show(HMI w,warn) is depending on the input
actions pos(GPSw,pos) of vehicle w and send(cam(pos)) of the RSU .

These dependencies shall now be enriched by additional parameters. In par-
ticular, it shall be identified which is the entity that must be assured of the
respective authenticity requirements. With these additional parameters set, we
may utilise the following definition of authenticity from the formal framework of
Fraunhofer SIT [8] to specify the identified requirements.

Definition 1. auth(a, b, P): Whenever an action b happens, it must be authentic
for an Agent P that in any course of events that seem possible to him, a certain
action a has happened (for a formal definition see [8]).

Example 2 (Derive Requirements from Dependencies). For the dependencies in
Example 1 this leads to the following authenticity requirements with respect to
the action show(HMI w,warn):

– It must be authentic for the driver of vehicle w that the relative position of
the danger he/she is warned about is based on correct position information
of his/her vehicle. Formally: auth(pos(GPSw,pos), show(HMI w,warn), Dw)

www.manaraa.com

10 Andreas Fuchs, Roland Rieke

– It must be authentic for the driver of vehicle w that the roadside unit issued
the warning. Formally: auth(send(cam(pos)), show(HMI w,warn), Dw)

It shall be noted that the requirements elicitation process in this case utilises
positive formulations of how the system should behave, rather than preventing
a certain malicious behaviour. Also it has to be stressed that this approach
guarantees for the system / component architect to be free regarding the choice
of concepts during the security engineering process.

This manual analysis may reveal that certain functional dependencies are
presented only for performance reasons. This can be valuable input for the ar-
chitects as well, and sometimes reveals premature decisions about mechanisms
that were already done during the use case definition phase.

This approach cannot prevent the specification of circular dependencies
among systems’ actions but usually this is avoided for well-defined use cases.
This actually originates from the fact that every action represents a progress in
time. Accordingly an infinite loop among actions in the system would indicate
that the system described will not terminate. The requirements derivation pro-
cess will however highlight every functional dependency that is described within
the use cases. Accordingly, when the use case description incorporates more than
the sheer safety related functional description, additional requirements may arise.
Therefore, the requirements have to be evaluated towards their meaning for the
system’s safety. Whilst one can be assured not to have missed any safety relevant
requirement, this is a critical task because misjudging a requirement’s relevance
would induce security holes. Once an exhaustive list of security requirements is
identified, a requirements categorisation and prioritisation process can evaluate
them according to a maximum acceptable risk strategy.

4.4 Formalisation

Formally, the functional flow among actions can be interpreted as an ordering
relation ζi on the set of actions Σi in a certain system instance i. To derive
the requirements the reflexive transitive closure ζ∗i is constructed. In the follow-
ing we assume that the functional flow graph is sequential and free of loops,
as every action can only depend on past actions. Accordingly, the relation is
anti-symmetric. ζ∗i is a partial order on Σi, with the maximal elements maxi
corresponding to the outgoing boundary actions and the minimal elements mini
corresponding to the incoming boundary actions. After restricting ζ∗i to these
elements χi = {(x, y) ∈ Σi × Σi | (x, y) ∈ ζ∗i ∧ x ∈ mini ∧ y ∈ maxi} this
new relation represents the authenticity requirements for the corresponding sys-
tem instance: For all x, y ∈ Σi with (x, y) ∈ χi : auth(x, y, stakeholder(y)) is
a requirement. Accordingly the union of all these requirements for the different
instances poses the set of requirements for the whole system. This set can be
reduced by eliminating duplicate requirements or by use of first-order predicates
for a parameterised notation of similar requirements.

Example 3 (Formal Derivation of Authenticity Requirements). For the given sys-
tem model instances, we may now identify the authenticity requirements for the

www.manaraa.com

Identification of Security Requirements by Functional Security Analysis 11

action show(HMI w,warn) using the actions and abbreviations defined in table 1.
Graphically, this could be done by reversing the arrows and removing the dotted
arrows and boxes.

Vehicle 1

sense(ESP1,sW)

pos(GPS1,pos)

rec(CU1, cam(pos))

send(CU1,cam(pos))

show(HMI1,warn)

fwd(CU1, cam(pos))

Vehicle w

sense(ESPw ,sW)

pos(GPSw ,pos)

rec(CUw , cam(pos))

send(CUw ,cam(pos))

show(HMIw ,warn)

fwd(CUw , cam(pos))

Fig. 3. Vehicle w receives a warning from vehicle 1

Figure 3 shows an example for a possible SoS instance combining use cases 2
and 3 comprising two vehicles. In this SoS instance vehicle Vw receives coopera-
tive awareness message from vehicle V1. Formally, for the SoS instance depicted
in Fig. 3, we can analyse:

ζ1 ={(sense(ESP1, sW), send(CU 1, cam(pos))),

(pos(GPS 1,pos), send(CU 1, cam(pos))),

(send(CU 1, cam(pos)), rec(CU w, cam(pos))),

(pos(GPSw,pos), show(HMI w,warn)),

(rec(CU w, cam(pos)), show(HMI w,warn))}
ζ∗1 =ζ1 ∪ {(x, x) | x ∈ Σ} ∪ {

(sense(ESP1, sW), rec(CU w, cam(pos))),

(sense(ESP1, sW), show(HMI w,warn)),

(pos(GPS 1,pos), rec(CU w, cam(pos))),

(pos(GPS 1,pos), show(HMI w,warn)),

(send(CU 1, cam(pos)), show(HMI w,warn))}
χ1 ={(sense(ESP1, sW), show(HMI w,warn)),

(pos(GPS 1,pos), show(HMI w,warn)),

(pos(GPSw,pos), show(HMI w,warn))}
For further analysis we consider a possible SoS instance combining use cases

2, 3 and 4 comprising three vehicles as shown in Fig. 4. In this SoS instance
vehicle V2 forwards warnings from vehicle V1 to vehicle Vw.

An analysis of the SoS instance with 3 vehicles as depicted in Fig. 4 will
result in:

χ2 = χ1 ∪ {(pos(GPS 2,pos), show(HMI w,warn))}
In the given SoS model the forwarding of a message is restricted by a position

based forwarding policy with respect to the distance from the danger that is being

www.manaraa.com

12 Andreas Fuchs, Roland Rieke

Vehicle 1 Vehicle 2

sense(ESP2,s2)

pos(GPS2,pos)

rec(CU2, cam(pos))

send(CU2,cam(pos))

show(HMI2,warn)

fwd(CU2, cam(pos))

Vehicle w

Fig. 4. Vehicle 2 forwards warnings (vehicles 1, 2 and w are instances from Fig. 1)

warned about and the time of issue of the danger sensing. We could therefore
assume a maximal number of system instances involved general enough to cover
all these cases, e.g. by utilising a description in a parameterised way. An analysis
for an SoS instance with i vehicles will result in:

χi = χi−1 ∪ {(pos(GPS i,pos), show(HMI w,warn))}

The first three elements in each χi will obviously always be the same in all
instances of the example. The rest of the elements can be expressed in terms of
first-order predicates. This leads to the following authenticity requirements for
all possible system instances for the action show(HMI w,warn):

auth(pos(GPSw,pos), show(HMI w,warn), Dw) (1)

auth(pos(GPS 1,pos), show(HMI w,warn), Dw) (2)

auth(sense(ESP1, sW), show(HMI w,warn), Dw) (3)

∀x ∈ Vforward : auth(pos(GPSx,pos), show(HMI w,warn), Dw) (4)

Vforward denotes the set of vehicles per system instance, that forward the
warning message.

As mentioned above, the resulting requirements have to be evaluated regard-
ing their meaning for the functional safety of the system. For the first three
requirements the argumentation is very straight forward regarding why they
have to be fulfilled:

1. It must be authentic for the driver that the relative position of the danger
he/she is warned about is based on correct position information of his/her
vehicle.

2. It must be authentic for the driver that the position of the danger he/she is
warned about is based on correct position information of the vehicle issuing
the warning.

3. It must be authentic for the driver that the danger he/she is warned about
is based on correct sensor data.

The last requirement (4) however must be further evaluated. Studying the use
case, we see that this functional dependency originates from the position based

www.manaraa.com

Identification of Security Requirements by Functional Security Analysis 13

forwarding policy. This policy is introduced for performance reasons, such that
bandwidth is saved by not flooding the whole network. Braking this requirement
would therefore result either in a smaller or in a larger broadcasting area. As bad
as those cases may be, they cannot cause the warning of a driver that should
not be warned. Therefore we do not consider requirement (4) to be a safety
related authenticity requirement. It can be considered a requirement regarding
availability by preventing the denial of a service or unintended consumption of
bandwidth.

In practice, the method described here has been applied in the project EVITA
[23] to derive authenticity requirements for the development of a new automotive
on-board architecture utilising vehicle-to-vehicle and vehicle-to-infrastructure
communication. A total of 29 authenticity requirements have been elicited by
means of a system model comprising 38 component boundary actions with 16
system boundary actions comprising 9 maximal and 7 minimal elements.

5 Tool-assisted Requirements Identification

The method for deriving authenticity requirements as described in the previous
section relies on manual identification and processing only. In this section we
will give an example on how to use the capabilities of existing tools, such as the
SH verification tool [20] in order to facilitate the process especially for larger
models.

As the previous section explained, the basis for the systematic identification
of authenticity requirements for a given system is the relations between maxima
and minima of the partial order of functional dependence. In this approach we
first identified the direct relations of adjacent actions, then built the reflexive
transitive closure and finally extracted those relations from this set that exist
between maxima and minima of this partial order.

The tool-assisted approach will proceed in reverse order. First we will identify
the maxima and minima of the partial order – without deriving the actual partial
order – and then we will identify combinations of maxima and minima that are
related by functional dependence. This approach will be illustrated with a simple
example first, to provide the general idea and then with a more complex example,
in order to demonstrate the application of abstraction techniques to cover the
analysis of non-trivial systems.

5.1 Formal Modelling Technique

In order to analyse the system behaviour with tool support, an appropriate for-
mal representation has to be chosen. In our approach, we choose an operational
finite state model of the behaviour of the given vehicular communication scenario
that is based on Asynchronous Product Automata (APA), a flexible operational
specification concept for cooperating systems [20]. An APA consists of a fam-
ily of so called elementary automata communicating by common components of
their state (shared memory). We now introduce the formal modelling techniques
used, and illustrate the usage by our collaboration example.

www.manaraa.com

14 Andreas Fuchs, Roland Rieke

Definition 2 (Asynchronous Product Automaton (APA)).
An Asynchronous Product Automaton consists of

– a family of state sets Zs, s ∈ S,
– a family of elementary automata (Φt, ∆t), t ∈ T and
– a neighbourhood relation N : T→ P(S).

S and T are index sets with the names of state components and of elementary
automata and P(S) is the power set of S.
For each elementary automaton (Φt, ∆t) with Alphabet Φt, its state transition
relation is

∆t ⊆ ��s∈N(t)(Zs)× Φt ×��s∈N(t)(Zs).

For each element of Φt the state transition relation ∆t defines state transitions
that change only the state components in N(t). An APA’s (global) states are
elements of ��s∈S(Zs). To avoid pathological cases it is generally assumed that
N(t) 6= ∅ for all t ∈ T.
Each APA has one initial state q0 = (q0s)s∈S ∈ ��s∈S(Zs).
In total, an APA A is defined by

A = ((Zs)s∈S, (Φt, ∆t)t∈T, N, q0).

An elementary automaton (Φt, ∆t) is activated in a state p = (ps)s∈S ∈
��s∈S(Zs) as to an interpretation i ∈ Φt, if there are (qs)s∈N(t) ∈ ��s∈N(t)(Zs)
with ((ps)s∈N(t), i, (qs)s∈N(t)) ∈ ∆t.
An activated elementary automaton (Φt, ∆t) can execute a state transition and
produce a successor state

q = (qr)r∈S ∈ ��s∈S(Zs), if

qr = pr for r ∈ S \N(t) and ((ps)s∈N(t), i, (qs)s∈N(t)) ∈ ∆t.

The corresponding state transition is (p, (t, i), q).

For the following analysis by model checking and abstraction we use a re-
duced version of the functional component model of a vehicle that corresponds
to the functional model illustrated in Fig. 1(b) but does not contain the forward
action.

Example 4 (Finite State Model of the Collaboration Components). The vehicle
component model described in Sect. 4.1 is specified for the proposed analysis
method using the following APA state components for each of the vehicles:

Si = {espi, gpsi, hmi i, busi,net}, with

Zespi
= P({sW}),

Zgpsi = P({pos1, pos2, pos3, pos4}),
Zhmii = P({warn}),
Zbusi = P(Zesp ∪ Zgps ∪ Zhmi)) and

Znet = P({cam} × {V1, V2, V3, V4} × Zgps).

www.manaraa.com

Identification of Security Requirements by Functional Security Analysis 15

The inputs to the vehicle model are represented by the state components
espi and gpsi. espi represents input measurements taken by the ESP sensor.
A pending data set here will trigger the sense action for slippery wheels. gpsi
represents the derivation of GPS position information. Pending data here will
trigger the pos action for retrieving the current position of the vehicle.

The outputs of the vehicle model are represented by the state component
hmi i that represents the HMI interface’s display, showing (warning) information
to the driver. The show action will push information to this medium.

Internally the vehicle component has an additional state component busi
representing its internal communication bus. It is filled with information from
the rec, sense and pos action and read by the send and forward action.

Finally, net is a shared state component between all the vehicles that repre-
sents the wireless communication medium. A pending message here will trigger
the rec action of the component. The actions send and forward will push a
message into this medium.

Vehicle i

Vi sense

Vi pos

Vi send

Vi show Vi rec

gpsi

espi

busi net

hmi i

Fig. 5. APA model of a vehicle

The elementary automata Ti = {Vi pos, Vi sense, Vi rec, Vi send , Vi show} rep-
resent the possible actions that the systems can take. These specifications are
represented in the data structures and initial configuration of the state compo-
nents in the APA model. Elementary automata and state components of the
APA model of a vehicle are depicted in Fig. 5. The lines in Fig. 5 between state
components and elementary automata represent the neighbourhood relation.

The state transition relation for the APA model of a vehicle is given by:

∆Vi sense ={((espi, busi), (esp), (espi\{esp}, busi ∪ {esp}))
∈ (Zespi

× Zbusi)× ESP × (Zespi
× Zbusi) | esp ∈ espi}

∆Vi pos ={((gpsi, busi), (gps), (gpsi\{gps}, busi ∪ {gps})
∈ (Zgpsi × Zbusi)×GPS × (Zgpsi × Zbusi) | gps ∈ gpsi}

www.manaraa.com

16 Andreas Fuchs, Roland Rieke

∆Vi send ={((busi,net), (esp, gps,msg), (busi\{esp, gps},net ∪ {msg}))
∈ (Zbusi × Znet)× (ESP ×GPS ×NET)× (Zbusi × Znet) |
esp ∈ busi ∧ gps ∈ busi ∧msg = (cam, gps)}

∆Vi rec ={((net , busi), (msg , gps,warn), (net \{msg}, busi\{gps} ∪ {warn}))
∈ (Znet × Zbus)× (NET ×GPS ×HMI)× (Znet × Zbusi) |
msg ∈ net ∧ gps ∈ busi ∧ distance(msg , gps) < range}

∆Vi show ={((busi, hmi i), (warn), (busi\{warn}, hmi ∪ {warn}))
∈ (Zbusi × Zhmii)×HMI × (Zbusi × Zhmii) | warn ∈ busi}

The model is parameterised by i except for the shared state component net .

5.2 Formal Representation of System of Systems Instances

The SoS instance that we investigate first includes two vehicle components that
are assumed to be within the wireless transmission range similar to the example
given in Fig. 3. In this SoS instance vehicle V2 receives cooperative awareness
message from vehicle V1. Therefore the net components are mapped together,
such that outputs of each one of the vehicles are input for the other vehicle.
The rest of the inputs (Sensors and GPSs) as well as outputs (displays) are not
internal parts of the system but filled and read by the systems environment. It
should be noted that timing behaviour is not included in the model, because we
solely want to retrieve functional dependencies. As we want to instantiate V1 to
perform use Case 2 and V2 to perform use Case 3, we set

– V1’s sensor input to a measurement of slippery wheels sW,
– V1’s GPS input to some position pos1 that is within warning range of V2 and
– V2’s GPS input to some position pos2 that is within warning range of V1.

Example 5 (Finite State Model of an SoS Instance with 2 Vehicles).
The state components for this instance are

S = {esp1, pos1, bus1, hmi1, esp2, pos2, bus2, hmi2,net}

and the set of elementary automata is

T = {V1 sense, V1 pos, V1 send , V1 rec, V1 show ,

V2 sense, V2 pos, V2 send , V2 rec, V2 show}.

The neighbourhood relation N(t) can be read directly from the graphical
illustration in Fig. 6. The initial state for our simulation is defined as:

q0 =(q0 esp1
, q0 gps1 , q0 bus1 , q0 hmi1 , q0 esp2

, q0 gps2 , q0 bus2 , q0 hmi2 , q0 net)

=({sW}, {pos1}, ∅, ∅, ∅, {pos2}, ∅, ∅, ∅).

For example (q0, (V1 sense, sW), (∅, {pos1}, {sW}, ∅, ∅, {pos2}, ∅, ∅, ∅)) is a
state transition of this SoS instance.

www.manaraa.com

Identification of Security Requirements by Functional Security Analysis 17

Vehicle 1

V1 sense

V1 pos

V1 send

V1 show V1 rec

gps1

esp1

bus1 net

hmi1

Vehicle 2

V2 send V2 sense

V2 pos

V2 showV2 rec

gps2

esp2

bus2

hmi2

Fig. 6. APA model of a SoS instance with 2 vehicles

5.3 Computation of System of Systems Behaviour

Formally, the behaviour of our operational APA model of the vehicular com-
munication system is described by a reachability graph. In the literature this is
sometimes also referred to as labelled transition system (LTS).

Definition 3 (Reachability graph).
The behaviour of an APA is represented by all possible coherent sequences
of state transitions starting with initial state q0. The sequence (q0, (t1, i1), q1)
(q1, (t2, i2), q2) . . . (qn−1, (tn, in), qn) with ik ∈ Φtk represents one possible se-
quence of actions of an APA.

State transitions (p, (t, i), q) may be interpreted as labelled edges of a directed
graph whose nodes are the states of an APA: (p, (t, i), q) is the edge leading from
p to q and labelled by (t, i). The subgraph reachable from the node q0 is called
the reachability graph of an APA.

We used the Simple Homomorphism (SH) verification tool [20] to analyse the
functional component model for different concrete instantiations of the model.
The tool has been developed at the Fraunhofer-Institute for Secure Information
Technology. The applied specification method based on Asynchronous Product
Automata is supported by this tool. The tool manages the components of the
model, allows to select alternative parts of the specification and automatically
glues together the selected components to generate a combined model of the
APA specification. It provides components for the complete cycle from formal
specification to exhaustive validation as well as visualisation and inspection of
computed reachability graphs and minimal automata. The tool provides an ed-
itor to define homomorphisms on action languages, it computes corresponding
minimal automata [3] for the homomorphic images and checks simplicity of the
homomorphisms. If it is required to inspect some or all paths of the graph to
check for the violation of a security property, as it is usually the case for liveness
properties, then the tool’s temporal logic component can be used. Temporal logic
formulae can also be checked on the abstract behaviour (under a simple homo-
morphism). The method for checking approximate satisfaction of properties fits
exactly to the built-in simple homomorphism check [20].

www.manaraa.com

18 Andreas Fuchs, Roland Rieke

Computation of SoS Instance’s Behaviour. Starting with the analysis, we
define a representation of the component behaviour in preamble language of the
SH verification tool according to the use cases. Then for a first simple example,
we instantiated it twice – with a warning vehicle V1 and a vehicle that receives
the warning V2, similar to Fig. 6. After an initial state is selected, the reachability
graph is automatically computed by the SH verification tool. Fig. 7 shows the
reachability graph resulting from the analysis of the model instance in Fig. 6.
Please note that the tool prints the state q0 as M -1.

M-1
start:

M-7

M-8 M-12

M-9

M-10

M-11

M-13

M-2

M-4

M-6

M-3

M-5

V2_show

V1_sense

V1_pos

V2_pos

V2_pos

V1_pos V1_sense

V1_sense

V2_pos

V1_sense V1_pos

V1_pos

V2_rec

V2_pos

V2_pos

V1_send V2_rec

V1_send

V2_pos

Fig. 7. Reachability graph of SoS instance with two vehicles in the SH verification tool

5.4 Evaluating the Functional Dependence Relation

Starting from the model of the system components and their instantiations the
reachability analysis provides a graph with serialised traces of actions in the
system. In order to identify the minima of such a system, we look at the initial
state M-1 of the reachability graph. Every action that leaves the initial state
on any of the traces is obviously a minimum, because it does not functionally
depend on any other action to have occurred before. In order to identify the
maxima we investigate those actions leading to the dead state from any trace.
These actions do not trigger any further action after they have been performed.

Example 6 (The SH verification tool’s result for Example 5).
The minima of this analysis: The corresponding maxima:

M−1
V1 sense M−4
V1 pos M−3
V2 pos M−2

M−12 V2 show
M−13+
+++ dead +++

Since we now have identified the maxima and minima of the partial or-
der of functionally dependent actions, we must evaluate which of these maxima
have a functional dependence relation. For this simple example, it can easily
be seen from the reachability graph, that the maximum only occurs after all
the minima have occurred in each of the traces, i.e. the maximum depends

www.manaraa.com

Identification of Security Requirements by Functional Security Analysis 19

on all the identified minima. Accordingly, the simple example has the follow-
ing set of requirements: auth(V1 sense, V2 show , D2), auth(V1 pos, V2 show , D2),
auth(V2 pos, V2 show , D2).

5.5 Abstraction Based Verification Concept

Vehicle 1 Vehicle 2net1

Vehicle 3 Vehicle 4net2

Fig. 8. Model for SoS instance with four vehicles

In order to further demonstrate our approach for a more complex scenario, a
second example of a SoS instance that includes four vehicles – two pairs of two
vehicles, each pair within communication range but out of range from the other
pair, performing the same scenario each (V1 warns V2 and V3 warns V4) – can
be seen in Fig. 8 with the corresponding reachability graph in Fig. 9.
The minima of this analysis: The corresponding maxima:

M−1
V1 sense M−7
V3 sense M−6
V1 pos M−5
V2 pos M−4
V3 pos M−3
V4 pos M−2

M−168 V2 show
M−167 V4 show
M−169+
+++ dead +++

M-58

M-72

M-126

M-85

M-100M-114

M-147

M-20

M-26 M-43

M-46

M-35

M-50

M-83

M-96

M-142

M-110

M-121M-134

M-157

M-41

M-49 M-66

M-70

M-60

M-75

M-135

M-141

M-162

M-151

M-154M-160

M-168

M-94

M-104M-118

M-122

M-116

M-128

M-86

M-99

M-146

M-113

M-124M-136

M-159

M-44

M-51 M-68

M-73

M-61

M-77

M-111

M-120

M-155

M-133

M-140M-150

M-164

M-67

M-76 M-93

M-97

M-88

M-103M-115

M-125

M-158

M-137

M-145M-153

M-165

M-69

M-78 M-95

M-101

M-89

M-105

M-152

M-156

M-167

M-161

M-163M-166

M-169

M-119

M-129M-139

M-143

M-138

M-148

M-14

M-29

M-82

M-38

M-55 M-65

M-109

M-2 M-6

M-9

M-3

M-12

M-37

M-54

M-108

M-64

M-81 M-92

M-132

M-4

M-11 M-18

M-28

M-16

M-32 M-33

M-47

M-102

M-59

M-74 M-87

M-127

M-7

M-8 M-22

M-23

M-13

M-25

M-57

M-71

M-123

M-84

M-98M-112

M-144

M-17

M-24 M-40

M-45

M-34

M-48

M-36

M-53

M-107

M-63

M-80 M-91

M-131

M-5

M-10 M-21

M-27

M-15

M-31

M-62

M-79

M-130

M-90

M-106M-117

M-149

M-19

M-30 M-42

M-52

M-39

M-56

M-1
start:

V4_positionV3_positionV2_positionV1_position V3_senseV1_sense

V1_sense V3_senseV1_positionV2_positionV3_positionV4_position V1_sense V3_senseV1_positionV2_positionV4_position V3_position V1_sense V3_senseV1_positionV4_position V3_position V2_position V1_sense V3_senseV4_position V3_position V2_positionV1_positionV1_senseV4_position V3_position V2_position V1_position V3_sense

V3_senseV2_positionV3_position V1_position V1_senseV1_positionV2_positionV3_positionV1_sense V3_senseV2_positionV3_position V1_sense V3_senseV1_positionV3_position V1_sense V3_senseV1_positionV2_position V4_position V3_senseV2_position V1_position V4_position V1_senseV1_positionV2_position V3_sendV4_position V1_sense V3_senseV2_positionV4_position V1_sense V3_senseV1_position V4_position V3_position V3_senseV1_positionV4_position V3_position V1_senseV1_positionV4_position V3_position V1_sense V3_senseV4_position V3_position V2_position V3_senseV1_sendV4_position V3_position V2_position V1_senseV4_position V3_position V2_positionV1_position

V2_position V1_positionV3_positionV3_senseV3_position V1_position V3_senseV2_positionV1_position V3_senseV2_positionV3_position V1_send V1_senseV2_positionV3_position V1_senseV1_positionV3_position V1_senseV1_positionV2_position V3_sendV1_sense V3_senseV3_positionV1_sense V3_senseV2_positionV1_sense V3_senseV1_position V4_position V2_position V1_position V3_sendV4_position V3_senseV1_positionV4_position V3_senseV2_position V1_sendV4_position V1_senseV2_position V3_sendV4_position V1_senseV1_position V3_sendV4_position V1_senseV1_positionV2_position V4_recV4_position V1_sense V3_sense V4_position V3_position V1_positionV4_position V3_position V3_senseV1_sendV4_position V3_position V1_senseV4_position V3_position V2_position V1_sendV4_position V3_position V2_position V3_senseV2_rec

V1_positionV3_position V2_positionV3_position V1_sendV2_positionV1_position V3_sendV3_senseV1_position V3_senseV3_position V1_sendV3_senseV2_position V1_send V3_senseV2_positionV3_position V2_recV1_senseV3_positionV1_senseV2_position V3_sendV1_senseV1_position V3_send V1_senseV1_positionV2_position V4_recV1_senseV3_sense V4_position V1_position V3_sendV4_position V2_position V3_send V1_sendV4_position V2_position V1_position V4_recV4_position V3_senseV1_send V4_position V3_senseV2_position V2_recV4_position V1_senseV3_send V4_position V1_senseV2_position V4_recV4_position V1_senseV1_position V4_recV4_position V1_senseV1_positionV2_positionV4_position V3_position V1_sendV4_position V3_position V3_senseV2_recV4_position V3_position V2_positionV2_recV4_position V3_position V2_position V3_sense

V3_positionV1_send V1_position V3_sendV2_positionV1_send V3_send V2_position V3_positionV2_rec V2_positionV1_position V4_recV3_senseV1_send V3_senseV3_positionV2_rec V3_senseV2_positionV2_rec V3_senseV2_position V3_positionV1_sense V3_send V1_sense V2_positionV4_recV1_sense V1_position V4_rec V1_sense V1_positionV2_positionV4_warnV4_positionV3_sendV1_send V4_positionV1_position V4_rec V4_positionV2_positionV1_send V4_recV4_positionV2_position V3_sendV2_rec V4_positionV2_positionV1_positionV4_positionV3_senseV2_rec V4_positionV3_senseV2_position V4_positionV1_sense V4_rec V4_positionV1_sense V2_position V4_positionV1_sense V1_positionV4_positionV3_positionV2_recV4_positionV3_positionV3_senseV2_warn V4_positionV3_positionV2_position

V1_send V3_sendV3_positionV2_rec V1_position V4_recV2_position V3_sendV2_rec V2_positionV1_send V4_recV2_position V3_position V2_positionV1_position V4_warnV3_senseV2_recV3_sense V3_positionV2_warn V3_senseV2_position V1_sense V4_recV1_sense V2_positionV4_warnV1_sense V1_position V4_warnV1_sense V1_positionV2_positionV4_positionV1_send V4_recV4_positionV3_sendV2_rec V4_positionV1_positionV4_positionV2_position V4_recV2_rec V4_positionV2_positionV1_sendV4_positionV2_position V3_sendV4_positionV3_senseV2_warn V4_positionV1_senseV4_positionV3_positionV2_warn V4_positionV3_positionV3_sense

V3_sendV2_rec V1_send V4_recV3_positionV2_warn V1_position V4_warnV2_positionV2_rec V4_recV2_position V3_send V2_positionV1_send V4_warn V2_positionV1_positionV3_senseV2_warnV3_senseV3_position V1_sense V4_warnV1_sense V2_positionV1_senseV1_positionV4_positionV4_recV2_rec V4_positionV1_sendV4_positionV3_sendV2_warn V4_positionV2_positionV2_recV4_positionV2_position V4_recV4_positionV3_senseV4_positionV3_position

V2_rec V4_recV3_sendV2_warn V1_send V4_warnV3_position V1_positionV2_positionV4_rec V2_positionV2_rec V4_warn V2_positionV1_sendV3_sense V1_senseV4_positionV2_recV4_positionV4_recV2_warnV4_positionV3_send V4_positionV2_position

V4_recV2_warn V2_rec V4_warnV3_send V1_sendV2_positionV4_warn V2_positionV2_recV4_positionV2_warnV4_positionV4_rec

V2_warnV4_warnV4_rec V2_recV2_positionV4_position

V4_warnV2_warn

Fig. 9. Reachability graph of SoS instance with four vehicles in the SH verification tool

www.manaraa.com

20 Andreas Fuchs, Roland Rieke

Obviously, the reachability graph in Fig. 9 that is generated from the complex
scenario cannot be evaluated directly. However the technique of abstraction can
help us to identify if a given maximum functionally depends on a given minimum.

Behaviour abstraction of an APA can be formalised by language homomor-
phisms, more precisely by alphabetic language homomorphisms h : Σ∗ → Σ′∗.
By these homomorphisms certain transitions are ignored and others are re-
named, which may have the effect, that different transitions are identified with
one another. A mapping h : Σ∗ → Σ′∗ is called a language homomorphism if
h(ε) = ε and h(yz) = h(y)h(z) for each y, z ∈ Σ∗. It is called alphabetic, if
h(Σ) ⊂ Σ′ ∪ {ε}.

In order to analyse dependencies for each pair of maximum and minimum
in the graph in Fig. 9, we can now define alphabetic language homomorphisms
that will map every action except the given pairs of maximum and minimum to
ε. The computed abstract representations then provide a visualisation focussing
on the two actions, helping us to see directly, if the given maximum can occur
independent of the given minimum or if it depends on the minimum’s prior
occurrence.

Example 7. The minimal automaton computed from the reachability graph un-
der the homomorphism that preserves V1 sense and V2 show is depicted in
Fig. 10. This graph indicates a functional dependence relation between the given
maximum and minimum.

start
(V 1 sense) (V 2 show)

Fig. 10. Minimal automaton with maximum and minimum

The homomorphism preserving V1 sense and V4 show will result in the graph
depicted in Fig. 11 that indicates the given maximum and minimum not to have
a functional dependence relation.

start

(V 4 show) (V 1 sense)

(V 1 sense) (V 4 show)

Fig. 11. Minimal automaton with independent maximum and minimum

Following this approach, testing each of the maxima with each of the min-
ima for functional dependence, the complex scenario has the following set of
requirements (with the stakeholder of V4 to be driver D4 of course):

www.manaraa.com

Identification of Security Requirements by Functional Security Analysis 21

auth(V1 sense, V2 show , D2), auth(V1 pos, V2 show , D2),

auth(V2 pos, V2 show , D2), auth(V3 sense, V4 show , D4),

auth(V3 pos, V4 show , D4), auth(V4 pos, V4 show , D4).

6 Conclusion

The presented approach for deriving safety-critical authenticity requirements in
SoS solves several issues compared to existing approaches. It incorporates a clear
scheme that will ensure a consistent and complete set of security requirements.
Also it is based directly on the functional analysis, ensuring the safety of the
system at stake. The systematic approach that incorporates formal semantics
leads directly to the formal validation of security, as it is required by certain
evaluation assurance levels of Common Criteria (ISO/IEC 15408). Furthermore
the difficulties of designing SoS are specifically targeted.

Starting from this set of very high-level requirements, the security engineer-
ing process may proceed. This will include decisions regarding the mechanisms
to be included. Accordingly the requirements have to be refined to more concrete
requirements in this process. The design and refinement process may reveal fur-
ther requirements regarding the internals of the system that have to be addressed
as well.

Future work may include the derivation of confidentiality requirements in a
similar way as was presented here. Though this will require for different security
goals, as confidentiality is not related to safety in a similar way, but rather to
privacy. Non-Repudiation may also be a target that should be approached in co-
operation with lawyers in order to find the relevant security goals. Furthermore,
the refinement throughout the design process should be evaluated regarding
possibility of formalising it in schemes with respect to the security requirements
refinement process.

For the tool-assisted method in Sect. 5, traditional model checking tech-
niques allow a verification of SoS behaviour only for systems with very few
components. We are developing an abstraction based approach to extend our
current tool supported verification techniques to such families of systems that
are usually parameterised by a number of replicated identical components. In
[19] we demonstrated our technique by an exemplary verification of security and
liveness properties of a simple parameterised collaboration scenario. In [21] we
defined uniform parameterisations of phase based cooperations in terms of for-
mal language theory. For such systems of cooperations a kind of self-similarity
is formalised. Based on deterministic computations in shuffle automata a suffi-
cient condition for self-similarity is given. Under certain regularity restrictions
this condition can be verified by a semi-algorithm. For verification purposes, so
called uniformly parameterised safety properties are defined. Such properties can
be used to express privacy policies as well as security and dependability require-
ments. It is shown, how the parameterised problem of verifying such a property
is reduced by self-similarity to a finite state problem.

www.manaraa.com

22 Andreas Fuchs, Roland Rieke

Acknowledgments. Andreas Fuchs developed the work presented here in the
context of the project EVITA (ID 224275) being co-funded by the European
Commission within the Seventh Framework Programme. Roland Rieke developed
the work presented here in the context of the projects Alliance Digital Product
Flow (ADiWa) (ID 01IA08006F) and VOGUE (ID 01IS09032A) which are both
funded by the German Federal Ministry of Education and Research.

References

1. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.E.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Trans. Dependable Sec. Comput.
1(1), 11–33 (2004)

2. Bodeau, D.J.: System-of-Systems Security Engineering. In: In Proc. of the 10th
Annual Computer Security Applications Conference, Orlando, Florida. pp. 228–
235. IEEE Computer Society (1994)

3. Eilenberg, S.: Automata, Languages and Machines, vol. A. Academic Press, New
York (1974)

4. Firesmith, D.: Engineering security requirements. Journal of Object Technology
2(1), 53–68 (2003)

5. Fuchs, A., Rieke, R.: Identification of authenticity requirements in systems of
systems by functional security analysis. In: Workshop on Architecting Depend-
able Systems (WADS 2009), in Proceedings of the 2009 IEEE/IFIP Conference
on Dependable Systems and Networks, Supplementary Volume (2009), http:

//sit.sit.fraunhofer.de/smv/publications/
6. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Requirements engineer-

ing meets trust management: Model, methodology, and reasoning. In: In Proc. of
iTrust 04, LNCS 2995. pp. 176–190. Springer-Verlag (2004)

7. Group, T.C.: TCG TPM Specification 1.2 revision 103. www.trustedcomputing.org
(2006)

8. Gürgens, S., Ochsenschläger, P., Rudolph, C.: Authenticity and provability - a
formal framework. In: Infrastructure Security Conference InfraSec 2002. Lecture
Notes in Computer Science, vol. 2437, pp. 227–245. Springer Verlag (2002)

9. Haley, C.B., Laney, R.C., Moffett, J.D., Nuseibeh, B.: Security requirements engi-
neering: A framework for representation and analysis. IEEE Trans. Software Eng.
34(1), 133–153 (2008)

10. Hatebur, D., Heisel, M., Schmidt, H.: A security engineering process based on pat-
terns. In: Proceedings of the International Workshop on Secure Systems Method-
ologies using Patterns (SPatterns), DEXA 2007. pp. 734–738. IEEE Computer
Society (2007), http://www.ieee.org/

11. Hatebur, D., Heisel, M., Schmidt, H.: A pattern system for security requirements
engineering. In: Proceedings of the International Conference on Availability, Reli-
ability and Security (AReS). pp. 356–365. IEEE (2007), http://www.ieee.org/

12. Hatebur, D., Heisel, M., Schmidt, H.: Analysis and component-based realization
of security requirements. In: Proceedings of the International Conference on Avail-
ability, Reliability and Security (AReS). pp. 195–203. IEEE Computer Society
(2008), http://www.ieee.org/

13. van Lamsweerde, A.: Elaborating security requirements by construction of inten-
tional anti-models. In: ICSE ’04: Proceedings of the 26th International Conference
on Software Engineering. pp. 148–157. IEEE Computer Society, Washington, DC,
USA (2004)

www.manaraa.com

Identification of Security Requirements by Functional Security Analysis 23

14. Liu, L., Yu, E., Mylopoulos, J.: Analyzing security requirements as relationships
among strategic actors. In: 2nd Symposium on Requirements Engineering for In-
formation Security (SREIS’02) (2002)

15. Mead, N.R.: How To Compare the Security Quality Requirements Engineering
(SQUARE) Method with Other Methods . Tech. Rep. CMU/SEI-2007-TN-021,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (2007)

16. Mead, N.R., Hough, E.D.: Security requirements engineering for software systems:
Case studies in support of software engineering education. In: CSEET ’06: Pro-
ceedings of the 19th Conference on Software Engineering Education & Training.
pp. 149–158. IEEE Computer Society, Washington, DC, USA (2006)

17. Mellado, D., Fernández-Medina, E., Piattini, M.: A common criteria based secu-
rity requirements engineering process for the development of secure information
systems. Comput. Stand. Interfaces 29(2), 244–253 (2007)

18. Ochsenschläger, P., Repp, J., Rieke, R.: Abstraction and composition – a verifi-
cation method for co-operating systems. Journal of Experimental and Theoretical
Artificial Intelligence 12, 447–459 (June 2000), http://sit.sit.fraunhofer.de/
smv/publications/, copyright: c©2000, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

19. Ochsenschläger, P., Rieke, R.: Abstraction based verification of a parameterised
policy controlled system. In: International Conference ”Mathematical Methods,
Models and Architectures for Computer Networks Security” (MMM-ACNS-7).
CCIS, vol. 1. Springer (September 2007), http://sit.sit.fraunhofer.de/smv/
publications/, Springer

20. Ochsenschläger, P., Repp, J., Rieke, R., Nitsche, U.: The SH-Verification Tool
Abstraction-Based Verification of Co-operating Systems. Formal Aspects of Com-
puting, The International Journal of Formal Method 11, 1–24 (1999)

21. Ochsenschläger, P., Rieke, R.: Uniform parameterisation of phase based coop-
erations. Tech. Rep. SIT-TR-2010/1, Fraunhofer SIT (2010), http://sit.sit.

fraunhofer.de/smv/publications/
22. Papadimitratos, P., Buttyan, L., Hubaux, J.P., Kargl, F., Kung, A., Raya, M.:

Architecture for Secure and Private Vehicular Communications. In: IEEE Interna-
tional Conference on ITS Telecommunications (ITST). pp. 1–6. Sophia Antipolis,
France (June 2007)

23. Ruddle, A., Ward, D., Weyl, B., Idrees, S., Roudier, Y., Friedewald, M., Leimbach,
T., Fuchs, A., Grgens, S., Henniger, O., Rieke, R., Ritscher, M., Broberg, H.,
Apvrille, L., Pacalet, R., Pedroza, G.: Security requirements for automotive on-
board networks based on dark-side scenarios. EVITA Deliverable D2.3, EVITA
project (2009), http://evita-project.org/deliverables.html

24. Sadeghi, A.R., Stüble, C.: Property-based attestation for computing platforms:
caring about properties, not mechanisms. In: NSPW ’04: Proceedings of the 2004
workshop on New security paradigms. pp. 67–77. ACM, New York, NY, USA (2004)

25. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and implementation of
a TCG-based integrity measurement architecture. In: Proceedings of the 13th
USENIX Security Symposium. USENIX Association (2004)

26. Schaub, F., Ma, Z., Kargl, F.: Privacy requirements in vehicular communica-
tion systems. In: IEEE International Conference on Privacy, Security, Risk, and
Trust (PASSAT 2009), Symposium on Secure Computing (SecureCom09). Vancou-
ver, Canada (08/2009 2009), http://doi.ieeecomputersociety.org/10.1109/

CSE.2009.135
27. Shirey, R.: Internet Security Glossary, Version 2. RFC 4949 (Informational) (Aug

2007), http://www.ietf.org/rfc/rfc4949.txt

www.manaraa.com

www.manaraa.com

P6
A T R U S T E D I N F O R M AT I O N A G E N T F O R S E C U R I T Y
I N F O R M AT I O N A N D E V E N T M A N A G E M E N T

Title A Trusted Information Agent for Security In-
formation and Event Management

Authors Luigi Coppolino, Michael Jäger, Nicolai
Kuntze and Roland Rieke

Publication In ICONS 2012, The Seventh International Con-
ference on Systems, February 29 - March 5, 2012
- Saint Gilles, Reunion Island, pages 6–12.

ISBN/ISSN ISBN 978-1-61208-184-7

URL http://www.thinkmind.org/index.php?

view=article&articleid=icons_2012_1_

20_20062.

Status Published

Publisher IARIA

Publication Type ThinkMind(TM) Digital Library

Copyright 2012, IARIA

Contribution of
Roland Rieke

Main Author; specific contribution is the elic-
itation and analysis of the security require-
ments for the critical infrastructure.

Table 11: Fact Sheet Publication P6

Publication P6 [Coppolino, Jäger, Kuntze & Rieke, 2012] addresses
the following research question:

RQ3 How can security requirements for cooperating systems be elicited
systematically?

This paper demonstrates on an example of a critical infrastructure -
a hydroelectric power plant - how security requirements for such SoS

can be derived by application of the requirements elicitation method
described in P5. The elicited requirements provide implications for
the design of the security architecture which - in this case - leads to
the application of trusted computing technology.

265

http://www.thinkmind.org/index.php?view=article&articleid=icons_2012_1_20_20062
http://www.thinkmind.org/index.php?view=article&articleid=icons_2012_1_20_20062
http://www.thinkmind.org/index.php?view=article&articleid=icons_2012_1_20_20062

www.manaraa.com

A Trusted Information Agent for Security Information and Event Management

Luigi Coppolino
Epsilon S.r.l.,
Naples, Italy

luigi.coppolino@epsilonline.com

Michael Jäger
Technische Hochschule Mittelhessen

Giessen, Germany
michael.jaeger@mni.thm.de

Nicolai Kuntze and Roland Rieke
Fraunhofer Institute for

Secure Information Technology
Darmstadt, Germany

{nicolai.kuntze,roland.rieke}@sit.fraunhofer.de

Abstract—This paper addresses security information man-
agement in untrusted environments. A security information
and event management system collects and examines security
related events and provides a unifying view of the monitored
system’s security status. The sensors, which provide the event
data, are typically placed in a non-protected environment
at the boarder of the managed system. They are exposed
to various kinds of attacks. Compromised sensors may lead
to misjudgement on the system’s state with possibly serious
consequences. The particular security requirements arising
from these problems are discussed for large scale critical in-
frastructures. The main contribution of this paper is a concept
that provides trusted event reporting. Critical event sources
are holistically protected such that authenticity of the security
related events is guaranteed. This enables better assessment
of the managed system’s reliability and trustworthiness. As
a proof of this concept, the paper presents an exemplary
realisation of a trustworthy event source.

Keywords-reliability aspects of security information and event
management systems; trusted event reporting; trusted android
application; critical infrastructure protection.

I. INTRODUCTION

Security information and event management (SIEM)
systems provide important security services. They collect
and analyse data from different sources, such as sensors,
firewalls, routers or servers, and provide decision support
based on anticipatory impact analysis. This enables adequate
response to attacks as well as impact mitigation by adaptive
configuration of countermeasures. The project MASSIF [1],
a large-scale integrating project co-funded by the European
Commission, addresses these challenges with respect to
four industrial domains: (i) the management of the Olympic
Games information technology (IT) infrastructure [2]; (ii)
a mobile phone based money transfer service, facing high-
level threats such as money laundering; (iii) managed IT
outsource services for large distributed enterprises; and (iv)
an IT system supporting a critical infrastructure (dam) [3].

Common to these use cases is the requirement to prove
that a measured value has been acquired at a certain
time and within a specified “valid” operation environment.
Authenticity of such measures can only be assured together
with authentication of the used device itself, it’s configuration,
and the software running at the time of the event.

In geographically dispersed infrastructures, various equip-
ment, including the critical sources of event data, is often

placed in non-protected environments. Therefore, attackers
are able to access and manipulate this equipment with relative
ease[4].

Proposition 1. When physical access to the sensoring devices
cannot be inhibited, an effective security solution must
address detection of manipulations.

Manipulated equipment can be used to hide critical condi-
tions, generate false alerts, and in general cause misjudgement
on system’s state. Wrong assumptions about a system’s state
in turn can lead to false decisions with severe impact on the
overall system.

Proposition 2. Whenever a certain control decision is made,
the input information that presumably led to it must be
authentic.

As a consequence, the system has to assure that all safety
critical actions using sensor data must only use authentic
sensor data. The question, which measurements and system
control decisions are critical to the overall system behaviour,
cannot be answerded independently of the concrete system
and application context determined.

Proposition 3. A risk assessment of the deployed monitoring
capabilities is necessary.

Contribution: By means of a representative example,
namely a hydroelectric power plant in a dam, we analyse
security threats for critical infrastructures and justify the
relevance of the postulated propositions for adequate security
requirements. Further, the paper presents both, a concept and
a prototypical implementation for trustworthy event reporting.
Digital signatures obviously can provide authenticity and
integrity of recorded data [5]. However, a signature gives no
information on the status of the measurement device at the
time of measurement. Our solution, the trusted information
agent (TIA), is based on trusted computing technology [6]
and integrates industry approaches to the attestation of event
reporter states. This approach provides a certain degree of
trustworthiness and non-repudiation for the collected events,
which can be used as a basis for risk assessment according
to Proposition 3.

The paper is structured as follows. Section II gives an
overview of the related work. In Section III we introduce the

6Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

www.manaraa.com

exemplary application scenario. We then elicit a number of
specific security requirements from the application scenario
and justify the propositions for our concept in Section IV.
Based on these requirements, we address a solution for our
propositions and describe the concept and a prototypical
implementation of a trusted information agent in Section V.
Finally, the paper ends with conclusions and an outlook in
Section VI.

II. RELATED WORK

The paper addresses the integration of Trusted Computing
concepts into SIEM systems for critical infrastructures based
on examples from a hydroelectric power plant in a dam.

Security information and event management technology
provides log management and compliance reporting as
well as real-time monitoring and incident management for
security events from networks, systems, and applications.
Current SIEM systems’ functionalities are discussed in
[7]. SIEM systems manage security events but are not
concerned with the trustworthiness of the event sources.
Security requirements analysis and an authenticity concept for
event sources is, however, the main topic of this paper. The
specification of the application level security requirements
is based on the formal framework developed by Fraunhofer
SIT [8]. In this framework, systems are specified in terms of
sequences of actions and security properties are constraints
on these sequences. Applying the methods of this framework,
we derive security requirements for the event sources in the
dam scenario.

Dam monitoring applications with automated data acqui-
sition systems (ADAS) are discussed in [9], [10]. Usually,
an ADAS is organised as a supervisory control and data
acquisition (SCADA) system with a hierarchical organisation.
Details on SCADA systems organisation can be found in
[11], [12]. In the majority of cases, SCADA systems have
very little protection against the escalating cyber threats.

Compared to traditional IT systems, securing SCADA
systems poses unique challenges. In order to understand
those challenges and the potential danger, [4] provides a
taxonomy of possible cyber attacks including cyber-induced
cyber-physical attacks on SCADA systems.

Trusted Computing technology standards provide methods
for reliably verifying a system’s integrity and identifying
anomalous and/or unwanted characteristics [6]. An approach
for the generation of secure evidence records was presented
in [13]. This approach, which is the basis for our proof-of-
concept implementation, makes use of established hardware-
based security mechanisms for special data recording devices.
Our communication protocols extend the Trusted Network
Connect (TNC) [14] protocol suite. We use the open source
implementation of IF-MAP presented in [15].

III. APPLICATION SCENARIO

Our analysis of security threats for critical infrastructures
is based on examples from a hydroelectric power plant in a

dam. The dam scenario is typical for critical infrastructures in
many respects. On the one hand, it is a layered system with
intra- and cross-layer dependencies, and, on the other hand,
there are various other sources of complexity; several distinct
functionalities influence controlling and monitoring activities.
Moreover, different components, mechanisms, and operative
devices are involved, each one with different requirements
in terms of produced data and computational loads.

A dam might be devised for a multitude of purposes and its
features are strictly related to the aims it is built for, e.g., food
water supplying, hydroelectric power generation, irrigation,
water sports, wildlife habitat granting, flow diversion, or
navigation. Since a dam is a complex infrastructure, a
huge number of parameters must be monitored in order
to guarantee safety and security. Which parameters are
actually monitored, depends on the dam’s structure and
design (earthfill, embankment or rockfill, gravity, concrete
arch, buttress), the purpose (storage, diversion, detention,
overflow), and the function (hydroelectric power generation,
water supply, irrigation).

Table I
DAM INSTRUMENTATION SENSORS

Sensor Parameter or physical event
Water level sensor (WLS) Current water level (wl)
Inclinometer/Tiltmeter (T M) Earth or wall inclination or tilt (tm)
Crackmeter (CM) Wall/rock crack enlargement (cm)
Jointmeter (JM) Joint shrinkage (jm)
Piezometer Seepage or water pressure
Pressure cell Concrete or embankment pressure
Turbidimeter Fluid turbidity
Thermometer Temperature

Table I lists some of the most commonly employed
sensors together with a brief explanation of their usage. The
heterogeneity of currently used devices is a relevant challenge
in the dam process control: they range from old industrial
control systems, designed and deployed over the last 20
years and requiring extensive manual intervention by human
operators, to more recently developed systems, conceived
for automatic operations (SCADA). Indeed, the trend of
development is toward increasingly automated dam control
systems. While automation leads to more efficient systems
and also prevents operating errors; on the downside, it poses
a limit to human control in situations, where an operator
would possibly foresee and manually prevent incidents.

Modern automated systems support remote management
and also provide for centralised control of multiple infras-
tructures. As an example, the Terni hydroelectric complex,
located about 150 Km in the north of Rome, is composed by
16 hydroelectric power plants, three reservoirs (Salto, Turano
and Corbara), and one pumping plant, all of them supervised
by a single remote command post located at Villa Valle.

As a severe disadvantage, increased automation and remote

7Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

www.manaraa.com

Table II
SECURITY RELATED SCENARIOS AND THE RESPECTIVE MONITORING

Monitored Event Impact Detection
Changes in the
flow levels of the
seepage channels

Seepages always affect dams (whatever their structure and design are). Seepage
channels are monitored to evaluate the seepage intensity. A sudden change in
flow levels could show that the structure is subject to internal erosion or to
piping phenomena. This event can be the cause of dam cracks and failures

By inserting into the channel a weir with a
known section the depth of water (monitored
by using a water level sensor) behind the
weir can be converted to a rate of flow.

Gates opening Intake gates are opened to release water on a regular basis for water supply,
hydroelectricity generation, etc. Moreover spillways gates(aka overflow
channels) release water (during flood period) so that the water does not overtop
and damage or even destroy the dam. Gates opening must be operated under
controlled conditions since it may result in: i) Flooding of the underlying areas;
ii) Increased rate of flow in the downstream that can ultimately result in a
catastrophic flooding of down-river areas.

A tiltmeter (angle position sensor) can be
applied to the gate to measure its position
angle.

Changes in the tur-
bine/infrastructure
vibration levels

Increased vibrations of the infrastructure or the turbines in a hydro-powerplant
can anticipate a failure of the structure. Possible reasons for such event include:
i) earthquakes (Fukushima, Japan, a dam failure resulted in a village washed
away); ii) unwanted solicitations to the turbines (Sayano-Shushenskaya, Siberia,
75 dead due to a failure of the turbines in a hydro-powerplant).

Vibration sensors can be installed over
structures or turbines to measure the stress
level they are receiving.

Water levels
overtake the alert
thresholds

Spillway are used to release water when the reservoir water level reaches alert
thresholds. If this does not happen the water overtops the dam resulting in
possible damage to the crest of the dam (Taum Sauk hydroelectric power
station).

This event can be used to detect unexpected
discharges. Water level can also be correlated
to other parameters to detect anomalous
behaviour (e.g., not revealed gate opening).

control raise a new class of security-induced safety issues, i.e.,
the possibility that cyber attacks against the IT layer of the
dam ultimately result in damage to people and environment.

Dam monitoring aims towards identifying anomalous
behaviour related to the infrastructure. Table II summarises
a list of possible scenarios illustrating the necessity of
monitoring specific parameters.

IV. SECURITY REQUIREMENTS ANALYSIS

We use a model-based approach to systematically identify
security requirements for the dam application scenario.
Specifically, authenticity can be seen as the assurance
that a particular action has occurred in the past. For a
formal specification of the application-level authenticity
requirements, we use Definition 1, which is taken from [8].

Definition 1. auth(a,b,P): Whenever an action b happens,
it must be authentic for an Agent P that in any course of
events that seem possible to him, a certain action a has
happened.

In [8] a security modelling framework (SeMF) for the
formal specification of security properties was presented.
Requirements are defined by specific constraints regarding
sequences of actions than can or can not occur in a system’s
behaviour. Actions in SeMF represent an abstract view on ac-
tions of the real system, which models the interdependencies
between actions and ignores their functionality. An action is
specified in a parameterised format, consisting of the action’s
name, the acting agent and a variable set of parameters:

actionName(actingAgent, parameter1, parameter2, ...)

Table III lists the dam scenario actions used for our security
requirements analysis.

Table III
DAM ACTIONS

Action Description
sense(WLS,wl) Measurement of the water level.
sense(T M, tm) Measurement of the tilt.
sense(CM,cm) Measurement of the crack enlargement.
sense(JM, jm) Measurement of the joint shrinkage.
sense(PP, power) Measurement of voltage and current

in the power grid. The power plant PP
sends commands ppc to the dam control
station depending on these measurements.

sense(SDC,wdc) Measurement of the water discharge
on the penstock gates PG.

sense(PG,open) Reporting of the state of the penstock gates.
display(DCS,X) Display X at the dam control station,

with X ∈ {wl, tm,cm, jm, ppc,wdc,open}.
activate(Admin,cmd) Decision of the administrator, which

command shall be triggered.
exec(PG,cmd) Command to be executed by penstock gates.

We now analyse some possible misuse cases, which have
been reported in the scenario deliverable [16] of the MASSIF
project.

Water level sensor compromise: The attacker takes
control of the water level sensors and uses them to send
spoofed measurements to the dam control station (DCS). This
hides the real status of the reservoir to the dam administrator
(Admin). In this way, the dam can be overflown without
alarms being raised by the monitoring system.

From this, we get the requirement that the water level
measures have to be authentic for the administrator when
they are displayed at the dam control station. More formally,

8Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

www.manaraa.com

we get the authenticity requirement:

auth(sense(WLS,wl),display(DCS,wl),Admin) (1)

Tiltmeter compromise: The attacker takes control of the
tiltmeter sensors and uses them to send false measurements
to the dam control station, thus hiding the real status of the
tilt of the dam’s walls to the dam administrator. An excessive
tilt may lead to the wall’s failure. The respective authenticity
requirement is:

auth(sense(T M, tm),display(DCS, tm),Admin) (2)

Crackmeter / jointmeter compromise: The attacker has
access to one of the crackmeters or jointmeters deployed
across the dam’s walls and takes control of it. So the attacker
can weaken the joint or increase the size of the crack at
the wall’s weak point without any alarm being raised at the
monitoring station, which leads to the following authenticity
requirements:

auth(sense(CM,cm),display(DCS,cm),Admin) (3)
auth(sense(JM, jm),display(DCS, jm),Admin) (4)

These examples show that some elementary security
requirements can be derived directly from misuse cases. In
general, however, information flows between systems and
components are highly complex, especially when organi-
sational processes need to be considered. Hence, not all
security problems are discoverable easily. In order to achieve
the desired security goals, security requirements need to be
derived systematically.

An important aspect of a systematic security evaluation
is the analysis of potential information flows. A method to
elicit authenticity requirements by analysis of functional
dependencies is described in [17]. From the use case
descriptions, atomic actions are derived and set into relation
by defining the functional flow among them. The action-
oriented approach considers possible sequences of actions
(control flow) and information flow (input/output) between
interdependent actions. Actions of interest are specifically
the boundary actions, which represent the interaction of the
system’s internals with the outside world. From a functional
dependency graph, the boundary actions can be identified.
We now give an example of security information flows by a
use case of the dam scenario [16].

On demand electric production: The Dam Control
Station feeds an hydroelectric turbine, connected to the dam
by means of penstocks, for producing electric power on
demand. The turbine and hydroelectric power production
depends on the water discharge in the penstocks. By analysing
the parameters of the command received by the dam control
station, we can infer that the safety critical actions are the
opening and closing actions of the penstock gates (PG).

An identification of functional dependencies reveals that
the dam control activity makes use of the (i) current water

level, (ii) the state of the gates joined to the hydroelectric
power plant, (iii) the gates openness, and, (iv) the discharge
through the penstocks. Figure 1 shows the dependency
graph of this use case. The decision of the administrator,
which command shall be triggered, depends on the displayed
measurements. The dashed line indicates that there is no
direct functional dependency.

Dam PenstockPower Plant

Dam Control Station

sense(WLS,wl) sense(PP, power) sense(SDC,wdc)

sense(PG,open)

exec(PG,cmd)

display(DCS,{wl, ppc,wdc,open})

activate(Admin,cmd)
Admin

Figure 1. Functional dependencies: On demand electric production

An analysis of the dependencies depicted in Figure 1 leads
to the following conclusion: The control display values are
derived from the measurements of wl, power, wdc, and open.
From this, we conclude that, in addition to the water level
wl (1), the measurements of power, wdc, and open have to
be authentic. More formally:

auth(sense(PP, power),display(DCS, ppc),Admin) (5)
auth(sense(SDC,wdc),display(DCS,wdc),Admin) (6)
auth(sense(PG,open),display(DCS,open),Admin) (7)

Furthermore, the activation of the penstock command by
the administrator has to be authentic for the penstock gate
when executing it.

auth(activate(Admin,cmd),exec(PG,cmd),PG) (8)

So the authenticity requirements for the use case described
in Figure 1 are given by: (1) and (5)–(8).

In summary, the analysis of the use case and misuse cases
of this critical infrastructure scenario shows that the overall
function of the system requires authenticity of measurement
values for several sensors, namely (1) – (7). In that sense,
the dam scenario is a prime example for the relevance of the
requirements postulated in Proposition 1 and 2. It is evident
that further types of security requirements are needed in order
to cover important liveness properties such as availability
of necessary information at a certain place and time. In
some cases also confidentiality of certain information may
be required. These requirements are important but not in the
scope of the work presented here.

9Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

www.manaraa.com

V. TRUSTED INFORMATION AGENT

The usefulness of monitoring large systems clearly depends
on the observer’s level of confidence in the correctness
of the available monitoring data. In order to achieve that
confidence, network security measures and provisions against
technical faults are not enough. As stated above, unrevealed
manipulation of monitoring equipment can lead to serious
consequences. In order to improve the coverage of this type
of requirements in a SIEM framework, we now describe
a concept and a prototypical implementation of a trusted
information agent (TIA).

A. Trust Anchor and Architecture

As shown in Section IV, protection of the identity of the
device for measurement collection is necessary. Furthermore,
the lack of control on the physical access to the sensor node
induces strong requirements on the protection level.

By a suitable combination of hardware- and software-
level protection techniques any manipulations of a sensor
have to be revealed. In addition to the node-level protection,
network security measures are needed in order to achieve
specification-conformant behaviour of the sensor network,
e.g., secure communication channels that protect data against
tampering. This paper is not intended to discuss network
security, neither protection of hardware components. We
rather concentrate on the important problem of clandestine
manipulations of the sensor software.

A commonly used technique to reveal manipulation
of a software component is software measurement: Each
component is considered as a byte sequence and thus
can be measured by computing a hash value, which is
subsequently compared to the component’s reference value.
The component is authentic, if and only if both values are
identical. Obviously, such measurements make no sense if the
measuring component or the reference values are manipulated
themselves. A common solution is to establish a chain of
trust: In a layered architecture, each layer is responsible for
computing the checksums of the components in the next
upper layer. At the very bottom of this chain a dedicated
security hardware chip takes the role of the trust anchor or
“root of trust”.

Trusted Computing [6] offers such a hardware root of trust
providing certain security functionalities, which can be used
to reveal malicious manipulations of the sensors in the field.
Trusted Computing technology standards provide methods
for reliably checking a system’s integrity and identifying
anomalous and/or unwanted characteristics. A trusted system
in this sense is build on top of a Trusted Platform Module
(TPM) as specified by the Trusted Computing Group (TCG).
A TPM is hardened against physical attacks and equipped
with several cryptographic capabilities like strong encryption
and digital signatures. TPMs have been proven to be much
less susceptible to attacks than corresponding software-only
solutions.

The key concept of Trusted Computing is the extension of
trust from the TPM to further system components. This
concept is commonly used to ensure that a system is
and remains in a predictable and trustworthy state and
thus produces authentic results. As described above, each
layer of the chain checks the integrity of the next upper
layer’s programs, libraries, etc. On a PC, for example, the
TPM has to check the BIOS before giving the control of
the boot-process to it. The BIOS then has to verify the
operating system kernel, which in turn is responsible for
the measurement of the next level. Actually, a reliable and
practically useful implementation for PCs and systems of
similar or higher complexity is not yet feasible. Sensoring and
measuring devices, however, typically have a considerably
more primitive architecture than PCs and are well-suited for
this kind of integrity check concept. Even for modern sensor-
equipped smartphones, able to act as event detectors, but
having the same magnitude of computing power that PCs had
a few years ago, an implementation of the presented concept
is possible. A prototypical implementation is presented in
more detail now.

B. Proof of Concept: Base Measure Aquisition

Figure 2 depicts the architecture of the TIA.

GPS
Time

Authority
Privacy CA

Evidence

Generator

IF–MAP

Server

State

Visualiser

Location Trusted Time

Network State

AIK
Trusted Time

Signed Evidence

AIK

Figure 2. TIA architecture

The main component of the TIA is the evidence generator
(EG), which collects base measures and provides the mea-
surement functions used to produce derived measures. Fur-
thermore, the EG supports the processing of measures from
external sensors, e.g., location data from a GPS module. The
EG is expected to operate in unprotected environments with
low physical protection and externally accessible interfaces
such as wireless networks and USB access for maintenance.
A necessary precondition to guarantee authenticity of the
measures, is a trustworthy state of the measurement device.
To meet this requirement, the EG is equipped with a TPM
as trust anchor and implements a chain of trust [18]. As
explained above, revelation of software manipulations is
based on the comparison between the software checksums
and the corresponding reference values. This comparison
may be done locally within the node (self-attestation) or by
a remote verifier component (remote attestation) [6].

The EG submits the collected measures digitally signed to
an IF-MAP [14] server, which acts as an event information
broker. During initialisation, the EG obtains two credentials

10Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

www.manaraa.com

EG

TPM

PCA TA

verify AIK

sign AIK / mark invalid

unsigned AIK

signed/invalid AIK

generate Tickstamp

verify tickstamp

signed tickstamp

sign tickstamp

generate evidence

generate AIK

acquire base measure

ONLY AT BOOT TIME

unsigned tickstamp

Figure 3. Process model

from trusted third-party services for signature purposes.
Figure 3 depicts the boot-time interaction between the EG
and those services, and the role of the TPM in this interaction.

An Attestation Identity Key (AIK) is used to sign measure-
ment results in a manner that allows verification by a remote
party. The Privacy Certification Authority (PCA) issues a
credential for the TPM-generated AIK. The certified AIK is,
henceforth, used as an identity for this platform. According to
TCG standards, AIKs cannot only be used to attest origin and
authenticity of a trust measurement, but also, to authenticate
other keys and data generated by the TPM. However, the
AIK functionality of a TPM is designed primarily to support
remote attestation by signing the checksums of the EG’s
software components, while signing arbitrary data is, in fact,
not directly available as a TPM operation. We have shown
elsewhere, how to circumvent this limitation [19]. Hence, we
are able to use TPM-signatures for arbitrary data from the
EG’s sensors.

Any TPM is equipped with an accurate timer. Each event
signature includes the current timer value. However, the
TPM timer is a relative counter, not associated to an absolute
time. A time authority (TA) issues a certificate about the
correspondence between a TPM timestamp (tickstamp) and
the absolute time. The combination of tickstamp and TA-
certificate can be used as a trusted timestamp. Alternatively,
another trusted time source, such as GPS, could have been
used.

Putting it all together, a measurement record includes
arbitrary sensor data, a TA-certified time stamp, and a hash
value of the EG’s software components. The record itself is
signed by the TA-certified AIK.

Figure 4 shows a prototype EG, which has been imple-

mented based on the Android smartphone platform. This
platform has been selected for various reasons. Modern
smartphones are equipped with a variety of sensors such
as GPS, gyro sensor, electronic compass, proximity sensor,
accelerometer, barometer, and ambient light sensor. Further-
more, photos, video and sound can be regarded and processed
as event data. Moreover, Android is well-suited as a software
platform for future embedded devices.

The TPM-anchored chain of trust is extended to the linux
system and linux application layers by using the Integrity
Measurement Architecture (IMA), which is integrated into
any stock linux kernel as a kernel module. The Android
application layer is based on libraries and the Dalvik Virtual
Machine (VM). While the linux kernel layer can check the
Android system libraries and the VM, Android applications
run on top of the VM and are invisible to the kernel. Thus,
we built a modified VM, which extends the chain of trust to
the Android application level by computing the applications’
checksums. A timestamp-based variant of remote attestation
provided by the TPM is used for the verification of the node
authenticity. All communication is based on the Trusted
Network Connect (TNC) [14] protocol suite, which offers
advanced security features, such as dedicated access control
mechanisms for TPM-equipped nodes.

Enhanced Android Platform

Extended Dalvik VM

Java TPM Access Library

(JTSS)

TPM Access Library

IF-MAP

Client Library

for Android

Linux Kernel

IF-MAP Server

Trusted Network

Connect / IF-MAP

Remote

Attestation (TPM)

Chain of

Trust (IMA)

Trusted Computing

Group Standards

Kernel Module

uses

API for
Metadata
Exchange

Open
Source
Impl.

conforms to

Early TCG Standard

Part of TNC Standard

Figure 4. Technical building blocks

VI. CONCLUSION AND FUTURE WORK

In geographically dispersed infrastructures the critical
sources of event data are often placed in non-protected
environments. Attackers can thus easily manipulate these

11Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

www.manaraa.com

sensors and thereby hide critical conditions, generate false
alerts, and in general cause misjudgement on system’s state.
By exemplary analysis of a typical application scenario we
have demonstrated that this can lead to false decisions with
severe impact on the overall system. In order to prevent such
threats, we presented a concept for holistically protected
critical event sources by assuring a trustworthy state of the
measurement devices. This enables better assessment of the
managed system’s reliability and trustworthiness.

As a proof of this concept, the paper presented an
exemplary realisation of a trusted information agent based on
trusted computing technology. Planned next steps include a
detailed analysis on the impact on scalability and bandwidth
of different schemes to generate evidence using this architec-
ture. Especially, the correlation of independent events may
allow for improvements but also requires trustworthy schemes
to cryptographically link various events to one evidence
record. Also, the hardware-based security functionalities can
be improved with respect to scalability and performance.
Further, suggestions to improve standards for future hardware
security modules, are planned.

ACKNOWLEDGEMENT

Luigi Coppolino and Roland Rieke developed the work
presented here in the context of the project MASSIF (ID
257475) being co-funded by the European Commission
within FP7. Nicolai Kuntze developed the work presented
here in the context of the project ESUKOM (ID 01BY1052)
which is funded by the German Federal Ministry of Education
and Research.

REFERENCES

[1] “Project MASSIF website,” 2012. [Online]. Available:
http://www.massif-project.eu/

[2] E. Prieto, R. Diaz, L. Romano, R. Rieke, and M. Achemlal,
“MASSIF: A promising solution to enhance olympic games
IT security,” in International Conference on Global Security,
Safety and Sustainability (ICGS3 2011), 2011.

[3] L. Coppolino, S. D’Antonio, V. Formicola, and L. Romano,
“Integration of a System for Critical Infrastructure Protection
with the OSSIM SIEM Platform: A dam case study,” in SAFE-
COMP, ser. Lecture Notes in Computer Science, F. Flammini,
S. Bologna, and V. Vittorini, Eds., vol. 6894. Springer, 2011,
pp. 199–212.

[4] B. Zhu, A. Joseph, and S. Sastry, “Taxonomy of Cyber Attacks
on SCADA Systems,” in Proceedings of CPSCom 2011: The
4th IEEE International Conference on Cyber, Physical and
Social Computing, Dalian, China, 2011.

[5] J. Choi, I. Shin, J. Seo, and C. Lee, “An efficient message au-
thentication for non-repudiation of the smart metering service,”
Computers, Networks, Systems and Industrial Engineering,
ACIS/JNU International Conference on, vol. 0, pp. 331–333,
2011.

[6] C. Mitchell, Trusted Computing. Iet, 2005.

[7] M. Nicolett and K. M. Kavanagh, “Magic Quadrant for Secu-
rity Information and Event Management,” Gartner Reasearch,
May 2010.

[8] S. Gürgens, P. Ochsenschläger, and C. Rudolph, “Authenticity
and provability - a formal framework,” in Infrastructure
Security Conference InfraSec 2002, ser. LNCS, vol. 2437.
Springer, 2002, pp. 227–245.

[9] M. Parekh, K. Stone, and J. Delborne, “Coordinating intelligent
and continuous performance monitoring with dam and levee
safety management policy,” in Association of State Dam Safety
Officials,Proceedings of Dam Safety Conference 2010, 2010.

[10] B. K. Myers, G. C. Dutson, and T. Sherman, “Utilizing
Automated Monitoring for the Franzen Reservoir Dam Safety
Program,” in 25th USSD Annual Meeting and Conference
Proceedings (2005).

[11] L. Coppolino, S. D’Antonio, and L. Romano, “Dependability
and resilience of computer networks (scada cybersecurity),”
in CRITICAL INFRASTRUCTURE SECURITY: Assessment,
Prevention, Detection, Response. WIT press, in press.

[12] L. Coppolino, S. D’Antonio, L. Romano, and G. Spagn-
uolo, “An intrusion detection system for critical information
infrastructures using wireless sensor network technologies,”
in Critical Infrastructure (CRIS), 2010 5th International
Conference on, sept. 2010, pp. 1 –8.

[13] J. Richter, N. Kuntze, and C. Rudolph, “Security Digital
Evidence,” in 2010 Fifth International Workshop on Systematic
Approaches to Digital Forensic Engineering. IEEE, 2010,
pp. 119–130.

[14] T. C. Group, “TCG Trusted Network Connect – TNC IF-MAP
Binding for SOAP Version 2.0,” www.trustedcomputing.org,
2010.

[15] J. v. H. I. Bente, J. Vieweg, “Towards Trustworthy Networks
with Open Source Software,” in Horizons in Computer Science
Volume 3. Nova Science Publishers Inc., T. S. Clary (Eds.),
2011.

[16] M. Llanes, E. Prieto, R. Diaz, , L. Coppolino, A. Sergio,
R. Cristaldi, M. Achemlal, S. Gharout, C. Gaber, A. Hutchison,
and K. Dennie, “Scenario requirements (public version),”
MASSIF Project, Tech. Rep. Deliverable D2.1.1, 2011.

[17] A. Fuchs and R. Rieke, “Identification of Security Require-
ments in Systems of Systems by Functional Security Analysis,”
in Architecting Dependable Systems VII, ser. LNCS. Springer,
2010, vol. 6420, pp. 74–96.

[18] N. Kuntze and C. Rudolph, “Secure digital chains of evidence,”
in Sixth International Workshop on Systematic Approaches to
Digital Forensic Engeneering, 2011.

[19] N. Kuntze, D. Mähler, and A. U. Schmidt, “Employing
trusted computing for the forward pricing of pseudonyms
in reputation systems,” in Axmedis 2006, Proceedings of the
2nd International Conference on Automated Production of
Cross Media Content for Multi-Channel Distribution, Volume
for Workshops, Industrial, and Application Sessions, 2006.

12Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

www.manaraa.com

P7
S E C U R I T Y P R O P E RT I E S O F S E L F - S I M I L A R
U N I F O R M LY PA R A M E T E R I S E D S Y S T E M S O F
C O O P E R AT I O N S

Title Security Properties of Self-similar Uniformly
Parameterised Systems of Cooperations

Authors Peter Ochsenschläger and Roland Rieke

Publication In Proceedings of the 19th Euromicro Conference
on Parallel, Distributed and Network-Based Pro-
cessing, pages 640–645.

ISBN/ISSN ISSN 1066-6192

DOI http://dx.doi.org/10.1109/PDP.2011.57

Status Published

Publisher IEEE Computer Society, Los Alamitos, CA,
USA

Publication Type Conference Proceedings

Copyright 2011, IEEE

Contribution of
Roland Rieke

Co-Author with significant contribution, ed-
itor, and presenter at the special session
on “Security in Networked and Distributed
Systems” at the 19th Euromicro Conference
on Parallel, Distributed and Network-Based
Processing.
Specific contributions are: (1) analysis of the
examples given in the paper in the SHVT; (2)
experiments with bigger examples to assure
that the abstraction concept scales.

Table 12: Fact Sheet Publication P7

Publication P7 [Ochsenschläger & Rieke, 2011] addresses the fol-
lowing research question:

RQ4 Which design principles facilitate verifiability of security properties of
scalable systems?

In this paper uniform parameterisations of cooperations are de-
fined in terms of formal language theory, such that each pair of part-
ners cooperates in the same manner, and that the mechanism (sched-
ule) to determine how one partner may be involved in several cooper-
ations, is the same for each partner. Generalising each pair of partners

273

http://dx.doi.org/10.1109/PDP.2011.57

www.manaraa.com

security properties of uniformly parameterised

cooperations

cooperating in the same manner, for such systems of cooperations
a kind of self-similarity is formalised. From an abstracting point of
view, where only actions of some selected partners are considered, the
complex system of all partners behaves like the smaller subsystem of
the selected partners. For verification purposes, so called uniformly
parameterised safety properties are defined. Such properties can be
used to express privacy policies as well as security and dependability
requirements. It is shown, how the parameterised problem of veri-
fying such a property is reduced by self-similarity to a finite state
problem.

274

www.manaraa.com

c© 2011 IEEE. Reprinted, with permission, from Peter Ochsenschläger and Roland Rieke, Security Properties of Self-similar Uniformly Parameterised Systems
of Cooperations, In Proceedings of the 19th Euromicro Conference on Parallel, Distributed and Network-Based Processing, 2011.
Original IEEE publication: http://doi.ieeecomputersociety.org/10.1109/PDP.2011.57

Security Properties of Self-similar Uniformly Parameterised Systems of
Cooperations

Peter Ochsenschläger and Roland Rieke
Fraunhofer Institute for Secure Information Technology, SIT

Darmstadt, Germany
Email: peter-ochsenschlaeger@t-online.de, roland.rieke@sit.fraunhofer.de

Abstract—Uniform parameterisations of cooperations are
defined in terms of formal language theory, such that each
pair of partners cooperates in the same manner, and that the
mechanism (schedule) to determine how one partner may be
involved in several cooperations, is the same for each partner.
Generalising each pair of partners cooperating in the same
manner, for such systems of cooperations a kind of self-
similarity is formalised. From an abstracting point of view,
where only actions of some selected partners are considered,
the complex system of all partners behaves like the smaller
subsystem of the selected partners. For verification purposes, so
called uniformly parameterised safety properties are defined.
Such properties can be used to express privacy policies as
well as security and dependability requirements. It is shown,
how the parameterised problem of verifying such a property
is reduced by self-similarity to a finite state problem.

Keywords-cooperations as prefix closed languages; abstrac-
tions of system behaviour; self-similarity in systems of co-
operations; privacy policies; uniformly parameterised safety
properties;

I. INTRODUCTION

As an example for cooperations let us consider an e-
commerce protocol, that determines how two cooperation
partners have to perform a certain kind of financial transac-
tions. As such a protocol should work for several partners in
the same manner, it is parameterised by the partners and the
parameterisation should be uniform w.r.t. the partners. It is
quite evident that similar requirements have to be fulfilled
in any highly scalable system or system of systems such
as cloud computing platforms or vehicular communication
systems in which vehicles and roadside units communicate
in ad hoc manner to exchange traffic information [1].

In this paper (Sect. III) we formalise uniform param-
eterisations of two-sided cooperations in terms of formal
language theory, such that each pair of partners cooperates
in the same manner, and that the mechanism (schedule)
to determine how one partner may be involved in several
cooperations, is the same for each partner. Generalising
each pair of partners cooperating in the same manner, the
following kind of self-similarity is desirable for such systems
of cooperations: From an abstracting point of view, where
only actions of some selected partners are considered, the
complex system of all partners behaves like the smaller

subsystem of the selected partners (Sect. IV).
For verification purposes it is of interest to know, which

kind of dynamic system properties are “compatible” with
self-similarity. Therefore in Sect. V so called uniformly
parameterised safety properties are defined. An example
shows how such properties can be used to express privacy
policies. Subsequently, it is shown how the parameterised
problem of verifying such a property is reduced by self-
similarity to a finite state problem under certain regularity
restrictions. Liveness aspects of self-similar systems will be
subject of a forthcoming paper (see Sect. VI).

II. RELATED WORK

Verification approaches for parameterised systems.:
An extension to the Murϕ verifier to verify systems with
replicated identical components through a new data type
called RepetitiveID is presented in [2]. During the verifica-
tion Murϕ checks if the result can be generalised for a family
of systems. The soundness of the abstraction algorithm is
guaranteed by the restrictions on the use of repetitiveIDs.
A typical application area of this tool are cache coherence
protocols. The aim of [3] is an abstraction method through
symmetry which works also when using variables holding
references to other processes which is not possible in Murϕ .
An implementation of this approach for the SPIN model-
checker (http://spinroot.com/) is described. In [4] a method-
ology for constructing abstractions and refining them by
analysing counter-examples is presented. The method com-
bines abstraction, model-checking and deductive verification
and in particular, allows to use the set of reachable states
of the abstract system in a deductive proof even when the
abstract model does not satisfy the specification and when
it simulates the concrete system with respect to a weaker
simulation notion than Milner’s. The tool InVeSt supports
this approach and makes use of PVS (http://pvs.csl.sri.com/)
and SMV (http://www.cs.cmu.edu/∼modelcheck/smv.html).
This approach however does not consider liveness properties.
In [5] a technique for automatic verification of parameterised
systems based on process algebra CCS [6] and the logic
modal mu-calculus [7] is presented. This technique views
processes as property transformers and is based on comput-
ing the limit of a sequence of mu-calculus formula generated

www.manaraa.com

by these transformers. In [8] we developed an abstraction
based approach to extend our tool supported verification
techniques to be able to verify families of parameterised
systems, independent of the exact number of replicated com-
ponents. The above-mentioned approaches demonstrate, that
finite state methods combined with deductive methods can
be applied to analyse parameterised systems. The approaches
differ in varying amounts of user intervention and their range
of application. A survey of approaches to combine model
checking and theorem proving methods is given in [9].

Iterated shuffle products.: In [10] it is shown that
our definition of uniformly parameterised cooperations is
strongly related to iterated shuffle products [11], if the
cooperations are “structured into phases”. For such systems
of cooperations a sufficient condition for the kind of self-
similarity which we use here is given. Under certain regu-
larity restrictions this condition can be verified by a semi-
algorithm. The main concept for such a condition are shuffle
automata [12] (multicounter automata [13]) whose computa-
tions, if they are deterministic, unambiguously describe how
a cooperation partner is involved in several phases.

The main contribution of this paper is to show how the pa-
rameterised problem of verifying a uniformly parameterised
safety property can be solved by means of the self-similarity
results of [10] and finite state methods.

III. PARAMETERISED COOPERATIONS

The behaviour L of a discrete system can be formally
described by the set of its possible sequences of actions.
Therefore L ⊂ Σ∗ holds where Σ is the set of all actions
of the system, and Σ∗ (free monoid over Σ) is the set of
all finite sequences of elements of Σ (words), including the
empty sequence denoted by ε . Subsets of Σ∗ are called
formal languages. Words can be composed: if u and v are
words, then uv is also a word. This operation is called the
concatenation; especially εu = uε = u. A word u is called
a prefix of a word v if there is a word x such that v = ux.
The set of all prefixes of a word u is denoted by pre(u);
ε ∈ pre(u) holds for every word u.

Formal languages which describe system behaviour have
the characteristic that pre(u)⊂ L holds for every word u∈ L.
Such languages are called prefix closed. System behaviour
is thus described by prefix closed formal languages.

Different formal models of the same system are partially
ordered with respect to different levels of abstraction. For-
mally, abstractions are described by so called alphabetic lan-
guage homomorphisms. These are mappings h∗ : Σ∗ −→ Σ′∗
with h∗(xy) = h∗(x)h∗(y) , h∗(ε) = ε and h∗(Σ)⊂ Σ′∪{ε}.
So they are uniquely defined by corresponding mappings
h : Σ −→ Σ′ ∪ {ε}. In the following we denote both the
mapping h and the homomorphism h∗ by h. Inverse homo-
morphism are denoted by h−1. Let L be a language over
the alphabet Σ′. Then h−1(L) is the set of words w ∈ Σ∗
such that h(w) ∈ L. In this paper we consider a lot of

alphabetic language homomorphisms. So for simplicity we
tacitly assume that a mapping between free monoids is an
alphabetic language homomorphism if nothing contrary is
stated.

To describe a two-sided cooperation, let Σ=Φ ·∪ Γ where
Φ is the set of actions of cooperation partner F and Γ is
the set of actions of cooperation partner G. Now a prefix
closed language L⊂ (Φ ·∪ Γ)∗ formally defines a two-sided
cooperation.

Example 1. Let Φ = {fs, fr} and Γ = {gs,gr} and hence
Σ = {fs, fr,gs,gr}. An example for a cooperation L ⊂ Σ∗ is
now given by the automaton in Fig. 1(a). It describes a
simple handshake between F and G.

Please note that in the following we will denote initial
states by a short incoming arrow and final states by double
circles. In this automaton all states are final states, since L
is prefix closed.

fs gr

gsfr

(a) 1-1-cooperation L

fs12

gr12

gs12

fr12

fs11gr11

gs11 fr11

(b) 1-2-cooperation L{1}{1,2}

Figure 1. Automata for a simple parameterised cooperation

For parameter sets I, K and (i,k) ∈ I×K let Σik denote
pairwise disjoint copies of Σ. The elements of Σik are
denoted by aik and ΣIK :=

⋃̇
(i,k)∈I×K

Σik. The index ik describes

the bijection a↔ aik for a∈ Σ and aik ∈ Σik. Now LIK ⊂ Σ∗IK
(prefix-closed) describes a parameterised system. To avoid
pathological cases we generally assume parameter and index
sets to be non empty.

For a cooperation between one partner of type F with
two partners of type G in Example 1 let Φ{1}{1,2} =
{fs11, fr11, fs12, fr12}, Γ{1}{1,2} = {gs11,gr11,gs12, gr12} and
Σ{1}{1,2} = Φ{1}{1,2} ·∪ Γ{1}{1,2}. A 1-2-cooperation, where
each pair of partners cooperates restricted by L and each
partner has to finish the handshake it just is involved in
before entering a new one, is now given (by reachability
analysis) by the automaton in Fig. 1(b) for L{1}{1,2}. Fig. 2
in contrast depicts an automaton for a 2-1-cooperation
L{1,2}{1} with the same overall number of partners involved
but two of type F and one partner of type G. A 3-3-
cooperation with the same simple behaviour of partners
already requires an automaton with 916 states and 3168 state
transitions.

For (i,k) ∈ I×K, let π IK
ik : Σ∗IK → Σ∗ with

π IK
ik (ars) =

{
a | ars ∈ Σik
ε | ars ∈ ΣIK \Σik

.

2

www.manaraa.com

f s11

f s21

f r21

f r11

f r11 f r21

gs11

f r21
gs21

f r11

f r21 gr11

f r11

gr21

f s11

f s21

gs21

gs11

f s11

gs21

f s21

gs11
gr21

gr11

gr21

f s11

gr11

f s21

Figure 2. Automaton for the 2-1-cooperation L{1,2}{1}

For uniformly parameterised systems LIK we generally
want to have

LIK ⊂
⋂

(i,k)∈I×K

((π IK
ik)−1(L))

because from an abstracting point of view, where only the
actions of a specific Σik are considered, the complex system
LIK is restricted by L.

In addition to this inclusion LIK is defined by local
schedules that determine how each “version of a partner”
can participate in “different cooperations”. More precisely,
let SF ⊂ Φ∗, SG ⊂ Γ∗ be prefix closed. For (i,k) ∈ I ×
K, let ϕ IK

i : Σ∗IK →Φ∗ and γ IK
k : Σ∗IK → Γ∗ with

ϕ IK
i (ars) =

{
a | ars ∈Φ{i}K
ε | ars ∈ ΣIK \Φ{i}K

and

γ IK
k (ars) =

{
a | ars ∈ ΓI{k}
ε | ars ∈ ΣIK \ΓI{k}

,

where ΦIK and ΓIK are defined correspondingly to ΣIK .

Definition 1 (Uniformly parameterised cooperation LIK).
Let I, K be finite parameter sets, then

LIK :=
⋂

(i,k)∈I×K

(π IK
ik)−1(L) ∩

∩
⋂

i∈I

(ϕ IK
i)−1(SF)∩

⋂

k∈K

(γ IK
k)−1(SG)

By this definition

L{1}{1} = (π{1}{1}11)−1(L) ∩
∩ (ϕ{1}{1}1)−1(SF)∩ (γ{1}{1}1)−1(SG).

As we want L{1}{1} being isomorphic to L by the isomor-
phism π{1}{1}11 : Σ∗{1}{1}→ Σ∗ we additionally need

(π{1}{1}11)−1(L)⊂ (ϕ{1}{1}1)−1(SF) and

(π{1}{1}11)−1(L)⊂ (γ{1}{1}1)−1(SG).

This is equivalent to πΦ(L) ⊂ SF and πΓ(L) ⊂ SG, where
πΦ : Σ∗→Φ∗ and πΓ : Σ∗→ Γ∗ are defined by

πΦ(a) =
{

a | a ∈Φ
ε | a ∈ Γ and πΓ(a) =

{
a | a ∈ Γ
ε | a ∈Φ .

So we complete Def. 1 by the additional conditions

πΦ(L)⊂ SF and πΓ(L)⊂ SG.

Schedules SF and SG that fit to the cooperations given
in Example 1 are depicted in Figs. 3(a) and 3(b). Here we
have πΦ(L) = SF and πΓ(L) = SG.

fs

fr

(a) Schedule SF

gr

gs

(b) Schedule SG

Figure 3. Automata SF and SG for the schedules SF and SG

The system LIK of cooperations is a typical example of a
complex system. It consists of several identical components
(copies of the two-sided cooperation L), which “interact” in
a uniform manner (described by the schedules SF and SG
and by the homomorphisms ϕ IK

i and γ IK
k).

Remark 1. It is easy to see that LIK is isomorphic to LI′K′

if I is isomorphic to I′ and K is isomorphic to K′. More
precisely, let ι I

I′ : I→ I′ and ιK
K′ : K→ K′ be bijections and

let ι IK
I′K′ : Σ∗IK → Σ∗I′K′ be defined by

ι IK
I′K′(aik) := aι I

I′ (i)ι
K
K′ (k)

for aik ∈ ΣIK .

Then ι IK
I′K′ is a isomorphism and ι IK

I′K′(LIK) = LI′K′ . The
set of all these isomorphisms ι IK

I′K′ defined by corresponding
bijections ι I

I′ and ιK
K′ is denoted by I IK

I′K′ .

IV. SELF-SIMILARITY

By self-similary we want to formalise that for I′ ⊂ I and
K′ ⊂ K from an abstracting point of view, where only the
actions of ΣI′K′ are considered, the complex system LIK
behaves like the smaller subsystem LI′K′ . Therefore we now
consider special abstractions on LIK .

Definition 2 (Projection abstraction).
For I′ ⊂ I and K′ ⊂ K let ΠIK

I′K′ : Σ∗IK → Σ∗I′K′ with

ΠIK
I′K′(ars) =

{
ars | ars ∈ ΣI′K′

ε | ars ∈ ΣIK \ΣI′K′ .

It is easy to see [10]:

Theorem 1. LIK ⊃LI′K′ for I′×K′ ⊂ I×K, and therefore

ΠIK
I′K′(LIK)⊃ΠIK

I′K′(LI′K′) = LI′K′ .

3

www.manaraa.com

The reverse inclusions

ΠIK
I′K′(LIK)⊂LI′K′ for all I′×K′ ⊂ I×K (1)

do not hold in general, which is shown by the following
example.

Example 2. For a counterexample let us examine the 1-
1-cooperation given by the automaton in Fig. 4(a). Let the
schedule SF again be given by the automaton SF in Fig. 3(a)
and the schedule SG be given by the automaton SG in
Fig. 4(b).

fs

fr

gr

gi

gs

(a) 1-1-cooperation L

1

2 3

4 5 6

7

9 8
gr

gi

gs

grgs

gr gi

gi

gs

gsgs

(b) Schedule SG

Figure 4. Automata for the counterexample

In the automaton SG immediately after entering a second
handshake (state 4) G may enter a third handshake but
immediately after entering the first handshake (state 2) G
may not enter a second handshake. We now get for example

fs11fs21fs31gr11gi11gr21gr31 ∈L{1,2,3}{1}.

Hence

fs21fs31gr21gr31 ∈Π{1,2,3}{1}{2,3}{1} (L{1,2,3}{1}), but

fs21fs31gr21gr31 /∈L{2,3}{1}.

In the general case we do not know the decidability status
of (1), but for many parameterised systems (1) holds, and
therefore

ΠIK
I′K′(LIK) = LI′K′ ,

which is a generalisation of π IK
ik (LIK) = L.

Definition 3 (Self-similarity).
A uniformly parameterised cooperation LIK is called self-
similar iff

ΠIK
I′K′(LIK) = LI′K′ for each I′×K′ ⊂ I×K.

So we are looking for conditions, which imply (1).
Fig. 4(b) is typical in the sense that it may serve as
an idea to get a sufficient condition for self-similarity. It
requires (a) two separate conditions, one for each schedule,
(b) structuring schedules into phases, which may be shuffled
in a restricted manner, (c) formalising “how a cooperation
partner is involved in several phases”, (d) the more phases
a cooperation partner is involved in, the less possibilities of
acting in each phase he has. In [10] a sufficient condition
for self-similarity is given, which is based on deterministic

computations in shuffle automata. Under certain regular-
ity restrictions this condition can be verified by a semi-
algorithm.

V. UNIFORMLY PARAMETERISED SECURITY PROPERTIES

We will now give an example that demonstrates the
significance of self-similarity for verification purposes and
then present a generic verification scheme for uniformly
parameterised security properties.

Example 3. We consider a system of servers, each of them
managing a resource, and clients, which want to use these
resources. We assume that as a means to enforce a given
privacy policy a server has to manage its resource in such
a way that no client may access this resource during it is
in use by another client (privacy requirement). This may be
required to ensure anonymity in such a way that clients and
their actions on a resource cannot be linked by an observer.

We formalise this system at an abstract level, where a
client may perform the actions fx (send a request), fy (receive
a permission) and fz (send a free-message), and a server may
perform the corresponding actions gx (receive a request), gy
(send a permission) and gz (receive a free-message). The
possible sequences of actions of a client resp. of a server
are given by the automaton SF resp. SG. The automaton L
describes the 1-1-cooperation of one client and one server
(see Fig. 5). These automata define the client-server system
LIK .

1

2

6

3

5

47 8

fx

gx

gy

fy

fz

fxgz

gx

gz gz

(a) 1-1-cooperation L

1

2 3

fx

fy

fz

(b) Schedule SF

1

2 3

4

gx

gy

gz

gxgz

(c) Schedule SG

1

2

fy11fz11

fy21

(d) ν121(L{1,2}{1})

1

2 3

4

gx

gy

gz

gx

gz

gx

(e) Schedule SG′

Figure 5. Automata L, SF, SG, ν121(L{1,2}{1}) and SG′ for Example 3

Considering fy as the begin-action and fz as the end-action
w.r.t. accessing a resource, the privacy requirement can be
formalised by (2).

4

www.manaraa.com

Let i, i′ ∈ I, i 6= i′, k ∈ K and
µ IK

ii′k : Σ∗IK →{fyik, fzik, fyi′k}∗ with

µ IK
ii′k(ars) :=

{
ars | ars ∈ {fyik, fzik, fyi′k}

ε | ars ∈ ΣIK \{fyik, fzik, fyi′k}.
For each i, i′ ∈ I, i 6= i′ and k ∈ K

µ IK
ii′k(LIK)∩Σ∗{i,i′}{k}fyikfyi′k = /0. (2)

For i, i′ ∈ I, i 6= i′, k ∈ K let
νii′k : Σ∗{i,i′}{k}→{fyik, fzik, fyi′k}∗ be defined by

νii′k(ars) :=
{

ars | ars ∈ {fyik, fzik, fyi′k}
ε | ars ∈ Σ{i,i′}{k} \{fyik, fzik, fyi′k},

then
µ IK

ii′k = νii′k ◦ΠIK
{i,i′}{k}.

Hence,

µ IK
ii′k(LIK) = νii′k(L{i,i′}{k}) if LIK is self-similar.

Let ιii′k : Σ∗{i,i′}{k}→ Σ∗{1,2}{1} be the isomorphism defined by

ιii′k(aik) :=
{

a11 | aik ∈ Σik
a21 | ai′k ∈ Σi′k,

then by Remark 1

ιii′k(L{i,i′}{k}) = L{1,2}{1},

since νii′k = ι−1
ii′k ◦ν121 ◦ ιii′k, LIK fulfills the privacy require-

ment (2) for each index set I and K iff

ν121(L{1,2}{1})∩Σ∗{1,2}{1}fy11fy21 = /0. (3)

This can be verified by checking the finite automaton of
L{1,2}{1}. The automaton of L{1,2}{1} consists of 28 states.
The minimal automaton of ν121(L{1,2}{1}) is shown in
Fig. 5(d) which implies (3). Self-similarity of LIK can be
shown using the methods given in [10]. So LIK fulfills the
privacy requirement.

On the contrary, L ′
IK defined by SF, SG′ and L of Fig. 5

is not self-similar because of

fx11fx21fx31gx11gy11gx21gx31gy21fy11fy21 ∈L ′
{1,2,3}{1},

fx11fx21gx11gy11gx21gy21fy11fy21∈Π{1,2,3}{1}{1,2}{1} (L ′
{1,2,3}{1})

but fx11fx21gx11gy11gx21gy21fy11fy21 /∈L ′
{1,2}{1}.

The same action sequence shows that L ′
IK does not fulfill

the privacy requirement.
The privacy requirement of the example is a typical

safety property [14]. These properties describe that “nothing
forbidden happens”. They can be formalised by a set F
of forbidden action sequences. So a system LIK ⊂ Σ∗IK
satisfies a safety property FIK ⊂ Σ∗IK iff LIK ∩FIK = /0.
More precisely, these are safety properties which can be
expressed without “dummy actions” to descibe deadlocks.

In our example the privacy requirement is formalised by

FIK =
⋃

i,i′∈I,i6=i′,k∈K

(µ IK
ii′k)
−1(Σ∗{i,i′}{k}fyikfyi′k) =

=
⋃

i,i′∈I,i6=i′,k∈K

(ΠIK
{i,i′}{k})

−1(ι−1
ii′k [ν

−1
121(Σ

∗
{1,2}{1}fy11fy21)])

because of

µ IK
ii′k = ι−1

ii′k ◦ν121 ◦ ιii′k ◦ΠIK
{i,i′}{k} and

ιii′k(Σ∗{i,i′}{k}fyikfyi′k) = Σ∗{1,2}{1}fy11fy21.

As

ν−1
121(Σ

∗
{1,2}{1}fy11fy21)⊂ Σ∗{1,2}{1} and ι−1

ii′k ∈I
{1,2}{1}
{i,i′}{k} ,

we now generally consider safety properties formalised by

F F̊
IK =

⋃

I′⊂I,K′⊂K,ι I̊K̊
I′K′∈I

I̊K̊
I′K′

(ΠIK
I′K′)

−1(ι I̊K̊
I′K′(F̊)) and

generated by F̊ ⊂ Σ∗
I̊K̊

.
For the privacy requirement above

F̊ = ν−1
121(Σ

∗
{1,2}{1}fy11fy21), I̊ = {1,2}, K̊ = {1}.

By this definition

F F̊
IK = /0 for |I|< |I̊| or |K|< |K̊|, (4)

as in that case I I̊K̊
I′K′ = /0 for each I′ ⊂ I and K′ ⊂ K.

Now by the same argument as in our privacy example,
we get

Theorem 2. Self-similarity of LIK implies that for a fixed
F̊ ⊂ Σ∗

I̊K̊
holds

LIK ∩F F̊
IK = /0 for each index sets I and K

iff for the fixed index sets I̊ and K̊ LI̊K̊ ∩ F̊ = /0.

If LI̊K̊ and F̊ are regular subsets of Σ∗
I̊K̊

this can be
checked by finite state methods [15]. On account of (4) it
makes sense to consider safety properties defined by

FIK :=
⋃

t∈T

F F̊t
IK with finite T and F̊t ⊂ Σ∗I̊t K̊t

(5)

for each t ∈ T .

Definition 4 (Uniformly parameterised safety properties).
Safety properties of the form (5) we call uniformly parame-
terised.

Corollary 1. For self-similar LIK the parameterised prob-
lem of verifying a uniformly parameterised safety property
is reduced to finite many fixed finite state problems if the
corresponding LI̊t K̊t

and F̊t are regular languages.

Example 3 can also be seen as a dependability example
when we assume that the managed resource is a rail track,
the clients are trains and the policy to ensure integrity and

5

www.manaraa.com

safety of the system demands that only one train is allowed
to use the rail track at a time. We can also derive an
authentication example when we assume the client to be an
ATM with fx (authenticate credit card), fy (draw-out cash)
and fz (eject credit card) and the server actions respectively
manage a bank account. Please note that a stronger property
“no further authentication before the card is ejected” does
not hold for that specification.

VI. CONCLUSIONS AND FUTURE WORK

The main result of this paper is to demonstrate the signifi-
cance of self-similarity for verification of security properties.
We assume that uniformly parameterised structures like the
uniformly parameterised cooperations we have defined and
used here are likely to appear in any highly scalable system
or system of systems such as cloud computing platforms or
vehicular communication systems.

It is well known that dynamic system properties such as
dependability and security properties are divided into safety
and liveness properties [14]. Safety properties can be for-
malised by formal languages as demonstrated in section V.
We have shown here in particular that for self-similar LIK
the parameterised problem of verifying a uniformly param-
eterised safety property can be reduced to finite many fixed
finite state problems under certain regularity restrictions. For
abstractions defined by alphabetic language homomorphisms
it is easy to see that an abstract system satisfies a safety
property as considered in Sect. V iff the concrete system
satisfies a corresponding safety property. So our notion of
self-similarity is compatible with uniformly parameterised
safety properties.

Concerning liveness properties (“Eventually something
desired happens.”) such a relation between abstract and
concrete systems does not hold in general. In [16] a property
of homomorphisms is given that implies a similar relation
between liveness properties of an abstract and a concrete
system w.r.t. a modified satisfaction relation (“Eventually
something desired is possible.”). Based on that framework
we will investigate liveness aspects of uniformly parame-
terised cooperations as well as safety properties related to
deadlocks in a forthcoming paper. Another topic of interest
is the generalisation of this method to n-sided cooperations.

ACKNOWLEDGEMENT

Roland Rieke developed the work presented here in the
context of the project MASSIF (ID 257475) being co-funded
by the European Commission within FP7.

REFERENCES

[1] A. Fuchs and R. Rieke, “Identification of Authenticity Re-
quirements in Systems of Systems by Functional Security
Analysis,” in Workshop on Architecting Dependable Systems
(WADS 2009), in Proceedings of the 2009 IEEE/IFIP Confer-
ence on Dependable Systems and Networks, Supplementary
Volume, 2009.

[2] C. N. Ip and D. L. Dill, “Verifying Systems with Replicated
Components in Murϕ ,” Formal Methods in System Design,
vol. 14, no. 3, pp. 273–310, 1999.

[3] F. Derepas and P. Gastin, “Model checking systems of
replicated processes with SPIN,” in Proceedings of the 8th
International SPIN Workshop on Model Checking Software
(SPIN’01), ser. Lecture Notes in Computer Science, M. B.
Dwyer, Ed., vol. 2057. Toronto, Canada: Springer, May
2001, pp. 235–251.

[4] Y. Lakhnech, S. Bensalem, S. Berezin, and S. Owre, “Incre-
mental Verification by Abstraction.” in TACAS, ser. Lecture
Notes in Computer Science, T. Margaria and W. Yi, Eds., vol.
2031. Springer, 2001, pp. 98–112.

[5] S. Basu and C. R. Ramakrishnan, “Compositional analysis for
verification of parameterized systems,” Theor. Comput. Sci.,
vol. 354, no. 2, pp. 211–229, 2006.

[6] R. Milner, Communication and Concurrency, ser. Interna-
tional Series in Computer Science. NY: Prentice Hall, 1989.

[7] J. Bradfield and C. Stirling, “Modal logics and mu-calculi:
an introduction,” 2001. [Online]. Available: citeseer.ist.psu.
edu/bradfield01modal.html

[8] P. Ochsenschläger and R. Rieke, “Abstraction Based Veri-
fication of a Parameterised Policy Controlled System,” in
International Conference ”Mathematical Methods, Models
and Architectures for Computer Networks Security” (MMM-
ACNS-7), ser. CCIS, vol. 1. Springer, September 2007.

[9] T. E. Uribe, “Combinations of Model Checking and The-
orem Proving,” in FroCoS ’00: Proceedings of the Third
International Workshop on Frontiers of Combining Systems.
London, UK: Springer-Verlag, 2000, pp. 151–170.

[10] P. Ochsenschläger and R. Rieke, “Uniform Parameterisation
of Phase Based Cooperations,” Fraunhofer SIT, Tech.
Rep. SIT-TR-2010/1, 2010. [Online]. Available: http://sit.sit.
fraunhofer.de/smv/publications

[11] M. Jantzen, “Extending Regular Expressions with Iterated
Shuffle,” Theor. Comput. Sci., vol. 38, pp. 223–247, 1985.

[12] J. Jedrzejowicz and A. Szepietowski, “Shuffle languages are
in P,” Theor. Comput. Sci., vol. 250, no. 1-2, pp. 31–53, 2001.

[13] H. Björklund and M. Bojanczyk, “Shuffle Expressions and
Words with Nested Data,” in Mathematical Foundations of
Computer Science 2007, 2007, pp. 750–761.

[14] B. Alpern and F. B. Schneider, “Defining liveness,” Informa-
tion Processing Letters, vol. 21, no. 4, pp. 181–185, October
1985.

[15] J. Sakarovitch, Elements of Automata Theory. Cambridge
University Press, 2009.

[16] U. Nitsche and P. Ochsenschläger, “Approximately satisfied
properties of systems and simple language homomorphisms,”
Information Processing Letters, vol. 60, pp. 201–206, 1996.

6

www.manaraa.com

P8
R E L I A B I L I T Y A S P E C T S O F U N I F O R M LY
PA R A M E T E R I S E D C O O P E R AT I O N S

Title Reliability Aspects of Uniformly Parameter-
ised Cooperations

Authors Peter Ochsenschläger and Roland Rieke

Publication In ICONS 2012, The Seventh International Con-
ference on Systems, February 29 - March 5, 2012
- Saint Gilles, Reunion Island, pages 25–34.

ISBN/ISSN ISBN 978-1-61208-184-7

URL http://www.thinkmind.org/index.php?

view=article&articleid=icons_2012_2_

10_20024

Status Published

Publisher IARIA

Publication Type ThinkMind(TM) Digital Library

Copyright 2012, IARIA

Contribution of
Roland Rieke

Co-Author with significant contribution, ed-
itor, and presenter at the Seventh Interna-
tional Conference on Systems (ICONS 2012).
Specific contributions are: (1) analysis of the
examples given in the paper in the SHVT.
Related contribution: Roland Rieke also con-
tributed to a related paper “Security Require-
ments for Uniformly Parameterised Cooper-
ations” [Ochsenschläger & Rieke, 2012b] that
he presented at the special session on secu-
rity in networked and distributed systems at
the 20th Euromicro Conference on Parallel,
Distributed and Network-Based Processing.

Table 13: Fact Sheet Publication P8

Publication P8 [Ochsenschläger & Rieke, 2012a] addresses the fol-
lowing research question:

RQ4 Which design principles facilitate verifiability of security properties of
scalable systems?

In this paper reliability aspects of systems, which are characterised
by the composition of a set of identical components are examined.

281

http://www.thinkmind.org/index.php?view=article&articleid=icons_2012_2_10_20024
http://www.thinkmind.org/index.php?view=article&articleid=icons_2012_2_10_20024
http://www.thinkmind.org/index.php?view=article&articleid=icons_2012_2_10_20024

www.manaraa.com

reliability aspects of uniformly parameterised

cooperations

These components interact in a uniform manner, described by the
schedules of the partners. Such kind of interaction is typical for scal-
able complex systems with cloud or grid structure. In addition to the
safety properties of such uniformly parameterised cooperations which
have been analysed in P7 reliability of such systems in a possibilistic
sense is considered. This is formalised by always-eventually proper-
ties, a special class of liveness properties using a modified satisfac-
tion relation, which expresses possibilities. As a main result, a finite
state verification framework for uniformly parameterised reliability
properties is given. The keys to this framework are structuring coop-
erations into phases and defining closed behaviours of systems. In
order to verify reliability properties of such uniformly parameterised
cooperations, finite state semi-algorithms that are independent of the
concrete parameter setting are used.

282

www.manaraa.com

Reliability Aspects of Uniformly Parameterised Cooperations

Peter Ochsenschläger and Roland Rieke
Fraunhofer Institute for Secure Information Technology, SIT

Darmstadt, Germany
Email: peter-ochsenschlaeger@t-online.de, roland.rieke@sit.fraunhofer.de

Abstract—In this paper, we examine reliability aspects of
systems, which are characterised by the composition of a
set of identical components. These components interact in a
uniform manner, described by the schedules of the partners.
Such kind of interaction is typical for scalable complex systems
with cloud or grid structure. We call these systems “uniformly
parameterised cooperations”. We consider reliability of such
systems in a possibilistic sense. This is formalised by always-
eventually properties, a special class of liveness properties using
a modified satisfaction relation, which expresses possibilities.
As a main result, a finite state verification framework for
uniformly parameterised reliability properties is given. The
keys to this framework are structuring cooperations into
phases and defining closed behaviours of systems. In order to
verify reliability properties of such uniformly parameterised
cooperations, we use finite state semi-algorithms that are
independent of the concrete parameter setting.

Keywords-reliability aspects of scalable complex systems; live-
ness properties; uniformly parameterised reliability properties;
finite state verification; possibilistic reliability.

I. INTRODUCTION

The transition from systems composed of many isolated,
small-scale elements to large-scale, distributed and mas-
sively interconnected systems is a key challenge of modern
information and communications technologies. These sys-
tems need to be dependable, which means they need to
remain secure, robust and efficient [1]. Examples for highly
scalable systems comprise (i) grid computing architectures;
and (ii) cloud computing platforms. In grid computing, large
scale allocation issues relying on centralised controls present
challenges that threaten to overwhelm existing centralised
management approaches [1]. Cloud computing introduced
the concept, to make software available as a service. This
concept can only be successful, if certain obstacles such
as reliability issues are solved [2]. In order to be able to
model functional requirements of dependable systems best
satisfying both fault-tolerance and security attributes, three
distinct classes of (system specification) properties need
to be considered, namely safety, liveness, and information
flow [3]. Concrete reliability problems related to liveness
properties range from replica selection to consistency of
cloud storage (which allows multiple clients to access stored
data concurrently in a consistent fashion) [4]. Most existing
replica selection schemes rely on either central coordination
(which has reliability, security, and scalability limitations)

or distributed heuristics (which may lead to instability) [4].
Another important issue is, that clients of cloud services do
not operate continuously, so clients should not depend on
other clients for liveness of their operations [5].

In this paper, we consider systems that interact in a way
that is typical for scalable complex systems. These systems,
which we call uniformly parameterised cooperations, are
characterised by (i) the composition of a set of identical
components (copies of a two-sided cooperation); and (ii)
the fact that these components interact in a uniform manner
(described by the schedules of the partners). As an example
of such uniformly parameterised systems of cooperations, e-
commerce protocols can be considered. In these protocols,
the two cooperation partners have to perform a certain kind
of financial transactions. Such a protocol should work for
several partners in the same manner, and the mechanism
(schedule) to determine how one partner may be involved
in several cooperations is the same for each partner. So,
the cooperation is parameterised by the partners and the
parameterisation should be uniform with respect to the
partners.

Reliability is an important concept related to depend-
ability, which ensures continuity of correct service [6]. In
this paper, we consider reliability in a possibilistic sense,
which means that correct services can be provided according
to a certain pattern of behaviour again and again. These
possibilities of providing correct services are expressed by
a special class of liveness properties using a modified satis-
faction relation. We call these properties always-eventually
properties.

As a main result of the work presented, a finite state
verification framework for uniformly parameterised relia-
bility properties is given. The keys to this framework are
structuring cooperations into phases and defining closed
behaviours of systems. In this framework, completion of
phases strategies and corresponding success conditions can
be formalised [7], which produce finite state semi-algorithms
that are independent of the concrete parameter setting. These
algorithms are used to verify reliability properties of uni-
formly parameterised cooperations under certain regularity
restrictions.

The paper is structured as follows. Section II gives an
overview of the related work. In Section III, uniform pa-
rameterisations of two-sided cooperations in terms of formal

25Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

www.manaraa.com

language theory is formalised. Section IV introduces the
concept of uniformly parameterised reliability properties.
The concept of structuring cooperations into phases given in
Section V enables completion of phases strategies, which are
described in Section VI. Consistent with this, corresponding
success conditions can be formalised [2], which produce
finite state semi-algorithms to verify reliability properties
of uniformly parameterised cooperations. Finally, the paper
ends with conclusions and an outlook in Section VII.

II. RELATED WORK

System properties: A formal definition of safety and
liveness properties is proposed in [8]. In [9], we defined a
satisfaction relation, called approximate satisfaction, which
expresses a possibilistic view on liveness and is equivalent
to the satisfaction relation in [8] for safety properties. In this
paper, we extended this concept (cf. Section IV) and defined
uniformly parameterised reliability properties, which fit to
the parameterised structure of the systems, which we con-
sider here. Besides these safety and liveness properties so
called “hyperproperties” [10] are of interest because they
give formalisations for non-interference and non-inference.

Verification approaches for parameterised systems:
An extension to the Murϕ verifier to verify systems with
replicated identical components through a new data type
called RepetitiveID is presented in [11]. A typical applica-
tion area of this tool are cache coherence protocols. The
aim of [12] is an abstraction method through symmetry,
which works also when using variables holding references
to other processes. This is not possible in Murϕ . In [13], a
methodology for constructing abstractions and refining them
by analysing counter-examples is presented. The method
combines abstraction, model-checking and deductive veri-
fication. However, this approach does not consider liveness
properties. In [14], a technique for automatic verification
of parameterised systems based on process algebra CCS
[15] and the logic modal mu-calculus [16] is presented.
This technique views processes as property transformers
and is based on computing the limit of a sequence of
mu-calculus formula generated by these transformers. The
above-mentioned approaches demonstrate, that finite state
methods combined with deductive methods can be applied
to analyse parameterised systems. The approaches differ
in varying amounts of user intervention and their range
of application. A survey of approaches to combine model
checking and theorem proving methods is given in [17].

Iterated shuffle products: In [18], it is shown that
our definition of uniformly parameterised cooperations is
strongly related to iterated shuffle products [19], if the
cooperations are “structured into phases”. The main concept
for such a condition are shuffle automata [20] (multicounter
automata [21]) whose computations, if they are determin-
istic, unambiguously describe how a cooperation partner is
involved in several phases.

In [22], we have shown in particular that for self-similar
parameterised systems LIK the parameterised problem of
verifying a uniformly parameterised safety property can be
reduced to finite many fixed finite state problems.

Complementary to this, in the present paper, we define
a uniformly parameterised reliability property based on this
concept. The main result is a finite state verification frame-
work for such uniformly parameterised reliability properties.

III. PARAMETERISED COOPERATIONS

The behaviour L of a discrete system can be formally
described by the set of its possible sequences of actions.
Therefore L ⊂ Σ∗ holds where Σ is the set of all actions
of the system, and Σ∗ (free monoid over Σ) is the set of
all finite sequences of elements of Σ (words), including the
empty sequence denoted by ε . Σ+ := Σ∗ \{ε}. Subsets of Σ∗

are called formal languages [23]. Words can be composed:
if u and v are words, then uv is also a word. This oper-
ation is called the concatenation; especially εu = uε = u.
Concatenation of formal languages U,V ⊂ Σ∗ are defined
by UV := {uv ∈ Σ∗|u ∈ U and v ∈ V}. A word u is called
a prefix of a word v if there is a word x such that v = ux.
The set of all prefixes of a word u is denoted by pre(u);
ε ∈ pre(u) holds for every word u. The set of possible
continuations of a word u ∈ L is formalised by the left
quotient u−1(L) := {x ∈ Σ∗|ux ∈ L}.

Infinite words over Σ are called ω-words [24]. The set
of all infinite words over Σ is denoted Σω . An ω-language
L over Σ is a subset of Σω . For u ∈ Σ∗ and v ∈ Σω the
left concatenation uv ∈ Σω is defined. It is also defined for
U ⊂ Σ∗ and V ⊂ Σω by UV := {uv ∈ Σω |u ∈U and v ∈V}.

For an ω-word w the prefix set is given by the formal
language pre(w), which contains every finite prefix of w.
The prefix set of an ω-language L ⊂ Σω is accordingly
given by pre(L) = {u∈ Σ∗| it exist v∈ Σω with uv∈ L}. For
M ⊂ Σ∗ the ω-power Mω ⊂ Σω is the set of all “infinite
concatenations” of arbitrary elements of M. More formal
definitions of theses ω-notions are given in the appendix.

Formal languages, which describe system behaviour, have
the characteristic that pre(u)⊂ L holds for every word u∈ L.
Such languages are called prefix closed. System behaviour
is thus described by prefix closed formal languages.

Different formal models of the same system are partially
ordered with respect to different levels of abstraction. For-
mally, abstractions are described by so called alphabetic lan-
guage homomorphisms. These are mappings h∗ : Σ∗ −→ Σ′∗

with h∗(xy) = h∗(x)h∗(y) , h∗(ε) = ε and h∗(Σ)⊂ Σ′∪{ε}.
So, they are uniquely defined by corresponding mappings
h : Σ −→ Σ′ ∪ {ε}. In the following, we denote both the
mapping h and the homomorphism h∗ by h. Inverse homo-
morphism are denoted by h−1. Let L be a language over
the alphabet Σ′. Then h−1(L) is the set of words w ∈ Σ∗

such that h(w) ∈ L. In this paper, we consider a lot of
alphabetic language homomorphisms. So, for simplicity, we

26Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

www.manaraa.com

tacitly assume that a mapping between free monoids is an
alphabetic language homomorphism if nothing contrary is
stated.

To describe a two-sided cooperation, let Σ=Φ ∪ Γ where
Φ is the set of actions of cooperation partner F and Γ is the
set of actions of cooperation partner G and Φ ∩ Γ= /0. Now
a prefix closed language L ⊂ (Φ ∪ Γ)∗ formally defines a
two-sided cooperation.

Example 1. Let Φ = {fs, fr} and Γ = {gr,gi,gs} and hence
Σ = {fs, fr,gr,gi,gs}. An example for a cooperation L ⊂ Σ∗

is now given by the automaton in Figure 1. It describes a
simple handshake between F (client) and G (server), where a
client may perform the actions fs (send a request), fr (receive
a result) and a server may perform the corresponding
actions gr (receive a request), gi (internal action to compute
the result) and gs (send the result).

In the following, we will denote initial states by a short
incoming arrow and final states by double circles. In this
automaton, all states are final states, since L is prefix closed.

fs
gr

gi

gs
fr

Figure 1. Automaton for 1-1-cooperation L

For parameter sets I, K and (i,k) ∈ I × K let Σik de-
note pairwise disjoint copies of Σ. The elements of Σik
are denoted by aik and ΣIK :=

⋃
(i,k)∈I×K

Σik. The index ik

describes the bijection a ↔ aik for a ∈ Σ and aik ∈ Σik. Now
LIK ⊂ Σ∗

IK (prefix-closed) describes a parameterised system.
To avoid pathological cases, we generally assume parameter
and index sets to be non empty.

For a cooperation between one partner of type F with two
partners of type G in Example 1 let

Φ{1}{1,2} = {fs11, fr11, fs12, fr12},
Γ{1}{1,2} = {gr11,gi11,gs11,gr12,gi12,gs12} and

Σ{1}{1,2} = Φ{1}{1,2} ∪ Γ{1}{1,2}.

fs12
gr12

gi12

gs12
fr12

fs11
gr11

gi11

gs11
fr11

Figure 2. Automaton for 1-2-cooperation L{1}{1,2}

A 1-2-cooperation, where each pair of partners coop-
erates restricted by L and each partner has to finish the

handshake it just is involved in before entering a new one,
is now given (by reachability analysis) by the automaton
in Figure 2 for L{1}{1,2}. It shows that one after another
client 1 runs a handshake either with server 1 or with
server 2. Figure 3 in contrast depicts an automaton for a
2-1-cooperation L{1,2}{1} with the same overall number of
partners involved but two of type F and one partner of
type G. Figure 3 is more complex than Figure 2 because
client 1 and client 2 may start a handshake independently of
each other, but server 1 handles these handshakes one after
another. A 5-3-cooperation with the same simple behaviour
of partners already requires 194.677 states and 1.031.835
state transitions (computed by the SH verification tool [25]).

fs11

fs21

fs21

gr11

fs11

gr21

gr11

gr21

gi11

fs21

gi21

fs11

gi11

gi21

fs21

gs11

fs11

gs21

gs11

gs21

fs21
fr11

fs11

fr21

gr21fr11

gr11

fr21

fr11

gi21

fr21

gi11

fr11

gs21

fr21

gs11

fr21

fr11

Figure 3. Automaton for the 2-1-cooperation L{1,2}{1}

For (i,k) ∈ I ×K, let π IK
ik : Σ∗

IK → Σ∗ with

π IK
ik (ars) =

{
a | ars ∈ Σik
ε | ars ∈ ΣIK \Σik

.

For uniformly parameterised systems LIK we generally
want to have

LIK ⊂
⋂

(i,k)∈I×K

((π IK
ik)−1(L))

because from an abstraction point of view, where only the
actions of a specific Σik are considered, the complex system
LIK is restricted by L.

In addition to this inclusion, LIK is defined by local
schedules that determine how each “version of a partner”
can participate in different cooperations. More precisely,
let SF ⊂ Φ∗, SG ⊂ Γ∗ be prefix closed. For (i,k) ∈ I ×

27Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

www.manaraa.com

K, let ϕ IK
i : Σ∗

IK → Φ∗ and γ IK
k : Σ∗

IK → Γ∗ with

ϕ IK
i (ars) =

{
a | ars ∈ Φ{i}K
ε | ars ∈ ΣIK \Φ{i}K

and

γ IK
k (ars) =

{
a | ars ∈ ΓI{k}
ε | ars ∈ ΣIK \ΓI{k}

,

where ΦIK and ΓIK are defined correspondingly to ΣIK .

Definition 1 (uniformly parameterised cooperation).
Let I, K be finite parameter sets, then

LIK :=
⋂

(i,k)∈I×K

(π IK
ik)−1(L)

∩
⋂

i∈I

(ϕ IK
i)−1(SF)∩

⋂

k∈K

(γ IK
k)−1(SG)

denotes a uniformly parameterised cooperation.

By this definition,

L{1}{1} = (π{1}{1}
11)−1(L)

∩ (ϕ{1}{1}
1)−1(SF)∩ (γ{1}{1}

1)−1(SG).

Because we want L{1}{1} being isomorphic to L by the
isomorphism π{1}{1}

11 : Σ∗
{1}{1} → Σ∗, we additionally need

(π{1}{1}
11)−1(L)⊂ (ϕ{1}{1}

1)−1(SF) and

(π{1}{1}
11)−1(L)⊂ (γ{1}{1}

1)−1(SG).

This is equivalent to πΦ(L) ⊂ SF and πΓ(L) ⊂ SG, where
πΦ : Σ∗ → Φ∗ and πΓ : Σ∗ → Γ∗ are defined by

πΦ(a) =
{

a | a ∈ Φ
ε | a ∈ Γ and πΓ(a) =

{
a | a ∈ Γ
ε | a ∈ Φ .

So, we complete Def. 1 by the additional conditions

πΦ(L)⊂ SF and πΓ(L)⊂ SG.

Schedules SF and SG that fit to the cooperations given
in Example 1 are depicted in Figs. 4(a) and 4(b). Here, we
have πΦ(L) = SF and πΓ(L) = SG.

fs

fr

(a) Schedule SF

gr

gi

gs

(b) Schedule SG

Figure 4. Automata SF and SG for the schedules SF and SG

The system LIK of cooperations is a typical example of a
complex system. It consists of several identical components
(copies of the two-sided cooperation L), which interact in a
uniform manner (described by the schedules SF and SG and
by the homomorphisms ϕ IK

i and γ IK
k).

Remark 1. It is easy to see that LIK is isomorphic to LI′K′

if I is isomorphic to I′ and K is isomorphic to K′. More
precisely, let ι I

I′ : I → I′ and ιK
K′ : K → K′ be bijections and

let ι IK
I′K′ : Σ∗

IK → Σ∗
I′K′ be defined by

ι IK
I′K′(aik) := aι I

I′ (i)ι
K
K′ (k)

for aik ∈ ΣIK .

Hence, ι IK
I′K′ is a isomorphism and ι IK

I′K′(LIK) = LI′K′ . The
set of all these isomorphisms ι IK

I′K′ defined by corresponding
bijections ι I

I′ and ιK
K′ is denoted by I IK

I′K′ .

To illustrate the concepts of this paper, we consider the
following example.

Example 2. We consider a system of servers, each of them
managing a resource, and clients, which want to use these
resources. We assume that as a means to enforce a given
privacy policy a server has to manage its resource in such
a way that no client may access this resource while it is
in use by another client (privacy requirement). This may be
required to ensure anonymity in such a way that clients and
their actions on a resource cannot be linked by an observer.

We formalise this system at an abstract level, where
a client may perform the actions fx (send a request), fy
(receive a permission) and fz (send a free-message), and
a server may perform the corresponding actions gx (receive
a request), gy (send a permission) and gz (receive a free-
message). The possible sequences of actions of a client resp.
of a server are given by the automaton SF resp. SG. The
automaton L describes the 1-1-cooperation of one client and
one server (see Figure 5). These automata define the client-
server system LIK .

1

2

6

3

5

47

8

fx

gx

gy

fy
fz

fxgz

gx
gz

gz

(a) 1-1-cooperation L

1 2

3

fx

fyfz

(b) Schedule SF

1 2

3 4

gx

gy
gz

gx

gz

(c) Schedule SG

Figure 5. Automata L, SF and SG for Example 2

IV. A CLASS OF LIVENESS PROPERTIES

Usually, behaviour properties of systems are divided into
two classes: safety and liveness properties [8]. Intuitively

28Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

www.manaraa.com

a safety property stipulates that “something bad does not
happen” and a liveness property stipulates that “something
good eventually happens”. In [8], both classes, as well as
system behaviour, are formalised in terms of ω-languages,
because especially for liveness properties infinite sequences
of actions have to be considered.

Definition 2 (linear satisfaction). According to [8], a prop-
erty E of a system is a subset of Σω . If S ⊂ Σω represents the
behaviour of a system, then S linearly satisfies E iff S ⊂ E.

In [8], it is furthermore shown that each property E is the
intersection of a safety and a liveness property.

Safety properties Es ⊂ Σω are of the form Es = Σω \FΣω

with F ⊂ Σ∗, where F is the set of “bad things”.
Liveness properties El ⊂ Σω are characterised by

pre(El) = Σ∗. A typical example of a liveness property is

El = (Σ∗M)ω with /0 6= M ⊂ Σ+. (1)

This El formalises that “always eventually a finite action
sequence m ∈ M happens”.

We describe system behaviour by prefix closed languages
B ⊂ Σ∗. So, in order to apply the framework of [8], we have
to transform B into an ω-language. This can be done by the
limit lim(B) [24]. For prefix closed languages B ⊂ Σ∗, their
limit is defined by

lim(B) := {w ∈ Σω |pre(w)⊂ B}.
If B contains maximal words u (deadlocks), then these u
are not captured by lim(B). Formally the set max(B) of all
maximal words of B is defined by

max(B) := {u ∈ B| if v ∈ B with u ∈ pre(v), then v = u}.
Now, using a dummy action #, B can be unambiguously
described by

B̂ := B∪max(B)#∗ ⊂ Σ̂∗,

where # /∈ Σ and Σ̂ := Σ∪{#}. By this definition, in B̂ the
maximal words of B are continued by arbitrary many #’s.
So, B̂ does not contain maximal words.

a

b
c

(a) Automaton for B

a

b
c

#

(b) Automaton for B̂

Figure 6. Automata for B and B̂

Let for example B be given by the automaton in Fig-
ure 6(a), then B̂ is given by the automaton in Figure 6(b).

By this construction, we now can assume that system
behaviour is formalised by prefix closed languages B̂ ⊂
Σ∗#∗ ⊂ Σ̂∗ without maximal words, and the corresponding
infinite system behaviour S ⊂ Σω is given by S := lim(B̂).

For such an S and safety properties E = Σ̂ω \FΣ̂ω with
F ⊂ Σ̂∗ it holds

S ⊂ E iff S∩FΣ̂ω = /0 iff pre(S)∩F = /0 iff B̂∩F = /0.

If F ⊂ Σ∗, then B̂∩F = /0 iff B∩F = /0. Therefore,

S ⊂ E iff B∩F = /0 for F ⊂ Σ∗. (2)

So, by (2) our approach in [22] is equivalent to the ω-
notation of safety properties described by F ⊂ Σ∗.

Linear satisfaction (cf. Def. 2) is too strong for systems
in our focus with respect to liveness properties, because S =
lim(B̂) can contain “unfair” infinite behaviours, which are
not elements of E.

Let for example I ⊃ {1,2} and K ⊃ {1}, then lim(L̂IK)∩
Σω
{1}{1} 6= /0, which means that infinite action sequences

exist, where only the partners with index 1 cooperate. So,
if a property specification involves actions of a partner
with index 2, as for instance E = Σ∗

IKΣ{2}{1}Σω
IK , then this

property is not linearly satisfied because lim(L̂IK) 6⊂ E.
Instead of neglecting such unfair infinite behaviours, we

use a weaker satisfaction relation, called approximate satis-
faction, which implicitly expresses some kind of fairness.

Definition 3 (approximate satisfaction). A system S ⊂ Σ̂ω

approximately satisfies a property E ⊂ Σ̂ω iff each finite
behaviour (finite prefix of an element of S) can be continued
to an infinite behaviour, which belongs to E. More formally,
pre(S)⊂ pre(S∩E).

In [9], it is shown, that for safety properties linear
satisfaction and approximate satisfaction are equivalent.

With respect to approximate satisfaction, liveness proper-
ties stipulate that “something good” eventually is possible.

Many practical liveness properties are of the form (1). Let
us consider a prefix closed language B ⊂ Σ∗ and a formal
language /0 6=M ⊂ Σ+. By definition 3 lim(B̂) approximately
satisfies (Σ̂∗M)ω iff each u ∈ B is prefix of some v ∈ B with

v−1(B)∩M 6= /0. (3)

If B and M are regular sets, then (3) can be checked by
usual automata algorithms [23] without referring to lim(B̂)∩
(Σ̂∗M)ω .

Let us now consider the prefix closed language L ⊂ Σ∗ of
example 2 and the “phase” P ⊂ Σ+ given by the automaton
P in Figure 7.

I II III IV V VI VII
fx gx gy fy fz gz

Figure 7. Automaton P

lim(L̂) approximately satisfies the liveness property

(Σ̂∗P)ω ⊂ Σ̂∗, because the automaton L in Figure 5(a)
is strongly connected and P ⊂ L. (4)

29Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

www.manaraa.com

(4) states that in the 1-1-cooperation lim(L̂) always even-
tually a “complete run through the phase P” is possible. This
is a typical reliability property.

Properties of the form (Σ̂∗M)ω with /0 6= M ⊂ Σ+ we call
always-eventually properties.

Let now /0 6= M̊ ⊂ Σ+
I̊K̊

with fixed finite index sets I̊ and
K̊. Then

(Σ̂∗
IKM̊)ω

is an always-eventually property for each finite index sets
I ⊃ I̊ and K ⊃ K̊. Using bijections on I̊ and K̊ this can easily
be generalised to each finite index sets I and K with |I| ≥ |I̊|
and |K| ≥ |K̊|, where |I| denotes the cardinality of the set
I. More precisely, let I I̊K̊

I′K′ be the set of all isomorphisms
ι I̊K̊
I′K′ : Σ∗

I̊K̊
→ Σ∗

I′K′ generated by bijections ι I̊
I′ : I̊ → I′ and

ι K̊
K′ : K̊ → K′ in such a way that

ι I̊K̊
I′K′(aik) := aι I̊

I′ (i)ι
K̊
K′ (k)

for aik ∈ ΣI̊K̊ . Then

(Σ̂∗
IKι I̊K̊

I′K′(M̊))ω

is an always-eventually property for each I ⊃ I′, K ⊃ K′ and
ι I̊K̊
I′K′ ∈ I I̊K̊

I′K′ . For finite index sets I̊, I, K̊ and K let

I [(I̊, K̊),(I,K)] :=
⋃

I′⊂I,K′⊂K

I I̊K̊
I′K′ .

Note that I [(I̊, K̊),(I,K)] = /0 if |I̊|> |I| or |K̊|> |K|.
Definition 4 (uniformly parameterised reliability property).
Let I̊, I, K̊ and K be finite index sets with |I̊| ≤ |I| and
|K̊| ≤ |K|. If /0 6= M̊ ⊂ Σ+

I̊K̊
, then the family

A M̊
IK := [(Σ̂∗

IKι I̊K̊
I′K′(M̊))ω]ι I̊K̊

I′K′∈I [(I̊,K̊),(I,K)]
.

is a strong uniformly parameterised always-eventually prop-
erty (uniformly parameterised reliability property).

We say that lim(L̂IK) approximately satisfies such a
family A M̊

IK iff lim(L̂IK) approximately satisfies each of the
properties (Σ̂∗

IKι I̊K̊
I′K′(M̊))ω for ι I̊K̊

I′K′ ∈ I [(I̊, K̊),(I,K)].

Remark 2. We use the adjective strong, because in [7]
uniform parameterisations of general properties are defined,
which, in case of always-eventually properties, are weaker
than definition 4.

Let us return to example 2 and let

P̊ := (π{1}{1}
11)−1P ⊂ Σ+

{1}{1} and

E̊ := (Σ̂{1}{1}
∗
P̊)ω ⊂ Σ̂{1}{1}

ω
. (5)

Because π{1}{1}
11 : Σ∗

{1}{1} → Σ∗ is an isomorphism, by (4)

lim(L̂{1}{1}) approximately satisfies E̊.
Now by definition 4 lim(L̂IK) approximately satisfies A P̊

IK
iff in lim(L̂IK) for each pair of clients and servers always
eventually a complete run through a phase P is possible.

V. COOPERATIONS BASED ON PHASES

The schedule SG of example 2 shows that a server
may cooperate with two clients partly in an interleaving
manner. To formally capture such behaviour, cooperations
are structured into phases [18]. This formalism is based on
iterated shuffle products and leads to sufficient conditions
for liveness properties (cf. Section VI).

Shuffling two words means arbitrarily inserting one word
into the other word, like shuffling two decks of cards. In
[21], this is formalised as follows:

A word w∈Σ∗ is called a shuffle of words w1, . . . ,wm ∈Σ∗

if the positions of w can be coloured using m colors so that
the positions with color i ∈ {1, . . . ,m}, when read from left
to right, form the word wi. Shuffle of a set P ⊂ Σ∗, is {w :
w is a shuffle of some w1, . . . ,wm ∈ P, for some m ∈N}.

However, we now provide an alternative formalisation,
which is more adequate to the considerations in this paper.

Definition 5 (iterated shuffle product). Let t ∈ N, and for
each t let Σt be a copy of Σ. Let all Σt be pairwise disjoint.
The index t describes the bijection a ↔ at for a ∈ Σ and
at ∈ Σt (which is equivalent to a colouring with color t in
the formalism of [21]). Let

ΣN :=
⋃

t∈N
Σt , and for each t ∈N

let the homomorphisms τNt and ΘN be defined by

τNt : Σ∗
N→ Σ∗ with τNt (as) =

{
a | as ∈ Σt
ε | as ∈ ΣN \Σt

and

ΘN : Σ∗
N→ Σ∗ with ΘN(at) := a for at ∈ Σt and t ∈N.

The iterated shuffle product P✁ of P is now defined by

P✁ := ΘN[
⋂

t∈N
(τNt)−1(P∪{ε})] for P ⊂ Σ∗.

It is easy to see that this is equivalent to the definition
from [21] above. Let for example P = {ab}. Now, according
to [21], the word w = aabb is a shuffle of two words
w1, w2 ∈ P because two colors, namely 1 and 2, can be
used to colour the word aabb so that w1 = w2 = ab ∈ P.
According to definition 5, aabb ∈ P✁ because aabb =
ΘN(a1a2b2b1) and τN1 (a1a2b2b1) = τN2 (a1a2b2b1) = ab ∈ P
and τNt (a1a2b2b1) = ε for t ∈N\{1,2}.

Following the ideas in [18], we structure cooperations into
phases.

Definition 6 (based on a phase). A prefix closed language
B ⊂ Σ∗ is based on a phase P ⊂ Σ∗, iff B = pre(P✁∩B).

If B is based on P, then B ⊂ pre(P✁) = (pre(P))✁ and
B = pre(P)✁∩B.

Let for example P = {ab} be given by the Automaton
P in Figure 8(a) and B be given by the automaton B in
Figure 8(b). Then P✁ ∩B = {ab}∗. This implies that B is
based on P.

30Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

www.manaraa.com

I II III
a b

(a) Automaton P for P= {ab}

a

b

(b) Automaton B for B

Figure 8. Automata P and B

Generally, each B is based on infinitely many phases. If B
is based on P, then B is based on P′ for each P′ ⊃ P. Each
B ⊂ Σ∗ is based on Σ because Σ✁ = Σ∗. Figure 9 shows how
we use phases to structure cooperations. The appropriate
phases for our purposes as well as closed behaviours (words,
in which all phases are completed) will be discussed in
Section VI.

time

interleaving
complexity

1

2

3

closed behaviour segment

closed behaviour

closed
behaviour

phase in
cooperation (i′′,k′)

✁

A records
open phases

all phases
are closed

(i,k). . .

(i′,k)

(i′′,k′) . . .

. . .

. . .

shuffle describes
interleaving

strategy to
close all
open phases

Figure 9. Phases and closed behaviours

We will now provide an automaton representation
✁

A for
P✁, which will illustrate “how a language B is based on
a phase P”. Let P ⊂ Σ∗ and A = (Σ,Q,∆,q0,F) with ∆ ⊂
Q×Σ×Q, q0 ∈ Q and F ⊂ Q be an (not necessarily finite)
automaton that accepts P. To exclude pathological cases we
assume ε /∈ P 6= /0. A consequence of this is in particular
that q0 /∈ F . Let NQ

0 denote the set of all functions from Q

in N0. For the construction of
✁

A the set NQ
0 plays a central

role. In NQ
0 we distinguish the following functions:

0 ∈NQ
0 with 0(x) = 0 for each x ∈ Q,

and for q ∈ Q the function

1q ∈NQ
0 with 1q(x) =

{
1 | x = q
0 | x ∈ Q\{q} .

As usual for numerical functions, a partial order as well
as addition and partial subtraction are defined.

For f ,g ∈ NQ
0 let f > g iff f (x) > g(x) for each x ∈ Q,

f + g ∈NQ
0 with (f + g)(x) := f (x)+ g(x) for each x ∈ Q,

and for f > g, f −g ∈NQ
0 with (f −g)(x) := f (x)−g(x) for

each x ∈ Q.

The key idea of
✁

A is, to record in the functions of NQ
0 how

many open phases are in each state q ∈ Q respectively. Its
state transition relation

✁

∆ is composed of four subsets whose
elements describe (a) the entry into a new phase, (b) the
transition within an open phase, (c) the completion of an
open phase, (d) the entry into a new phase with simultaneous
completion of this phase. With these definitions we now
define the shuffle automaton

✁

A.

Definition 7 (shuffle automaton).
The shuffle automaton

✁

A = (Σ,NQ
0 ,

✁

∆,0,{0}) w.r.t. A is an
automaton with infinite state setNQ

0 , the initial state 0, which
is the only final state and
✁

∆ :={(f ,a, f +1p) ∈NQ
0 ×Σ×NQ

0 |
(q0,a, p) ∈ ∆ and it exists (p,x,y) ∈ ∆} ∪

{(f ,a, f +1p −1q) ∈NQ
0 ×Σ×NQ

0 |
f > 1q,(q,a, p) ∈ ∆ and it exists (p,x,y) ∈ ∆} ∪

{(f ,a, f −1q) ∈NQ
0 ×Σ×NQ

0 |
f > 1q,(q,a, p) ∈ ∆ and p ∈ F} ∪

{(f ,a, f) ∈NQ
0 ×Σ×NQ

0 | (q0,a, p) ∈ ∆ and p ∈ F}.
Accepting of a word w ∈ Σ∗ is defined as usual [23].

Generally
✁

A is a non-deterministic automaton with an
infinite state set. In the literature, such automata are called
multicounter automata [21] and it is known that they accept
the iterated shuffle products [26]. For our purposes, deter-
ministic computations of these automata are very important.
To analyse these aspects more deeply we use our own
notation and proof of the main theorems. In [18], it is shown
that

✁

A accepts P✁.
Let for example P= {ab} (cf. Figure 8(a)). Then the states

f : Q →N0 of the automaton
✁

P are described by the sets
{(q,n) ∈ Q×N0| f (q) = n 6= 0}.

/0 a−→ {(II,1)} a−→ {(II,2)} b−→ {(II,1)} b−→ /0

is the only computation of aabb∈P✁ in
✁

P; it is an accepting
computation.

Example 3. Let L be defined by the automaton L in
Figure 5(a) and P ⊂ Σ+ be defined by the automaton P in
Figure 7, then L∩P✁ is accepted by the product automaton
of L and

✁

P that is given in Figure 10.
This automaton is strongly connected and isomorphic to

L (without considering final states), which proves that L
is based on phase P. The states (7,{(VI,1),(II,1)}) and
(8,{(VI,1),(III,1)}) show that L is “in this states involved
in two phases”.

Note that this product automaton, as well as the product
automaton in Figure 11(b) and 12(b), is finite and determin-
istic.

31Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

www.manaraa.com

(1, /0) (2,{(II,1)})

(6,{(VI,1)})

(3,{(III,1)})

(5,{(V,1)})

(4,{(IV,1)})(7,{(VI,1),(II,1)})

(8,{(VI,1),(III,1)})

fx gx

gy

fy

fz

fx

gz gx

gz

gz

Figure 10. Product automaton of L and
✁

P

VI. SUFFICIENT CONDITIONS FOR A CLASS OF
LIVENESS PROPERTIES

The following definition is the key to sufficient condi-
tions for strong uniformly parameterised always-eventually
properties.

Definition 8 (set of closed behaviours). Let B,M ⊂ Σ∗. M
is a set of closed behaviours of B, iff x−1(B) = B for each
x ∈ B∩M.

In Figure 10, the initial state (1, /0) is the only final state
of that strongly connected product automaton, so P✁ is a
set of closed behaviours of L.

Now, we get a sufficient condition for uniformly param-
eterised always-eventually properties.

Theorem 1. Let I, K, I̊ and K̊ be finite index sets with
|I̊| ≤ |I| and |K̊| ≤ |K|. Let LIK be a uniformly parameterised
system of cooperations and let CIK ⊂ Σ∗

IK be a set of closed
behaviours of LIK , such that LIK = pre(LIK ∩CIK).

If lim(L̂I̊K̊) approximately satisfies (Σ̂I̊K̊
∗
M̊)ω , with M̊ ⊂

Σ+
I̊K̊

, then

lim(L̂IK) approximately satisfies A M̊
IK .

For the proof of Theorem 1 see the appendix. The
following theorem gives a set of closed behaviours of LIK .

Theorem 2. Let P✁ be a set of closed behaviours of L and
let πΦ(P✁) resp. πΓ(P✁) be a set of closed behaviours of
SF resp. SG, then

CIK :=
⋂

(i,k)∈I×K

(π IK
ik)−1(P✁)

is a set of closed behaviours of LIK .

Theorem 2 is proven in [7]. We now show that πΦ(P✁)
is a set of closed behaviours of SF, which is given in
Figure 5(b). The automaton PF in Figure 11(a) is the
minimal automaton of πΦ(P)⊂ Φ+.

By Theorem 3, which is given in the appendix

SF∩πΦ(P✁) = SF∩ (πΦ(P))✁.

I

II III

IV

fx
fy

fz

(a) Automaton PF

(1, /0) (2,{(II,1)})

(3,{(III,1)})

fx

fyfz

(b) Product automaton of SF and
✁

PF

Figure 11. Automaton PF and product automaton of SF and
✁

PF

So, SF ∩πΦ(P✁) is accepted by the product automaton of
SF and

✁

PF that is depicted in Figure 11(b). By the same
argument as for the product automaton of L and

✁

P SF is
based on πΦ(P), and πΦ(P✁) is a set of closed behaviours
of SF.

Likewise, the automaton PG in Figure 12(a) is the mini-
mal automaton of πΓ(P)⊂ Γ+, SG∩πΓ(P✁) is accepted by
the product automaton of SG and

✁

PG in Figure 12(b), SG is
based on πΓ(P), and πΓ(P✁) is a set of closed behaviours
of SG.

I

II III

IV

gx
gy

gz

(a) Automaton PG

(1, /0) (2,{(II,1)})

(3,{(III,1)}) (4,{(III,1),(II,1)})

gx

gy
gz

gx

gz

(b) Product automaton of SG and
✁

PG

Figure 12. Automaton PG and product automaton of SG and
✁

PG

So, by Figure 10, 11(b) and 12(b) all assumptions of
Theorem 2 are fulfilled. (6)

Now to apply Theorem 1 together with Theorem 2 it remains
to find conditions such that each u ∈ LIK is prefix of some
v ∈ LIK ∩CIK . This set of closed behaviours CIK consists
of all words w ∈ Σ∗

IK , in which all phases are completed.
Considering example 2, we have shown that each phase

is initiated by an F-action (Figure 7), each F-partner is
involved in at most one phase (Figure 11(b)), and, each G-
partner is involved in at most two phases (Figure 12(b)).

Now to construct for each u ∈ LIK a v ∈ LIK ∩CIK with
u∈ pre(v) one may imagine that the following strategy could
work.

1) For each G-partner involved in two phases, complete
one of this phases.

2) For each G-partner involved in one phases, complete
this phase.

3) Complete the phases, where only an F-partner is in-
volved in.

32Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

www.manaraa.com

If L is based on P, SF based on πΦ(P) and SG based on
πΓ(P), then by Theorem 3 the assumptions of Theorem 2
imply L = pre(L∩P✁), SF = pre(SF∩πΦ(P✁)) and SG =
pre(SG∩πΓ(P✁)).

This is in [7] the starting point of a more general form
of such a “completion (of phases) strategy”, where also
“success conditions” for that strategy are given. It is shown,
that under certain regularity restrictions these conditions can
be verified by semi-algorithms based on finite state methods.
These restrictions are:

The product automata as in Figure 10, 11(b) and
12(b) must be finite and deterministic. (7)

We only get semi-algorithms but no algorithms, because
the product automata are constructed step by step and this
procedure does not terminate if the corresponding product
automaton is not finite.

Using (7), (3) and the Theorems 1 and 2, the approximate
satisfaction of uniformly parameterised always-eventually
properties can be verified by semi-algorithms based on finite
state methods. This verification method only depends on L,
SF, SG, P and M̊ and doesn’t refer to the general index sets
I and K.

In [7], it is shown that the success conditions are fulfilled
in example 2. So, by (4), Theorem 1, Theorem 2 and (6) in
example 2 lim(L̂IK) approximately satisfies A P̊

IK for each
finite index sets I and K, where P̊ is defined in (5).

VII. CONCLUSIONS AND FUTURE WORK

The main result of this paper is a finite state verification
framework for uniformly parameterised reliability proper-
ties. The uniformly parameterisation of reliability properties
exactly fits to the scalability and reliability issues of complex
systems and systems of systems, which are characterised by
the composition of a set of identical components, interacting
in a uniform manner described by the schedules of the
partners.

In this framework, the concept of structuring cooperations
into phases enables completion of phases strategies. Con-
sistent with this, corresponding success conditions can be
formalised [7], which produce finite state semi-algorithms
(independent of the concrete parameter setting) to verify re-
liability properties of uniformly parameterised cooperations.
The next step should be to integrate these semi-algorithms
in our SH verification tool [25].

Furthermore, we plan a generalisation of the presented
approach to systems whose global behaviour is composed of
behavioural patterns. The aim is, to eventually derive a set of
construction principles for reliable parameterised systems.

Another future work perspective is the application of the
approach presented in this paper to the Security Modeling
Framework (SeMF) [27]. In SeMF, beside system behaviour,
also local views of agents and agents knowledge about
system behaviour are considered.

ACKNOWLEDGEMENT

Roland Rieke developed the work presented here in the
context of the project MASSIF (ID 257475) being co-funded
by the European Commission within FP7.

APPENDIX

A. Basic Notations

The set of all infinite words over Σ is defined by

Σω = {(ai)i∈N|ai ∈ Σ for each i ∈N},
where N denotes the set of natural numbers. On Σω a
left concatenation with words from Σ∗ is defined. Let
u = b1 . . .bk ∈ Σ∗ with k ≥ 0 and b j ∈ Σ for 1 ≤ j ≤ k
and w = (ai)i∈N ∈ Σω with ai ∈ Σ for all i ∈ N, then
uw = (x j) j∈N ∈ Σω with x j = b j for 1 ≤ j ≤ k and x j = a j−k
for k < j. For w∈Σω the prefix set pre(w)⊂Σ∗ is defined by
pre(w) = {u∈ Σ∗| it exists v∈ Σω with uv=w}. For L ⊂ Σ∗

the ω-language Lω ⊂ Σω is defined by Lω = {(ai)i∈N ∈
Σω | it exists a strict monotonically increasing function f :
N → N with a1 . . .a f (1) ∈ L and a f (i)+1 . . .a f (i+1) ∈
L for each i ∈N} . f :N→N is called strict monotonically
increasing if f (i)< f (i+1) for each i ∈N.

B. Proof of Theorem 1

To prove Theorem 1 the following lemma is needed.

Lemma 1.

LIK ⊃ LI′K′ for I′×K′ ⊂ I ×K.

For the proof of Lemma 1 see [18] (proof of Theorem 1).
Proof: Proof of Theorem 1.

If lim(L̂I̊K̊) approximately satisfies (Σ̂I̊K̊
∗
M̊)ω , then by (3)

(with u = ε) there exists v ∈ LI̊K̊ with v−1(LI̊K̊)∩ M̊ 6= /0.
As ι I̊K̊

I′K′ is an isomorphism

ι I̊K̊
I′K′(LI̊K̊) = LI′K′ and

(ι I̊K̊
I′K′(v))−1(LI′K′)∩ ι I̊K̊

I′K′(M̊) 6= /0. (8)

As CIK is a set of closed behaviours of LIK and each
u ∈ LIK is prefix of some v ∈ LIK ∩CIK , there exists x ∈
u−1(LIK) with (ux)−1(LIK) = LIK .

By Lemma 1 LIK ⊃LI′K′ for each I′ ⊂ I and K′ ⊂ K, so
(ux)−1(LIK)⊃ LI′K′ .

Now (8) implies

(ι I̊K̊
I′K′(v))−1((ux)−1(LIK))∩ ι I̊K̊

I′K′(M̊) 6= /0. (9)

As (ι I̊K̊
I′K′(v))−1((ux)−1(LIK)) = (uxι I̊K̊

I′K′(v))−1(LIK), (9)
and (3) complete the proof of Theorem 1.

C. Homomorphism Theorem for P✁

Theorem 3 (homomorphism theorem for P✁).
Let µ : Σ∗ →Σ′∗ be an alphabetic homomorphism, then holds

µ(P✁) = (µ(P))✁.

For the proof of Theorem 3 see [7] (proof of Theorem 6).

33Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

www.manaraa.com

REFERENCES

[1] S. Bullock and D. Cliff, “Complexity and emergent behaviour
in ICT systems,” Hewlett-Packard Labs, Tech. Rep. HP-2004-
187, 2004.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.
Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin,
I. Stoica, and M. Zaharia, “Above the Clouds: A Berkeley
View of Cloud Computing,” EECS Department, University
of California, Berkeley, Tech. Rep. UCB/EECS-2009-28, Feb
2009.

[3] Z. Benenson, F. Freiling, T. Holz, D. Kesdogan, and L. Penso,
“Safety, liveness, and information flow: Dependability revis-
ited,” in Proceedings of the 4th ARCS International Workshop
on Information Security Applications, pp. 56–65.

[4] P. Wendell, J. W. Jiang, M. J. Freedman, and J. Rexford,
“Donar: decentralized server selection for cloud services,”
in Proceedings of the ACM SIGCOMM 2010 conference on
SIGCOMM, ser. SIGCOMM ’10. New York, NY, USA:
ACM, 2010, pp. 231–242.

[5] A. Shraer, C. Cachin, A. Cidon, I. Keidar, Y. Michalevsky,
and D. Shaket, “Venus: verification for untrusted cloud stor-
age,” in Proceedings of the 2010 ACM workshop on Cloud
computing security workshop, ser. CCSW ’10. New York,
NY, USA: ACM, 2010, pp. 19–30.

[6] A. Avizienis, J.-C. Laprie, B. Randell, and C. E. Landwehr,
“Basic Concepts and Taxonomy of Dependable and Secure
Computing,” IEEE Trans. Dependable Sec. Comput., vol. 1,
no. 1, pp. 11–33, 2004.

[7] P. Ochsenschläger and R. Rieke, “Behaviour Properties
of Uniformly Parameterised Cooperations,” Fraunhofer SIT,
Tech. Rep. SIT-TR-2010/2, 2010.

[8] B. Alpern and F. B. Schneider, “Defining Liveness,” Informa-
tion Processing Letters, vol. 21, no. 4, pp. 181–185, October
1985.

[9] U. Nitsche and P. Ochsenschläger, “Approximately Satis-
fied Properties of Systems and Simple Language Homomor-
phisms,” Information Processing Letters, vol. 60, pp. 201–
206, 1996.

[10] M. R. Clarkson and F. B. Schneider, “Hyperproperties,”
Computer Security Foundations Symposium, IEEE, vol. 0, pp.
51–65, 2008.

[11] C. N. Ip and D. L. Dill, “Verifying Systems with Replicated
Components in Murϕ ,” Formal Methods in System Design,
vol. 14, no. 3, pp. 273–310, 1999.

[12] F. Derepas and P. Gastin, “Model Checking Systems of
Replicated Processes with SPIN,” in Proceedings of the 8th
International SPIN Workshop on Model Checking Software
(SPIN’01), ser. Lecture Notes in Computer Science, M. B.
Dwyer, Ed., vol. 2057. Toronto, Canada: Springer, May
2001, pp. 235–251.

[13] Y. Lakhnech, S. Bensalem, S. Berezin, and S. Owre, “Incre-
mental Verification by Abstraction.” in TACAS, ser. Lecture
Notes in Computer Science, T. Margaria and W. Yi, Eds., vol.
2031. Springer, 2001, pp. 98–112.

[14] S. Basu and C. R. Ramakrishnan, “Compositional analysis for
verification of parameterized systems,” Theor. Comput. Sci.,
vol. 354, no. 2, pp. 211–229, 2006.

[15] R. Milner, Communication and Concurrency, ser. Interna-
tional Series in Computer Science. NY: Prentice Hall, 1989.

[16] J. C. Bradfield and C. Stirling, “Modal Logics and Mu-
Calculi: An Introduction,” in Handbook of Process Algebra,
J. A. Bergstra, A. Ponse, and S. A. Smolka, Eds. Elsevier
Science, 2001, ch. 1.4.

[17] T. E. Uribe, “Combinations of Model Checking and The-
orem Proving,” in FroCoS ’00: Proceedings of the Third
International Workshop on Frontiers of Combining Systems.
London, UK: Springer-Verlag, 2000, pp. 151–170.

[18] P. Ochsenschläger and R. Rieke, “Uniform Parameterisation
of Phase Based Cooperations,” Fraunhofer SIT, Tech. Rep.
SIT-TR-2010/1, 2010.

[19] M. Jantzen, “Extending Regular Expressions with Iterated
Shuffle,” Theor. Comput. Sci., vol. 38, pp. 223–247, 1985.

[20] J. Jedrzejowicz and A. Szepietowski, “Shuffle languages are
in P,” Theor. Comput. Sci., vol. 250, no. 1-2, pp. 31–53, 2001.

[21] H. Björklund and M. Bojanczyk, “Shuffle Expressions and
Words with Nested Data,” in Mathematical Foundations of
Computer Science 2007, 2007, pp. 750–761.

[22] P. Ochsenschläger and R. Rieke, “Security Properties of Self-
similar Uniformly Parameterised Systems of Cooperations,”
in Proceedings of the 19th Euromicro International Confer-
ence on Parallel, Distributed and Network-Based Computing
(PDP). IEEE Computer Society, February 2011.

[23] J. Sakarovitch, Elements of Automata Theory. Cambridge
University Press, 2009.

[24] D. Perrin and J.-E. Pin, Infinite Words. Elsevier, 2004, vol.
Pure and Applied Mathematics Vol 141.

[25] P. Ochsenschläger, J. Repp, and R. Rieke, “The SH-
Verification Tool,” in Proc. 13th International FLorida Ar-
tificial Intelligence Research Society Conference (FLAIRS-
2000). Orlando, FL, USA: AAAI Press, May 2000, pp.
18–22.

[26] J. Jedrzejowicz, “Structural Properties of Shuffle Automata,”
Grammars, vol. 2, no. 1, pp. 35–51, 1999.

[27] A. Fuchs, S. Gürgens, and C. Rudolph, “Towards a Generic
Process for Security Pattern Integration,” in Trust, Privacy
and Security in Digital Business, 6th International Confer-
ence, TrustBus 2009, Linz, Austria, September 3–4, 2009,
Proceedings. Springer, 2009.

34Copyright (c) IARIA, 2012. ISBN: 978-1-61208-184-7

ICONS 2012 : The Seventh International Conference on Systems

www.manaraa.com

P9
T O O L B A S E D F O R M A L M O D E L L I N G , A N A LY S I S
A N D V I S U A L I S AT I O N O F E N T E R P R I S E N E T W O R K
V U L N E R A B I L I T I E S U T I L I S I N G AT TA C K G R A P H
E X P L O R AT I O N

Title Tool based formal Modelling, Analysis and
Visualisation of Enterprise Network Vulner-
abilities utilising Attack Graph Exploration

Authors Roland Rieke

Publication In In U.E. Gattiker (Ed.), 13th Annual EICAR
Conference, 2004.

ISBN/ISSN ISBN ISBN 87-987271-6-8

URL http://sit.sit.fraunhofer.de/smv/

publications/download/Eicar-2004.pdf

Status Published

Publisher EICAR e.V.

Publication Type EICAR 2004 Conference CD-rom: Best Paper
Proceedings

Copyright 2004, EICAR e.V.

Contribution of
Roland Rieke

Author and presenter at the Eicar Confer-
ence 2004.

Table 14: Fact Sheet Publication P9

Publication P9 [Rieke, 2004b] addresses the following research ques-
tions:

RQ5a How can exploitation possibilities of networked systems’ vulnerabil-
ities be analysed?

RQ5b How can attacker behaviour be incorporated into the system model
and the analysis?

RQ5c Which attacks would not be detected?

A core concern of critical infrastructure protection is a careful anal-
ysis of what parts of the information infrastructure really need pro-
tection and what are the concrete threads as well as an evaluation of
appropriate protection measures.

In this paper a methodology and a tool for the development and
analysis of operational formal models is presented that addresses

293

http://sit.sit.fraunhofer.de/smv/publications/download/Eicar-2004.pdf
http://sit.sit.fraunhofer.de/smv/publications/download/Eicar-2004.pdf

www.manaraa.com

analysis of enterprise network vulnerabilities

these issues in the context of network vulnerability analysis. A graph
of all possible attack paths is automatically computed from the model
of a government or enterprise network, of vulnerabilities, exploits
and an attacker strategy. Based on this graph, security properties are
specified and verified, abstractions of the graph are computed to vi-
sualise and analyse compacted information focussed on interesting
aspects of the behaviour and cost-benefit analysis is performed. Sur-
vivability comes into play, when system’s countermeasures and the
behaviour of vital services it provides are also modelled and effects
are analysed.

294

www.manaraa.com

This is an author-created version of the following work: Rieke, R. (2004). Tool based formal
Modelling, Analysis and Visualisation of Enterprise Network Vulnerabilities utilising Attack
Graph Exploration. In U.E. Gattiker (Ed.), EICAR 2004 Conference CD-rom: Best Paper
Proceedings (ISBN: 87-987271-6-8) 31 pages. Copenhagen: EICAR e.V., c© 2004 EICAR e.V.

Tool based formal Modelling, Analysis and Visualisation of
Enterprise Network Vulnerabilities utilising Attack Graph
Exploration

Roland Rieke
Fraunhofer - Institute Secure Telecooperation, Germany

Mailing Address: Fraunhofer - Institut Sichere Telekooperation, Rheinstrasse
75, D-64295 Darmstadt, Germany ; E-Mail: roland.rieke@sit.fraunhofer.de

Descriptors
critical infrastructure protection, attack simulation, verification tool, security
properties, survivability analysis, cost-benefit analysis, intrusion detection, coun-
termeasure evaluation, critical services, risk assessment

www.manaraa.com

. .

Tool based formal Modelling, Analysis and Visualisation of Enterprise
Network Vulnerabilities utilising Attack Graph Exploration

Abstract
A core concern of critical infrastructure protection is a careful analysis of what
parts of the information infrastructure really need protection and what are the
concrete threads as well as an evaluation of appropriate protection measures.

In this paper a methodology and a tool for the development and analysis
of operational formal models is presented that addresses these issues in the
context of network vulnerability analysis.

A graph of all possible attack paths is automatically computed from the
model of a government or enterprise network, of vulnerabilities, exploits and
an attacker strategy.

Based on this graph, security properties are specified and verified, abstrac-
tions of the graph are computed to visualise and analyse compacted informa-
tion focussed on interesting aspects of the behaviour and cost-benefit analysis
is performed.

Survivability comes into play, when system´s countermeasures and the be-
haviour of vital services it provides are also modelled and effects are analysed.

Introduction

Todays public, government and enterprise networks are facing a cumulation
of risks because a multitude of more or less critical vulnerabilities to system
security are found every month. At the same time, the published malicious
incidents increase in scope and severity. On the other hand, technological
advancements in anti-virus software, firewalls and intrusion detection systems
provide a broad palette of proactive defence measures for network protection
and impact reduction. The increasing complexity of the network structures and
possible protection strategies on one hand and the attack possibilities on the
other hand require tool based methods, to guide a systematic evaluation and
assist the persons in charge with finally determining exactly what really needs
protection and which strategy and means to apply.

A typical means by which an attacker tries to break into a network is, to
use combinations of basic exploits to get more information or more credentials
and to capture more hosts step by step. To find out if there is a combination
that enables an attacker to reach critical network resources or block essential
services it is required, to analyse all possible sequences of basic exploits so
called attack paths. It is also important, to find out which protection could block
successful attack paths most efficiently or at least detect attack attempts in an
early phase.

2

www.manaraa.com

. .

For this type of vulnerability analysis, an operational formal model is pre-
sented that represents the information system and the behaviour of an at-
tacker. In more detail, it comprises a model of the enterprise network structure
and configuration including intrusion detection components, a model of vulner-
abilities and corresponding basic exploits, a model of attacker capabilities and
profile, and optionally a model of the system’s countermeasures.

Based on that model, a reachability graph representing the complete sys-
tem behaviour is automatically computed. Because this graph in the presented
application scenario represents all possible attack paths, it is called attack
graph in the following text. Now security properties can be specified and veri-
fied on the computed behaviour of the model.

The applied verification method is based on formal methods and is imple-
mented in the SH verification tool (Ochsenschläger et al., 1999, 2000a) that
has been adapted and extended to support the presented attack graph analy-
sis methods.

Questions relating to security properties that can be answered by analysing
the attack graph include the following:

Q 1 What security goals can be broken by a combination of a set of basic
exploits selected as attacker profile ?

Q 2 Find the biggest sources of trouble in the system based on vulnerability-
priorities network-structure and possible attack-patterns. Is there a criti-
cal host or vulnerability on all paths to some attacker goal ?

Q 3 Quick check of “am I affected” by a newly found vulnerability and what
new attack-combinations/patterns are possible when adding this vulner-
ability ?

Q 4 What are the effects of changes to the network configuration on overall
vulnerability ?

If the model additionally includes specifications of intrusion detection com-
ponents, then their behaviour and required coaction to recognise attacks, even
when evidence is scattered over several hosts, can be analysed.

Common questions concerning intrusion detection are:

Q 5 What attacks are detected ?

Q 6 What are the effects of changes to intrusion detection systems on overall
detection of attacks ?

Abstractions of the attack graph can be computed to visualise and analyse
compacted information focussed on interesting aspects of the behaviour. The

3

www.manaraa.com

. .

mappings used to compute the abstracted behaviour have to be property pre-
serving, to assure that properties are transported as desired from a lower to a
higher level of abstraction and no critical behaviour is hidden by the mapping.

Aspects that can be visualised using appropriate abstractions on the attack
graph are for example:

Q 7 How does the attack graph look like when only attacks that give the at-
tacker new root access are shown (focussing on gain of credentials) ?

Cost-benefit analysis can be performed based on costs assigned to the
atomic exploits representing level of effort for the attacker and benefits regard-
ing relative importance of the captured hosts. Typical questions concerning
cost-benefit are:

Q 8 What is the attack with the least costs breaking a given security prop-
erty ?

Q 9 How much impact can an attacker produce given that he applies a given
set of atomic exploits ?

Q 10 What is the optimal position of given intrusion detection systems regard-
ing cost benefit balance ?

Liveness (in this context often called survivability) comes into play, if part
of the behaviour of the enterprise network is also modelled. Analysing effects
of countermeasures the system performs under attack or the behaviour of vital
services it provides is possible. Careful modelling on an adequate abstraction
level is required here to avoid typical state space explosion problems.
A typical liveness questions is:

Q 11 Is a client still able to get answers from a DB-server when the enterprise
network is under attack ?

Some remarks on the remainder of this paper:
The first step in critical infrastructure protection is, to identify the organi-

sation’s critical infrastructures and to determine the threats against those in-
frastructures. This process is described in the next section particularly with
regard to network vulnerability analysis. For this purpose, the components to
be specified for modelling an attack scenario are described in detail.

The next step in critical infrastructure protection is, to analyse the vulner-
abilities of the threatened infrastructure, to assess the risks of degradation or
loss of a critical resources as well as to evaluate the effects of the application
of countermeasures where risk is unacceptable. To support that process in
the given context, in the subsequent section a methodology for the analysis of
an attack graph is presented that helps to reveal complex attack combinations

4

www.manaraa.com

. .

and supports the systematic evaluation of possible solutions to minimise risk
with given resources.

In the last section an example scenario is presented and the dynamic be-
haviour of different variants is analysed. Finally some related work is com-
mented, conclusions from this work are drawn and further research goals are
sketched.

Modelling an attack scenario

In this section the information model used and the formal analysis and ver-
ification methods and the tool are described, the required specifications are
explained in detail and the computation of the attack graph is outlined. Fig-
ure 1 shows an overview of the components used to specify the model of the
enterprise network system under attack.

- service implementation
 denial of service attacks, ...
 shut down other services,
 send wrong or misleading information,
- shut down intrusion detection,
 change configuration, reduce impact
 actively prevent intrusion,
- strategy, tools, components to

critical services

impact simulation,

system defence,

- ports reachable through firewall
- connections between hosts

network structure

- position of IDS
 types and properties
- intrusion detection system

intrusion detection

- worth of host for cost-benefit analysis
 if he captures the host
- information an attacker gains
- trust relation to other hosts
- services provided
- products installed (-> vulnerabilities)

(representative) hosts

- ranking of exploits and hosts
- credentials (access rights)
- known exploits and hosts

- knowledge, strategy -

 attacker

 (for cost-benefit analysis)
- cost of exploit
- based on vulnerabilities

exploits

- impact
 (vulnerable products,...)
- preconditions
- unique identifier

vulnerabilities

 specification concept
- flexible operational
 automata (APA)
- asynchronous product

- components and behaviour -

formal specification of system

state transitions
optional

state transitions
possible

state transitions
restrictions to

state transitions
monitoring of

of state transitions
restrictions to applicability

Figure 1. Components of the model

Information model

To model the enterprise network, the vulnerabilities and the intrusion detection
systems, a data model loosely resembling the M2D2 information model (Morin
et al., 2002) is used. M2D2 is a formally defined model for information related
to the characteristics of the monitored information system, information about
the vulnerabilities, information about the security tools used for the monitoring,

5

www.manaraa.com

. .

and information about the events observed. Appropriate parts of this model
are adopted and supplemented by concepts needed for description of exploits,
attacker knowledge and strategy and information for cost benefit analysis.

Modelling hosts and network topology
The set of all hosts of the information system consists of the union of the hosts
of the enterprise network and the hosts of the attacker(s).

A somewhat abstracted view is used for the representation of network topol-
ogy including firewalls in the information model. A relation stating what port on
what host is reachable from one another is used as network model. The model
is very flexible, so that this implicit representation may be changed to a more
explicit representation of firewalls easily if this turns out to be useful.

Modelling products, vulnerabilities and host configurations
Following the M2D2 model products are the primary entities that are vulnera-
ble. A host configuration is a subset of products that is installed on that host
and affects is a relation between vulnerabilities and sets of products that are
affected by a vulnerability. A host is vulnerable if its configuration is a superset
of a vulnerable set of products. Additionally to the installed products a host
configuration contains information about what services are currently running
and on what ports they are listening.

The vulnerabilities are represented in form of specifications representing
a (sub)set of common vulnerabilities and exposures CVE/CAN that MITRE
(see http://cve.mitre.org/) provides to support standardisation of names for all
publicly known vulnerabilities and security exposures. These specifications
additionally include preconditions about the target host as well as network pre-
conditions and describe effects that the vulnerabilities have on the attacker and
possibly on the network and target host.

Representative hosts
When analysing a complex enterprise network one usually faces a state space
explosion problem because all possible combinations of exploits on all possi-
ble hosts have to be explored. Therefore it is advantageous to subsume all
groups of hosts that have the same configuration, run the same products and
are reachable with the same restrictions and that exhibit the same behaviour
to one representative host for each such group. In the following text the term
host will be used as a synonym referring to this representative host. What is
suggested here, is to have an abstraction layer between the real enterprise
network and the network of representative hosts that still contains all relevant
attacks but reduces equivalent combinations. This abstraction could also be
applied later after analysing the complete behaviour of the system by using

6

www.manaraa.com

. .

an appropriate mapping but analysis takes much longer then because all se-
quences of possible combinations have to be computed.

Summarising representative hosts
An extension of the above sketched strategy (if the network is still too big for
analysis) is to summarise hosts that are reachable with the same restrictions
and add up their vulnerabilities to create a representative host with merged
vulnerabilities of all summarised hosts. In this case some attacks may be found
that are not possible in the real network and the decision if this approximation of
system behaviour is good enough for analysis is up to the modeller. A strategy
could be, to start with only one representative host per operating system that
is configured to have installed all vulnerable products that the enterprise uses
(for that operating system) and after that analysis go to a finer granularity as
long as the computed state space is still manageable.

Automated generation of formal specifications ?
Note that it would be desirable to have an automated generation of formal
specifications of system configuration directly derived from the output that net-
work scanner tools like Nessus (see http://www.nessus.org/) provide.

Furthermore vulnerability specifications could be derived from vulnerabil-
ity database information that for instance ICAT (see http://icat.nist.gov/) pro-
vides. First step would be to find a good structure and means for a for-
mal description of vulnerabilities that can be used to collect a database of
all known vulnerabilities. An agreed upon formal (and tool readable) descrip-
tion of intruder/host/service/network-preconditions and effects of exploitation
would have to be developed. An international project like the CAMDIER pro-
posal (Gattiker et al., 2003) might tackle such a task.

Operational specification of the behaviour

The modelling of the behaviour of the given information model is based on
asynchronous product automata (APA), a flexible operational specification con-
cept for cooperating systems (Gürgens et al., 2002a). An APA consists of a
family of so called elementary automata communicating by common compo-
nents of their state (shared memory). APA are formally defined in figure 2.

7

www.manaraa.com

. .

Formally an Asynchronous Product Automaton consists of a family of State Sets
ZS, S ∈ S, a family of Elementary Automata (Φe, ∆e), e ∈ E and a Neighbourhood
Relation N : E→ P(S); P(X) is the power set of X and S and E are index sets with
the names of state components and elementary automata. For each Elementary
Automaton (Φe, ∆e) with Alphabet Φe, ∆e ⊆ ��S∈N(e)(ZS) ×Φe × ��S∈N(e)(ZS) is
its State Transition Relation. For each element of Φe the state transition relation
∆e defines state transitions that change only the state components in N(e). An
APA’s (global) States are elements of ��S∈S(ZS). To avoid pathological cases it
is generally assumed that S =

⋃
e∈E(N(e)) and N(e) 6= ∅ for all e ∈ E. Each APA

has one Initial State s0 = (q0S)S∈S ∈ ��S∈S(ZS). In total, an APA A is defined by
A = ((ZS)S∈S, (Φe, ∆e)e∈E, N, s0).
The behaviour of an APA is represented by all possible sequences
of state transitions starting with initial state s0. The sequence
(s0, (e1, a1), s1)(s1, (e2, a2), s2)(s2, (e3, a3), s3) . . . with ai ∈ Φei represents
one possible sequence of actions of an APA.
State transitions (s, (e, a), s̄) may be interpreted as labeled edges of a directed
graph whose nodes are the states of an APA: (s, (e, a), s̄) is the edge leading
from s to s̄ and labeled by (e, a). The subgraph reachable from the node s0 is
called the reachability graph of an APA.

Figure 2. APA definition

APA state components representing the information model
The information model described above is specified for the proposed analysis
method using the following APA state components:

S 1 a specification of the enterprise network topology and host configurations

• reachability of ports on all hosts

• trust relations between hosts

• knowledge available at each host that might be valuable for an at-
tacker as for example ip-numbers of other reachable hosts

• services running on each host

• installed products on each host

S 2 a specification of vulnerabilities of products
⇒ leads to a specification of vulnerabilities for each host S 2’ when
combined with products installed on each host specified above

8

www.manaraa.com

. .

S 3 a specification of attacker knowledge and strategy

S 4 a specification of installed intrusion detection components

S 5 cost benefit ratings, when evaluation about relative values is intended

These specifications are represented in the data structures and initial con-
figuration of the state components in the APA model (see figures 3 and 4).

Modelling attacker and system behaviour
APA state transitions are used to represent atomic exploits and optionally ac-
tions the enterprise network system can take to defend itself or to implement
vital services (see figures 3 and 4).

- service action
- system defence operation,
- basic exploit,
- preprocessing,

State transition

next configuration
Information model APA state components’

APA state transition

APA state components
(initial) configuration
Information model

represented by

repesented by

Figure 3. Representation of the information model using APA

State transition pattern notation for APA
For the definition of the state transition relation of an elementary automaton
e ∈ E, one has to specify all states of components C ∈ N(e) (state components
belonging to e) where e is active, i.e. can perform a state transition, and the
changes of the states caused by the state transition. APA transition pattern
notation is formally defined in (Gürgens et al., 2002b).

A specification of a state transition pattern consists of the name of the
transition pattern, a role identifier, some predicates for the conditions to be
checked and some expressions to describe the changes in the neighbour state
components.

A state transition can occur when all expressions are evaluable and all con-
ditions are satisfied. All possible variants of bindings of variables to elements
of the state components are generated automatically, so if for example a com-
ponent contains different hosts and a variable is used to represent a chosen

9

www.manaraa.com

. .

source host and another variable is used for an arbitrary target host of an ex-
ploit then all possible combinations of source and target host are computed
and further evaluated.

APA state transition patterns specify attacker and system behaviour
This paper is primarily concerned with using state transition patterns to model
attacker behaviour but as a possible extension other types of state transition
patterns are also considered that can be used to model the behaviour of en-
terprise network components. To reflect the different purposes of the state
transitions three different types are distinguished here. They are characterised
by the role that is associated with the transition type. An instance of a transi-
tion furthermore has a name to identify it; this can be for example the name of
the exploit it specifies.

T Attacker Exploit specifications of atomic exploits based on the given vul-
nerabilities model the actions an attacker can take in arbitrary order; note
that more than one attacker can act in that role

T Defence Operation specify a model for system defence strategy, tools and
components (optional)

T Service Action a model of critical services the system provides (optional)

For a state transition pattern T Attacker Exploit modelling an exploit, a
template structure was developed, so that additional exploits can easily be
added following that layout. This template can serve as a basis to develop an
automatic mechanism that generates such patterns from a knowledge base
containing specifications of the known exploits.

In contrast to the generic nature of T Attacker Exploit , the state transi-

tion patterns T Defence Operation and T Service Action are individual for
the modelled enterprise network, therefore no specific structure is assumed
here. They reflect the state changes triggered by the respective operations.

Structure of state transition patterns for atomic exploits
Figure 4 shows a graphical representation of the template for T Attacker Exploit
including the neighbourhood relation (depicted by the edges) to the state com-
ponents S1 - S5 (depicted by the circles) listed in the information model
above.

10

www.manaraa.com

. .

one state component for each attacker

S3

IDS_Configuration IDS_Alert_Log

Host_Vulnerabilities

Attacker_known_Exploits
Attacker_Knowledge

Host_Services

User_Cooperation_Log

Host_Knowledge

Attacker_Credentials

Host_Reachability

Cost_Benefit_Ratings

Trust_Relations

S1

Exploit

E7: impact on network and host

E6: assignment of cost benefit ratings

E5: intrusion detection check

E4: transfer of knowledge from target host to attacker

E3 check if the target host is currently vulnerable

E2: selection of source and target hosts

E1: check that the attacker knows this exploit

S4 S5

S2’

 of attack graph)

(postprocessing

Accumulated_Cost_Benefit

Role: Attacker

Figure 4. Transition pattern template for exploit modelling

According to this template, a state transition pattern modelling an exploit is
constructed from the role identifier, here Attacker the name of the transition
pattern which is identical to the name of the exploit and a body that comprises
the following expressions:

E 1 a check that the attacker knows this exploit;
this is determined by an initial configuration that can be given directly or
computed from a given set of exploits

E 2 a selection of source and target hosts for the exploit

• the source host is chosen from the host set the attacker already has
adequate access to (in some cases the target also needs access to
the source host for example to read a Trojan web page)

• the target host is chosen so that if the exploit succeeds the attacker
will win some credentials or additional knowledge
⇒ induces monotone growing attacker knowledge (no cycles in at-
tack graph), therefore reduces complexity (see also (Ammann et al.,
2002))

11

www.manaraa.com

. .

E 3 a check if the target host is vulnerable as stated in the specification of the
vulnerabilities needed by this exploit (possibly multiple different exploits
can be based on the same vulnerability)

E 4 the transfer of knowledge from target host to attacker;
it has to be decided how to cope with changing knowledge of the cap-
tured host; is knowledge transferred once the host is captured or is a
link from attacker to host knowledge inserted, so that the attacker always
gets the updated contents ? Is attacker knowledge ever invalidated or is
knowledge only valid for a time interval ? These questions influence the
attack graph and may lead to cycles.

E 5 an intrusion detection check for that exploit

E 6 an assignment of cost benefit ratings to this exploit

E 7 an expression to implement the additional impact on the network and
host ; for example, to shut down or manipulate a host based intrusion
detection system

The vulnerabilities checked in step E 3 above are represented in form of
specifications representing the CVE/CAN vulnerabilities. These specifications
include preconditions about the target host as well as network preconditions
and describe effects that the vulnerabilities have on the attacker and possibly
on the network and target host. A vulnerability is described by expressions
with the following structure:

V 1 a check if the target host is configured vulnerable

• the target host has installed a product or products that are vulnera-
ble with respect to the given vulnerability
• if necessary other preconditions are checked; for example, it could

be essential for a vulnerability that a trust relation is established (as
for example used in remote shell hosts allow/deny concepts)

V 2 a check if the target host is currently running the respective products (for
example a vulnerable operating system or server version);
if a user interaction is required this includes a check if the vulnerable
product is currently used (for example a vulnerable internet explorer)

V 3 a check for necessary network preconditions, including a check if the
target host is reachable on the port the vulnerable product is using from
the host the attacker selected as source
⇒ this implicitly includes firewall rules (the model could be extended to
explicitly model firewalls through extra transitions but this would blow up
the state space significantly)

12

www.manaraa.com

. .

V 4 an expression to cover the effects for the attacker ; for example, to obtain
additional user or root credentials on the target host

V 5 an expression to implement the direct impact on the network and host ;
for example, to shut down a service caused by buffer overflow

Attacker knowledge and behaviour
Attacker capabilities are modelled by the knowledge of exploits and hosts and
the credentials on the known hosts that constitute the attackers profile. Knowl-
edge of hosts changes during the computation of the attack graph because the
attacker might gain new knowledge when capturing hosts. For example, if the
attacker captures a portal or a host used as a firewall or a gateway he gets all
information this host has. On the other hand, some knowledge may become
outdated because the enterprise system changes ip-numbers or other con-
figuration of hosts and reachability. Several different attackers can easily be
included because an attacker is modelled as a role not a single instance and
the tool can automatically generate multiple instances from one role definition.
Optionally it is possible to specify extra transitions modelling an assumed im-
pact an attacker might produce as for example shut down intrusion detection
systems, send wrong or misleading information, shut down other services, de-
nial of service attacks or other actions. But all this blows up the computation
space and should be carefully used.

Monotonicity and invalid knowledge
It is not clear what is the best strategy to cope with dynamically changing con-
figuration of hosts. To try keep the attacker knowledge monotone growing and
get an attack graph without loops it is useful to model the knowledge as appli-
cable only for some time interval but then if for example a host could change
its ip-address arbitrarily the attack graph always grows with each change.

Assembling components of the model

The applied specification method based on asynchronous product automata
(APA) is supported by the SH verification tool developed at “Fraunhofer-Institute
Secure Telecooperation” (Ochsenschläger et al., 1999, 2000a). This tool pro-
vides components for the complete cycle from formal specification to exhaus-
tive validation. The tool has been adapted and extended for the presented field
of application.

The project management of the SH verification tool allows to select alterna-
tive parts of the specification and automatically “glues” together selected parts
of the specified components (see figure 1) to generate a combined model of

13

www.manaraa.com

. .

enterprise network specification, vulnerability and exploit specification and at-
tacker specification. This can be used to answer Q 2 , Q 3 and Q 4 (see
introduction). A very flexible selection of variants of analysis scenarios is imple-
mented. The components are listed in a project tree and can be (de)activated
by mouse-click. So it is easy for example to exchange libraries of specified
vulnerabilities and exploits to analyse different versions and combinations of
formal models and even compare different computed attack graphs or abstrac-
tions thereof in the analysis component of the tool.

Computation of attack graphs

After an initial configuration is selected, the attack graph (reachability graph) is
automatically computed by the SH verification tool according to the definition
in figure 2.

Two extra transitions that have turned out to be very useful have been in-
cluded in the model as preprocessing steps. One computes the vulnerabilities
per host from the information on products installed per host and vulnerabilities
per product, the other generates a set of known exploits for the attacker(s) from
a given algorithm. If for example it is assumed that the attacker knows 3 dif-
ferent exploits, then all combinations of 3 exploits from the set of all specified
exploits have to be computed and further analysed.

To stop computation automatically when specified conditions are reached
(or invariants are broken), so called break conditions can be specified using
regular expressions. A violation of a security property for example, can in
many cases be specified as a break condition.

For a quick check if something went wrong with the definition of the model,
some statistic information is collected during computation of the graph. It can
be used to find out, what state transitions appeared how often and what differ-
ent values have been assigned to the state components during the computa-
tion.

Analysis of an attack graph

The main purpose of attack graph analysis is, to provide support for the per-
sons in charge to assess the risks and the effects of possible countermeasures
for the threatened network infrastructure.

The methodology for the analysis of an attack graph presented here that is
outlined in figure 5 supports that process. It assists in revealing complex attack
combinations and supports the systematic evaluation of possible solutions to
minimise risk with given resources.

14

www.manaraa.com

. .

 pattern textually
- using APA defined by transition
- using graphical defined APA
 functions defined in preamble
- using datastructures and

and state transitions
specify system components

 ’glued’ together
- selected components are automatically
 structuring
- project manager supports hierarchical

set initial configuration
selected active components &

- specify security invariants to stop analysis
- fully automatic computation

- represented as attack graph -
generate partial or complete system behaviour

- use as high level debugging
- visualise simulation paths

system behaviour interactively
explore interesting parts of the

- using temporal logic component
- using regular search expressions

specify and check security properties

- visualise abstract view
- compute abstract behaviour
- support by special editor

specify abstractions

 for each graph node based on shortest path analysis
- automatically compute accumulated cost benefit values
- assign benefit (for attacker) based on impact costs
- assign costs to basic transitions (exploits)

perform cost benefit analysis

 like MITRE/ICAT
 and (formal) vulnerability descriptions
- generate state transitions from databases
 scanners like Nessus
 from output of network and security
- generate datastructures and functions

system components and state transitions
tool-based generation of specification of

not yet

Figure 5. Computation and analysis of attack graphs

In the following paragraphs it is shown how to find answers to the questions
posed in the introduction through analyses that can be accomplished after an
attack graph is successfully computed. Many other interesting evaluations can
be performed without question.

Finding violations of security properties

Security is not a singular property of a system. Depending on precisely what
capabilities an attacker has, different properties for the system model have to
be proven.

Formal specification of properties
System properties that are explicitly given by break-conditions can be checked
during computation of the attack graph. Alternatively, security properties given

15

www.manaraa.com

. .

in form of search queries, Büchi-automata or temporal logic formulae can be
verified after the graph is computed.

Finding states violating a safety (security) property
If a security property can be specified by a regular expression so that it is
possible to check for a violation by inspecting a single node or edge then the
property can be proven by a simple “search query” on the reachability graph.
Often this can be supported in the model by collecting necessary information
during the computation of the graph.

Model checking
If it is required to inspect some or all paths of the graph to check for the violation
of a security property, as it is usually the case for liveness properties, then the
temporal logic component of the SH verification tool can be used. Temporal
logic formulae can also be checked on the abstract behaviour (under a simple
homomorphism). A method for checking approximate satisfaction of properties
fits exactly to the built-in simple homomorphism check (Ochsenschläger et al.,
1999).

These methods provide appropriate support to answer question Q 1 from the
introduction and are also helpful to research into many other questions.

Abstraction and visualisation of attack graphs

Abstraction capabilities of the SH verification tool support the definition of map-
pings, summarising or omitting transitions in the attack graph. The result is
a view focussed on some interesting aspect of the behaviour of the system.
Technically this is implemented as a computation of the minimal automaton
for an abstraction of the reachability graph that is specified via alphabetic lan-
guage homomorphisms (Ochsenschläger et al., 2000b).

It is possible for example, to map multiple exploits with the same effects
onto the same subsuming activity like “get-root-access”. This can be used to
answer questions like Q 7 from the introduction. Another example is, to omit
all exploits that are not detected by some intrusion detection component, in or-
der to get a graph showing only the traces that an attack correlation component
would see. Abstractions can also be defined using predicates. It is possible
for example, to omit all transitions below a certain cost-benefit ratio using an
appropriate predicate.

16

www.manaraa.com

. .

Analysing IDS pattern detection

The transition patterns representing atomic exploits are modelled to include
the behaviour of intrusion detection components, therefore their behaviour and
their coaction to recognise attack pattern can be analysed. This helps to an-
swer the question Q 5 (What attacks are detected ?) from the introduction.

Detections that are directly related to an atomic exploit are visible in the
attack graph, because an intrusion detection check E 5 is included in each
transition modelling an atomic exploit.

In more complex cases, evidence of attacks against the network is scat-
tered over several atomic exploits on one host or several different hosts. The
installed intrusion detection systems therefore have to collect and correlate
information from different sources (Krügel and Toth, 2002).

Analysing the attack graph with regard to the required security properties
leads to a detection of the paths that violate those properties. Abstraction
helps to filter out the information concerning intrusion detection and gives a
graph that visualises the correlation that is required to detect these violations.
Now a scheme of coaction of intrusion detection components to detect this
malicious behaviour or a superordinated component that checks for combined
patterns can be designed.

Question Q 6 (What are the effects of changes to intrusion detection sys-
tems on overall detection of attacks ?) can be answered by comparing intrusion
detection analysis of different attack graphs computed for different configura-
tions selected in the project management component. It is useful to combine
several features supported by the SH verification tool to answer this question.
To filter out the intrusion detection information, abstractions of the different at-
tack graphs are required. Based on this abstracted behaviour, a comparison
of the behaviour of different versions is possible. The tool supports a compar-
ison of those graphs and additionally the results of search queries and model
checking helps finding the effects in question, but this task requires careful
modelling, abstraction and finding the right properties to check.

Simulation

If the attacker has too many alternatives or the network is too complex, the
state space of the composition of the selected specifications and their complex
interplay may become too big to compute the complete behaviour. In this case
it is appropriate to inspect selected parts of the state space. Simulation of
interesting attack combinations is possible by interactive selection of paths in
the visual representation of the part of the attack graph already computed and
automatic proceeding in the selected direction. Other variants of simulation
are also supported by the tool (for instance random driven). The seamless

17

www.manaraa.com

. .

transition between verification and simulation on the same model is a particular
strength of the approach presented here.

Cost benefit analysis

Cost benefit analysis as described in this paragraph is meant as a means to
help assess the likely behaviour of an attacker. Cost ratings (from the view
of an attacker) can be assigned to each exploit, for example to denote the
time it takes for the attacker to execute the exploit or the resources needed to
develop an exploit. If not only technical vulnerabilities are modelled but also
human weaknesses are considered, then cost could mean for example the
money needed to buy a password.

Based on these cost assignments, the shortest (least expensive) path from
the root of the attack graph to a node representing a successful attack can
be computed and visualised. This helps to answer question Q 8 (What is
the attack with the least costs breaking a given security property ?) from the
introduction.

A benefit for the attacker based on the negative impact he achieves can also
be assigned, for example to indicate the worth regarding relative importance
of the captured host.

Summarised costs and benefits can be compared for selected paths or the
whole graph. For example searching for the node with the greatest benefit for
the attacker answers question Q 9 from the introduction.

Comparing some configurations with available intrusion detection systems
placed at different locations and computing attack graphs only for undetected
attacks can help to decide what is a better position for the intrusion detection
systems when looking at the maximum benefit for the attacker being unde-
tected in the different scenarios (see also Q 10 from the introduction). To find
a good coverage of intrusion detection given restricted resources, only rela-
tive evaluation of some predefined variants is intended here. It is shown in
(Jha et al., 2002) that to decide which minimal set of security measures would
guarantee the safety of the system is polynomially equivalent to the minimum
hitting set problem (NP-complete).

Survivability analysis

So far it was assumed that the enterprise network system does not react during
an attack. This is in general a useful assumption to keep the graph of the
system behaviour manageable. However the following extensions to the model
can give valuable insight into related problems.

18

www.manaraa.com

. .

Game: System against attacker
In some cases it is interesting to consider some counter-play of the system.
In Germany for example an ip-address for a dsl-connection is allocated dy-
namically and automatically changed every 24 hours. If for example the hosts
of some teleworkers are part of the modelled enterprise system it is useful to
check what effect this behaviour has on the attack analysis. Also if an attack is
time consuming, it is possible, that it will be detected not only by an intrusion
detection system but also possibly by some other security scanner tool or a
human administrator checking the given configuration at certain time intervals.
It is desirable to augment the model by some counteraction to describe for ex-
ample a cut of a network connection in critical cases or the reconfiguration of
a system.

Mission critical e-services
It is often very important, that even when an enterprise network system is un-
der attack, at least some mission critical e-services survive that attack. There-
fore it is essential, that it is possible to augment the attack scenario to include
actions of the critical e-service and to analyse the extended scenario.

To verify if a given e-service survives an attack, a formal model of its com-
ponents and their interplay must be added to the system model. The combined
model can then be analysed by computing its dynamic behaviour and examin-
ing the generated state space. New safety and usually also liveness properties
that constitute the required behaviour of the e-service have to be specified and
verified. This helps in answering for example question Q 11 from the intro-
duction. A methodology for developing an e-service so that it is robust against
attacks has been described in (Rieke, 2003).

Because of the well known state space explosion problem, the extended sce-
narios have to be specified on a high abstraction level in order be able to com-
pute the complete reachability graph. To find an appropriate abstraction level,
it is essential to incorporate the hints given in the previous section concerning
representative hosts. One should also consider to summarise similar attacks
onto a representative abstract attack. For example only use the abstract at-
tacks “get-user-access”, “get-root-access” and “from-user-to-root-access”.

Specification and analysis of an example scenario

To illustrate the methods described so far, a small example scenario is given
now. The components are specified, the respective attack graph is described
and some typical analysis outcome is sketched.

19

www.manaraa.com

. .

Scenario specification

Figure 6 shows the example scenario with the enterprise hosts namedms host,
nix host, portal, db server located inside the enterprise network and the host
telework connected from the internet as well as the host attacker. Vulnerabil-
ities of the hosts needed for specification part S 2’ derived from the products
installed and the product vulnerabilities are denoted below the host-names.

The installed intrusion detection components for specification part S 4 are
depicted in figure 6 by the rhombic nodes. IDS type1 is a network based sys-
tem that detects exploits named CAN 2003 0693 ssh exploit and rsh login
attempts. One IDS of that type is installed between the internet and the host
portal, the other is installed to control the traffic between the portal and
the host db server. Furthermore a host based intrusion detection component
IDS type2 that detects exploits of type CAN 2002 0649 sql exploit is installed
directly on host db server.

enterprise network

internet

CAN_2003_0715
CAN_2002_0649

db_server

CVE_1999_0035
CAN_2003_0693
CAN_2003_0620

nix_host

CAN_2003_0715

teleworkAttacker

CAN_2003_0694
CAN_2003_0693

portal

CAN_2003_0715
CAN_2002_1262

ms_hostCAN_2002_0649_sql_exploit
 detects
 IDS_type2

 rsh_login
CAN_2003_0693_ssh_exploit
 detects
 IDS_type1

 rsh_login
CAN_2003_0693_ssh_exploit
 detects
 IDS_type1

Figure 6. Example scenario

More information for specification part S 1 is provided by the tables in fig-
ure 7, showing the reachability of ports on all hosts and the active services.
Some abbreviations are used here, namely zone internet is an abbreviation
for the hosts telework, attacker, portal and zone intern is used for portal,

20

www.manaraa.com

. .

nix host, db server and ms host. The abbreviation port all means reacha-
bility for all ports and finally the abbreviation net means physically connected.

Knowledge to be captured is only available on the portal that knows the
addresses of all hosts. This could be used for example by the attacker to find
out the dynamic allocated address of the telework host, that might be not so
well administrated as the enterprise hosts directly connected to the network.

Host Service Port User
telework netbios ssnd netbios ssn port root

nix host ftpd ftp port root

nix host sshd ssh port root

nix host rshd rsh port root

db server ftpd ftp port root

db server rshd rsh port root

db server sql res ms sql m port db user

ms host dcom root

ms host netbios ssnd netbios ssn port root

portal sendmaild smtp port root

portal sshd ssh port root

Source Host Target Host Port
zone internet zone internet port all
zone all portal ssh port
zone all portal smtp port
portal zone intern port all
zone intern zone all net
zone intern zone intern ftp port
zone intern zone intern rsh port
zone intern zone intern ssh port
db server ms host rpc port

Figure 7. Host reachability and installed services

Attacker profile
It is assumed that the attacker knows all exploits that are specified in detail be-
low, namely CAN 2002 0649 sql exploit, CAN 2003 0620 man db exploit,
CAN 2003 0693 ssh exploit, CAN 2003 0693 ssh exploit stealth,
CAN 2003 0694 sendmail exploit, CAN 2003 0715 dcom exploit,
CVE 1999 0035 ftp exploit and the pseudo exploit rsh login.

In the initial configuration the attacker has root credentials on the host
attacker and no other access. The attacker nows the static addresses of
all hosts except the dynamic address of the host telework. The attacker has
no other knowledge. This completes the specification part S 3 .

Vulnerabilities and exploits
The vulnerabilities and exploits described below are used in the example sce-
nario. They are not described in detail here; more details are found at MITRE
(see http://cve.mitre.org/) and ICAT (see http://icat.nist.gov/) sites.

Vulnerability CVE 1999 0035, an error in ftpd allowing to read/write arbi-
trary files is used to manipulate files to establish remote shell trust and this in
turn used in combination with the rsh login which is not a real vulnerability but
a weak configuration to get remote access. This old vulnerability has been in-
cluded because this example was used in some of the papers cited in the sec-
tion on related work, to make it easier to compare different approaches. The
related exploit using this vulnerability is named CVE 1999 0035 ftp exploit.

21

www.manaraa.com

. .

The vulnerabilities CAN 2003 0620 (a buffer overflows in man-db) and the
related exploitCAN 2003 0620 man db exploit, CAN 2003 0693 (a buffer man-
agement error in OpenSSH) and the related exploitsCAN 2003 0693 ssh exploit

andCAN 2003 0693 ssh exploit stealth, CAN 2003 0715 (a heap-based buffer
overflow in DCOM) and the related exploit CAN 2003 0715 dcom exploit,
CAN 2003 0694 (a buffer overflow in sendmail) and the related exploit
CAN 2003 0694 sendmail exploit as well as CAN 2002 0649 (buffer over-
flows in SQL server) and the related exploit CAN 2002 0649 sql exploit are
used to directly get access rights on a remote host. An example of the imple-
mentation of an exploit in SH verification tool syntax is given in figure 8.

;
 /* E7: no additional impact in this example*/
 cost_benefit(’CAN_2003_0693_ssh_exploit’,T,’root’) = ’true’
 /* E6: assign cost benefit values */
 ids_check(’CAN_2003_0693_ssh_exploit’,S,T) = ’true’,
 /* E5: intrusion detection check */
 get_knowledge(T) = ’true’,
 /* E4: attacker gets all knowledge of host T */
 CAN_2003_0693(S,T,plvl_T) = ’true’,
 /* E3: is target vulnerable from source */
 plvl_T ~= ’root’, /* no root access on host T */
 (T,plvl_T) ? Attacker_plvl_state, /* select target host */
 rank(plvl_S) >= rank(’user’), /* user access on host S */
 (S,plvl_S) ? Attacker_plvl_state, /* select source host */
 /* E2: selection of source and target host
 ’CAN_2003_0693_ssh_exploit’ ? Attacker_known_exploits_state,
 /* E1: intruder knows exploit */
 (S, T, plvl_S, plvl_T)
 /* attack from host S to host T */

def_trans_pattern Attacker CAN_2003_0693_ssh_exploit

 (T,((’sshd’,port),plvl_service)) << host_service_state
 /* V5: direct impact (host T is no longer running sshd) */
 (T,max_access(plvl_service,plvl_T)) >> Attacker_plvl_state,
 (T,plvl_T) << Attacker_plvl_state,
 /* V4: effects for attacker (get sshd privileges on host T) */
 reachable((S,T,port),zone_zone_port_seq(),zone_def_seq()) = ’true’,
 /* V3: is host T reachable from S on port ssh ? */
 (T,((’sshd’,port),plvl_service)) ? host_service_state,
 /* V2: is host currently running sshd ? */
 (T,’CAN_2003_0693’) ? host_vulnerability_state,
/* V1: is host configured vulnerable ? */

/* E3: is target vulnerable ?*/

Figure 8. Transition pattern for CAN 2003 0693 ssh exploit

Analysis of the scenario

Attack graph of the example scenario
The computed attack graph for this scenario has 142 nodes and 544 edges.
Figure 9 shows a small section of it. The oval nodes depict single states, the
rectangular nodes depict states with a hidden subgraph that can be expanded
by mouse-click. The red (dotted) nodes mark states where the attacker has
been detected by an intrusion detection component.

Check security properties
As an example for a security property to be checked for the scenario it is
assumed that it is essential that an attacker can not gain any access at the
db server. The search query

({Attacker_plvl_state:<y>| sfind((’db_server’,’db_user’),y) =0},,

{Attacker_plvl_state:<x>| sfind((’db_server’,’db_user’),x) >0});

22

www.manaraa.com

. .

checks if there are transitions in the graph where the attacker gains access as
db user at the db server. For this query 66 matching edges are found.

M-7

M-22

M-21

M-20

M-19

M-18

M-6

M-17

M-16

M-15

M-14

M-13

M-5

M-12

M-11

M-10

M-9

M-8

M-4 Attacker_CAN_2003_0693_ssh_exploit $(3 . 20)

Attacker_CAN_2003_0693_ssh_exploit_stealth $(4 . 20)

Attacker_CAN_2003_0694_sendmail_exploit $(4 . 20)

Attacker_CVE_1999_0035_ftp_exploit $(2 . 2)

Attacker_CAN_2003_0693_ssh_exploit $(3 . 10)

Attacker_CAN_2003_0693_ssh_exploit_stealth $(4 . 10)

Attacker_CAN_2003_0715_dcom_exploit $(4 . 10)

Attacker_CAN_2002_0649_sql_exploit $(4 . 45)

Attacker_CVE_1999_0035_ftp_exploit $(2 . 2)

Attacker_CAN_2003_0693_ssh_exploit $(3 . 10)

Attacker_CAN_2003_0693_ssh_exploit_stealth $(4 . 10)

Attacker_CAN_2003_0715_dcom_exploit $(4 . 10)

Attacker_CAN_2002_0649_sql_exploit $(4 . 45)

Attacker_CVE_1999_0035_ftp_exploit $(2 . 2)

Attacker_CAN_2003_0693_ssh_exploit $(3 . 10)

Attacker_CAN_2003_0693_ssh_exploit_stealth $(4 . 10)

Attacker_CAN_2003_0715_dcom_exploit $(4 . 10)

Attacker_CAN_2002_0649_sql_exploit $(4 . 45)

Figure 9. Attack graph of example scenario (small section)

Maximal impact
The computed attack graph for the example scenario has 18 so called dead
markings. In cases where the graph has no loops these are the leafs of the
graph. They denote states where no further processing occurs because the
attacker has no more applicable atomic exploits available or has already cap-
tured all hosts.

Selecting an arbitrary dead marking and let the tool generate a way to the
root node produces a path as shown in figure 10. The edge labels denote the
atomic exploit chosen in that step as well as the target and source host. The
first 2 edges represent state transitions for preprocessing steps as explained in
the section on computation of attack graphs. The red (dotted) nodes M85, M-
122,M140 denote states where the attacker has already been detected. There
is much more information available for each transition but this is hidden here by
a presentation abstraction to keep the example readable. The numbers after
the $-sign are explained in the next paragraph.

Inspecting the attackers knowledge at the dead marking M140 shows that

23

www.manaraa.com

. .

he gained root access on hosts attacker, ms host, nix host and portal and
furthermore he gained db user access on db server but none on telework.

M-1 (($ 0 . 0))

M-2 (($ 0 . 0))

M-4 (($ 0 . 0))

M-7 (($ 4 . 20))

M-18 (($ 6 . 22))

M-45 (($ 10 . 32))

M-85 (($ 14 . 77))

M-122 (($ 15 . 83))

M-140 (($ 18 . 93) DEAD)

(Attacker_CAN_2003_0620_man_db_exploit (T = nix_host)) $(3 . 10)

(Attacker_rsh_login (S = portal T = nix_host)) $(1 . 6)

(Attacker_CAN_2002_0649_sql_exploit (S = portal T = db_server)) $(4 . 45)

(Attacker_CAN_2003_0715_dcom_exploit (S = portal T = ms_host)) $(4 . 10)

(Attacker_CVE_1999_0035_ftp_exploit (S = portal T = nix_host)) $(2 . 2)

(Attacker_CAN_2003_0694_sendmail_exploit (S = attacker T = portal)) $(4 . 20)

(Attacker_select_exploit (Attacker_known_exploits_state = ::)) $(0 . 0)

(Preprocessor_gen_vulnerabilities (host_vulnerability_state = ::)) $(0 . 0)

Figure 10. Path to root with cost benefit annotations

Cost benefit evaluation
For cost benefit evaluations an adequate measure has to be defined. In the
example scenario it is assumed, that costs reflect the effort an attacker uses
in each step of the attack. Costs are directly assigned to the atomic exploits in
this example, whereas the benefit for a transition is computed as the worth of
the target host multiplied by the rank of the access right gained. The benefit
for the attacker reflects the negative impact for the enterprise. Of course other
kinds of measures for cost and benefit or other appropriate measures could
be implemented following the proposed scheme. Assumed costs and benefits
per exploit for specification part S 5 of the example scenario are assigned as
shown in the tables in figure 11.

24

www.manaraa.com

. .

Exploit Cost
CAN 2003 0693 ssh exploit 3
CAN 2003 0693 ssh exploit stealth 4
CVE 1999 0035 ftp exploit 2
CAN 2003 0620 man db exploit 3
CAN 2003 0715 dcom exploit 4
CAN 2003 0694 sendmail exploit 4
CAN 2002 0649 sql exploit 4
rsh login 1

Host Worth
telework 1
attacker 0
nix host 2
ms host 2
db server 9
portal 4

Access Rank
none 1
restricted user 2
user 3
db user 4
root 5

Figure 11. Cost benefit values

Now by shortest path computation in a post-processing step on the attack
graph, the values for cost and benefit can be summed up along the paths with
the least cost to any node. The cost and benefit of a transition is depicted by
the numbers after the $-sign at the edges in figure 10 that shows an example
path in the attack graph with annotated cost benefit annotations. The sums
along the path are depicted inside the nodes in the same figure.

A search for the node with the highest benefit score for the attacker (where
most negative impact is achieved) returns the node M135 which has the same
benefit rating namely 93 as the node M140 in figure 10.

Cut down the graph
Defining a condition that stops further computation after an attack has been
detected by an intrusion detection component generates only a subgraph with
57 nodes (33 dead) and 95 edges. The graph reduced to only undetected
attacks generates a subgraph with only 24 nodes (4 dead) and 60 edges.

Cost benefit analysis for the graph with undetected attacks shows that the
maximum benefit an attacker can obtain undetected in this scenario is 48.
Inspecting the respective node in the attack graph shows that the attacker has
gained root access on hosts attacker, ms host, nix host and portal but no
access on db server and telework.

Abstraction
In some applications the SH verification tool already computed graphs of about
1 million edges in acceptable time and space. But it is impossible to visualise
a graph of that size. So abstraction focussing on some interesting aspect is
definitely a comfortable way to go in this case. An example for the usage of
behaviour abstraction is shown in figure 12. The abstract view in this case
shows that only one type of exploit can be used to attack the db server and
the graph is reduced from 544 edges to only one edge in the abstracted be-
haviour. The predicate used to define the corresponding mapping hides (maps
to epsilon) all transitions that don’t have the target host db server.

25

www.manaraa.com

. .

A-1
A-2
start:

(Attacker_CAN_2002_0649_sql_exploit)

Figure 12. Attack graph abstraction showing transitions with target db server

Figure 13 shows an abstraction focussing on transitions with benefit > 10
and the resulting graph is also very concise.

A-3
start:

A-2

A-1

((,Attacker_CAN_2003_0694_sendmail_exploit(Benefit>10),)) (2)
((,Attacker_CAN_2003_0693_ssh_exploit_stealth(Benefit>10),))

((,Attacker_CAN_2003_0693_ssh_exploit(Benefit>10),))

((,Attacker_CAN_2002_0649_sql_exploit(Benefit>10),))

Figure 13. Attack graph abstraction showing transitions with benefit > 10

System countermeasures and critical services
As an example for a check for critical services availability and to demonstrate
how system countermeasures can be added to the framework defined so far,
it is assumed that the host db server always tries to answer queries from host
teleworker. As a precondition the server checks if sshd is running on the
portal because a “ssh-tunnel” on that host is used to reach teleworker. Now
as shown in figure 8 (in condition V 5) the attacker kills the sshd when execut-
ing the CAN 2003 0693 ssh exploit. So if the attacker applies this exploit to
attack the host portal, then afterwards the sshd is not active on that host and
so db server cannot send an answer to telework anymore. Now additionally
a system countermeasure is considered that restarts the sshd on the portal
from time to time. Two transitions patterns, namely T Defence Restart sshd
and T Service Answer add these actions to the model. The defence opera-
tion restarts sshd when it is down and the service action checks for an active
sshd on portal. No other details are added to keep the model small.

Now a new computation of the attack graph results in a graph with 234
nodes (0 dead !) and 1136 edges. A section of this graph is shown in figure 14.

26

www.manaraa.com

. .

M-38

M-88

M-78

M-73

M-13

M-11
Service_answer

Attacker_CAN_2002_0649_sql_exploit

Attacker_CAN_2003_0693_ssh_exploit_stealth (3)
Attacker_CAN_2003_0693_ssh_exploit

Defence_Restart_sshd

Attacker_CVE_1999_0035_ftp_exploit (3)

Attacker_CAN_2003_0715_dcom_exploit (2)

Figure 14. Section of attack graph with service and countermeasure

A typical liveness question for the sketched situation is Q 11 from the in-
troduction (Is a client still able to get answers from a DB-server when the enter-
prise network is under attack ?). Using an appropriate type of model checking,
approximate satisfaction of temporal logic formulae can be checked by the SH
verification tool (Ochsenschläger et al., 1999, 2000a). In terms of temporal
logic the property above can be written as G F Service Answer (always even-
tually Service Answer) which is found to be true by the tool.

Lifting the assertion that the attacker only attacks a host if he gains some
credentials for the CAN 2003 0693 ssh exploit (see figure 8 the check for “no
root access” on target host in E 2) leads to an attack graph with 3062 nodes (0
dead) and 22228 edges. This illustrates the dramatic influence of monotonicity
assumptions on attack graph growth.

Related work

The approach that Phillips and Swiler first presented in (Phillips and Swiler,
1998) is closest to the approach proposed in this paper. They described a
prototype tool implementing their method in (Swiler et al., 2001). Similar to
the computation method based on the SH verification tool outlined here, their
method computes an attack graph starting from an initial node, but they don’t
describe abstraction methods to visualise compact presentations of the graph
and they don’t address liveness analysis that is used here to assure system
response to critical services under attack.

Jha, Sheyner, Wing et al. use scenario graphs in (Jha and Wing, 2001) and
attack graphs (Jha et al., 2002; Sheyner et al., 2002) that are computed and
analysed based on model checking.

Ammann et al. presented an approach in (Ammann et al., 2002) that is
focussed on reductions of complexity of the analysis problem from exponential
to polynomial by explicit assumptions of monotonicity.

27

www.manaraa.com

. .

Conclusions

Within the critical infrastructure protection context this paper aims at the pro-
tection of the core information infrastructure although the methods presented
here could be extended and applied to other types of infrastructure and threats.
The presented methodology for computation and analysis of attack graphs out-
lined in figure 5 is based on a formal specification of an organisation’s criti-
cal network infrastructure, supplemented by a generic vulnerability and exploit
specification and an attacker specification to model the threats against that
infrastructure. The tool supported analysis of the attack graph assists in re-
vealing vulnerabilities of the threatened infrastructure including complex attack
combinations and supports the systematic evaluation of possible solutions to
minimise risk with given resources. Contributions of this work are:

Specification framework for critical network infrastructures and threats
It is worked out in detail, how to formally specify topology and components of
the information infrastructure and represent it by state components in asyn-
chronous product automata (APA) notation. The operational formal system
specification is completed by specifications of vulnerabilities, exploits and at-
tacker capabilities represented by APA state transitions (see figures 1, 3 and 4).
Specific templates to support and simplify formal modelling of enterprise net-
works under attack have been developed. Moreover, extensions to the model
to add system defence operations and critical services actions are proposed,
supplemented by some abstraction concepts, to prevent state space explosion
problems in such models.

Methodology and tool to analyse vulnerabilities and countermeasures
From the APA specification an attack graph representing the behaviour of the
model is automatically computed. Based on this graph, tool supported analy-
sis methods are presented that can be used to answer the various questions
posed in the introduction. Specific features of this approach comprise:

• an integrated interactive visualisation support to browse or debug the
behaviour of the model and explore selected parts of the graph

• the usage of a well-elaborated and formally proven abstraction concept
combined with an appropriate model checking component for analysis of
security and liveness properties

• an integrated cost-benefit analysis method

• a seamless transition between verification and simulation on the same
model when a complete computation of the attack graph is not possible

• a flexible configuration management simplifies evaluation and compari-
son of different solutions

28

www.manaraa.com

. .

Further research objectives
To seamlessly integrate the methods and tool presented here into a network
vulnerability analysis framework, a tool-assisted transformation of a system
configuration as provided by administration databases or gathered by network
scanners into formal specifications is required. Likewise, some improvement
towards generic formal vulnerability and exploit specifications is needed.

An in-depth research objective is, to develop methods and tool support to
reduce state space explosion by further elaborating the ideas on abstraction of
the system specification as sketched in the paragraphs about “representative
hosts”. For such a tool assisted specification abstraction, it has to be (automat-
ically) proven, that the system specification is appropriately transformed into
the abstracted specification, to assure that system properties are transported
from a lower to a higher level of abstraction and no critical behaviour is hidden.

Another interesting perspective is, to extend the specification and analysis
method described in this paper for application in other similar structured sce-
narios, as for example, to model a networked infrastructure system of a country
including specifications of mutual dependencies as described in (Luiijf et al.,
2003). Such a model could be used to analyse vulnerabilities and to raise risk
awareness. It could help to reveal complex attack combinations and support
systematic evaluation of possible solutions. This approach aims at optimising
security and protection of networked systems with given resources.

References

Paul Ammann, Duminda Wijesekera, and Saket Kaushik. Scalable, graph-
based network vulnerability analysis. In Proceedings of the 9th ACM con-
ference on Computer and communications security, pages 217–224. ACM
Press New York, NY, USA, 2002. ISBN 1-58113-612-9.

Urs E. Gattiker, Hervé Debar, Gasper Lvarencic, Giannis A Pikrammenos, Jer-
man Borka, Roland Rieke, Atta Badii, Yong Hua Song, Theis Søndergaard,
Rainer Fahs, Helga Treiber, and Mario Wolframm. Cyber attack methods
detection & information exploitation research project proposal, 2003. URL
http://www.eicar.org/camdier/index.html.

S. Gürgens, P. Ochsenschläger, and C. Rudolph. Role based specification
and security analysis of cryptographic protocols using asynchronous prod-
uct automata. In DEXA 2002 International Workshop on Trust and Pri-
vacy in Digital Business. DEXA, 2002a. URL http://www.sit.fhg.de/

english/META/meta_publications/doc/Dexa2002-abstract.pdf. Copy-
right: c©2002, IEEE. All rights reserved.

S. Gürgens, P. Ochsenschläger, and C. Rudolph. Authenticity and Provability

29

www.manaraa.com

. .

- a Formal Framework. GMD Report 150, Fraunhofer-Institute for Secure
Telecooperation, 2002b.

Somesh Jha and Jeannette M. Wing. Survivability analysis of networked sys-
tems. In Proceedings of the 23rd international conference on Software en-
gineering, pages 307–317. IEEE Computer Society, 2001.

Somesh Jha, Oleg Sheyner, and Jeannette M. Wing. Two formal analyses
of attack graphs. In 15th IEEE Computer Security Foundations Workshop
(CSFW-15 2002), 24-26 June 2002, Cape Breton, Nova Scotia, Canada,
pages 49–63. IEEE Computer Society, 2002.

Christopher Krügel and Thomas Toth. Distributed pattern detection for intru-
sion detection. In Network and Distributed System Security Symposium
Conference Proceedings: 2002, 1775 Wiehle Ave., Suite 102, Reston, Vir-
ginia 20190, U.S.A., 2002. Internet Society. URL citeseer.nj.nec.com/

501183.html.

E. Luiijf, H. Burger, and M. Klaver. Critical infrastructure protection in the
netherlands: A quick-scan. In EICAR Conference Best Paper Proceedings,
May 2003.

Benjamin Morin, Ludovic Mé, Hervé Debar, and Mireille Ducassé. M2d2: A
formal data model for ids alert correlation. In Recent Advances in Intrusion
Detection, 5th International Symposium, RAID 2002, Zurich, Switzerland,
October 16-18, 2002, Proceedings, volume 2516 of Lecture Notes in Com-
puter Science, pages 115–137. Springer, 2002.

P. Ochsenschläger, J. Repp, and R. Rieke. The SH-Verification Tool. In Proc.
13th International FLorida Artificial Intelligence Research Society Confer-
ence (FLAIRS-2000), pages 18–22, Orlando, FL, USA, May 2000a. AAAI
Press. ISBN 0-1-57735-113-4.

Peter Ochsenschläger, Jürgen Repp, Roland Rieke, and Ulrich Nitsche. The
SH-Verification Tool Abstraction-Based Verification of Co-operating Sys-
tems. Formal Aspects of Computing, The International Journal of Formal
Method, 11:1–24, 1999.

Peter Ochsenschläger, Jürgen Repp, and Roland Rieke. Abstraction and com-
position – a verification method for co-operating systems. Journal of Exper-
imental and Theoretical Artificial Intelligence, 12:447–459, June 2000b.

Cynthia A. Phillips and Laura Painton Swiler. A graph-based system for
network-vulnerability analysis. In NSPW ’98, Proceedings of the 1998 Work-
shop on New Security Paradigms, September 22-25, 1998, Charlottsville,
VA, USA, pages 71–79. ACM Press, 1998.

30

www.manaraa.com

. .

Roland Rieke. Development of formal models for secure e-services. In Eicar
Conference 2003, May 2003. URL http://www.sit.fhg.de/english/META/

meta_publications/doc/Eicar-2003.pdf.

Oleg Sheyner, Joshua W. Haines, Somesh Jha, Richard Lippmann, and Jean-
nette M. Wing. Automated generation and analysis of attack graphs. In
2002 IEEE Symposium on Security and Privacy, May 12-15, 2002, Berkeley,
California, USA, pages 273–284. IEEE Comp. Soc. Press, 2002.

Laura P. Swiler, Cynthia Phillips, David Ellis, and Stefan Chakerian. Computer-
attack graph generation tool. In DARPA Information Survivability Conference
and Exposition (DISCEX II’01) Volume 2,June 12 - 14, 2001, Anaheim, Cal-
ifornia, pages 1307–1321. IEEE Computer Society, 2001.

31

www.manaraa.com

www.manaraa.com

P10
M O D E L L I N G A N D A N A LY S I N G N E T W O R K
S E C U R I T Y P O L I C I E S I N A G I V E N V U L N E R A B I L I T Y
S E T T I N G

Title Modelling and Analysing Network Security
Policies in a Given Vulnerability Setting

Authors Roland Rieke

Publication In Javier Lopez, editor, Critical Information In-
frastructures Security, First International Work-
shop, CRITIS 2006, Samos Island, Greece. Re-
vised Papers, volume 4347 of Lecture Notes in
Computer Science, pages 67–78, 2006.

ISBN/ISSN ISBN 978-3-540-69083-2

DOI http://dx.doi.org/10.1007/11962977_6

Status Published

Publisher Springer Berlin Heidelberg

Publication Type Conference Proceedings (LNCS, Vol. 4347)

Copyright 2006, Springer

Contribution of
Roland Rieke

Author and presenter at the CRITIS work-
shop 2006.

Table 15: Fact Sheet Publication P10

Publication P10 [Rieke, 2006] addresses the following research ques-
tions:

RQ6a What are the effects of changes to the network configuration on over-
all vulnerability?

RQ6b What is the most likely attacker behaviour and most effective coun-
termeasure?

RQ6c Will countermeasures of the system under attack succeed?

A typical means by which an attacker or his malware try to break
into a network is, to use combinations of basic exploits to get more
information or more credentials and to capture more hosts step by
step. To find out if there is a combination that enables an attacker
to reach critical network resources or block essential services, it is
required to analyse all possible sequences of basic exploits, so called
attack paths. Based on such an analysis, it is now possible to find out

327

http://dx.doi.org/10.1007/11962977_6

www.manaraa.com

analysing network security policies

whether a given security policy successfully blocks attack paths and
is robust against changes in the given vulnerability setting.

For this type of security policy analysis, a formal modelling frame-
work is presented that, on the one hand, represents the information
system and the security policy, and, on the other hand, a model of
attacker capabilities and profile. It is extensible to comprise intrusion
detection components and optionally a model of the system’s counter-
measures. Based on such an operational model, a graph representing
all possible attack paths can be automatically computed. Now secu-
rity properties can be specified and verified on this attack graph. If
the model is too complex to compute the behaviour, then simulation
can be used to validate the effectiveness of a security policy. The im-
pact of changes to security policies can be computed and visualised
by finding differences in the attack graphs. A unique feature of the
presented approach is, that abstract representations of these graphs
can be computed that allow comparison of focussed views on the be-
haviour of the system. This guides optimal adaptation of the security
policy to the given vulnerability setting.

328

www.manaraa.com

With kind permission of Springer Science+Business Media.
This is an author-created version of: Critical Information Infrastructures Security; Lecture
Notes in Computer Science Volume 4347, 2006, pp 67-78; Modelling and Analysing Network
Security Policies in a Given Vulnerability Setting; Roland Rieke; c© Springer-Verlag Berlin
Heidelberg 2006; DOI: 10.1007/11962977 6; Print ISBN: 978-3-540-69083-2; Online ISBN:978-
3-540-69084-9.
The original publication is available at www.springerlink.com.
http://link.springer.com/chapter/10.1007%2F11962977_6

Modelling and Analysing Network Security
Policies in a Given Vulnerability Setting

Roland Rieke?

Fraunhofer Institute for Secure Information Technology SIT, Darmstadt, Germany
rieke@sit.fraunhofer.de

Abstract. The systematic protection of critical information infrastruc-
tures requires an analytical process to identify the critical components
and their interplay, to determine the threats and vulnerabilities, to assess
the risks and to prioritise countermeasures where risk is unacceptable.
This paper presents an integrated framework for model-based symbolic
interpretation, simulation and analysis with a comprehensive approach
focussing on the validation of network security policies. A graph of all
possible attack paths is automatically computed from the model of an
ICT network, of vulnerabilities, exploits and an attacker strategy. Con-
straints on this graph are given by a model of the network security policy.
The impact of changes to security policies can be computed and visu-
alised by finding differences in the attack graphs. A unique feature of the
presented approach is, that abstract representations of these graphs can
be computed that allow comparison of focussed views on the behaviour
of the system. This guides optimal adaptation of the security policy to
the given vulnerability setting.

Keywords: threats analysis, attack simulation, critical infrastructure
protection, network security policies, risk assessment, security modelling
and simulation.

1 Introduction

Information and communication technology (ICT) is creating innovative systems
and extending existing infrastructure to such an interconnected complexity that
predicting the effects of small internal changes (e.g. firewall policies) and exter-
nal changes (e.g. the discovery of new vulnerabilities and exploit mechanisms)
becomes a major problem. The security of such a complex networked system
essentially depends on a concise specification of security goals, their correct and
consistent transformation into security policies and an appropriate deployment
and enforcement of these policies. This has to be accompanied by a concept to
adapt the security policies to changing context and environment, usage patterns
and attack situations. To help to understand the complex interrelations of se-
curity policies, ICT infrastructure and vulnerabilities and to validate security

? Part of the work presented in this paper was developed within the project SicAri
being funded by the German Ministry of Education and Research.

www.manaraa.com

goals in such a setting, tool based modelling techniques are required that can
efficiently and precisely predict and analyse the behaviour of such complex inter-
related systems. These methods should guide a systematic evaluation of a given
network security policy and assist the persons in charge with finally determining
exactly what really needs protection and which security policy to apply.

A typical means by which an attacker or his malware try to break into a
network is, to use combinations of basic exploits to get more information or
more credentials and to capture more hosts step by step. To find out if there
is a combination that enables an attacker to reach critical network resources or
block essential services, it is required to analyse all possible sequences of basic
exploits, so called attack paths. Based on such an analysis, it is now possible to
find out whether a given security policy successfully blocks attack paths and is
robust against changes in the given vulnerability setting.

For this type of security policy analysis, a formal modelling framework is
presented that, on the one hand, represents the information system and the
security policy, and, on the other hand, a model of attacker capabilities and
profile. It is extensible to comprise intrusion detection components and optionally
a model of the system’s countermeasures. Based on such an operational model, a
graph representing all possible attack paths can be automatically computed. It is
called attack graph in the following text. Now security properties can be specified
and verified on this attack graph. If the model is too complex to compute the
behaviour, then simulation can be used to validate the effectiveness of a security
policy. The impact of changes to security policies can be computed and visualised
by finding differences in the attack graphs. Furthermore, abstract representations
of these graphs can be computed that allow comparison of focussed views on the
behaviour of the system. If there are differences in the detailed attack graphs
but no differences in the abstract representations thereof, this proves that the
different policies are equally effective on the enforcement of security goals on
the abstract level, even if variations in the attack paths are covered by different
policy rules. The subsequent paper is structured as follows. Section 2 gives an
overview of related work. The modelling approach is described in Sect. 3, while
Sect. 4 presents an exemplary analysis of network security policy adaptation
aspects in a given scenario. Finally, the paper ends with an outlook in Sect. 5.

2 Related Work

The network vulnerability modelling part of the framework presented in this
paper is adopted from the approach introduced in [1] and is similar in design to
an approach by Phillips and Swiler in [2] and [3]. A major contribution of [1] was
the use of abstraction methods to visualise compact presentations of the graph
and the inclusion of liveness analysis. Related work of Jha, Sheyner, Wing et al.
used attack graphs that are computed and analysed based on model checking
in [4] and [5]. Ammann et al. presented an approach in [6] that is focussed
on reduction of complexity of the analysis problem by explicit assumptions of
monotonicity. Recent work in this area by Noel, Jajodia et al. in [7] and [8]

www.manaraa.com

describes attack graph visualisation techniques while the work of Kotenko and
Stepashkin in [9] is focussed on security metrics computations.

To model the ICT network, the vulnerabilities and the intrusion detection
systems, a data model loosely resembling the formally defined M2D2 informa-
tion model [10] is used. Appropriate parts of this model are adopted and supple-
mented by concepts needed for description of exploits, attacker knowledge and
strategy and information for cost benefit analysis.

The model of the network security policies used in this paper is based on the
Organisation Based Access Control (Or-BAC) model. A formal approach to use
Or-BAC to specify network security policies was presented in [11]. This approach
is used here to model the network security policies in the attack graph analysis
framework.

The modelling framework is based on Asynchronous Product Automata (APA),
a flexible operational specification concept for cooperating systems [12]. An APA
consists of a family of so called elementary automata communicating by common
components of their state (shared memory). The applied verification method is
implemented in the SH verification tool [13] that has been adapted and extended
to support the presented attack graph analysis methods.

Major focus of the combined modelling framework presented in this paper, is
the integration of formal network vulnerability modelling on the one hand and
network security policy modelling on the other hand. This aims to help adapta-
tion of a network security policy to a given and possibly changing vulnerability
setting. Recent methods for analysis of attack graphs are extended to support
analysis of abstract representations of these graphs.

3 Modelling Critical ICT Infrastructures and Threats

The proposed operational model comprises, (1) an asset inventory including crit-
ical network components, topology and vulnerability attributions, (2) a network
security policy, (3) vulnerability specifications and exploit descriptions, and (4)
an attacker model taking into account the attackers knowledge and behaviour.

3.1 ICT Network Components

The set of all hosts of the information system consists of the union of the hosts
of the ICT network and the hosts of the attacker(s). Following the M2D2 model,
products are the primary entities that are vulnerable. A host configuration is a
subset of products that is installed on that host and affects is a relation between
vulnerabilities and sets of products that are affected by a vulnerability. A host
is vulnerable if its configuration is a superset of a vulnerable set of products and
the affected services are currently running.

In order to conduct a subsequent comparative analysis of attack paths, an
asset prioritisation as to criticality or worth regarding relative importance of a
host is required.

www.manaraa.com

3.2 Network Security Policies

The model of the network security policies is based on the Organisation Based
Access Control (Or-BAC) model. The approach to use Or-BAC to specify net-
work security policies as presented in [11] is adopted here to model the network
security policies in the attack graph analysis framework. The advantage of this
choice is, that it is possible to link the policies in the formal model at an ab-
stract level to the low level vendor specific policy rules for the policy enforcement
points (PEPs) such as firewalls in the concrete ICT network. Please refer to [11]
for such a transformation concept exemplified on the iptables packet filtering
mechanism used in Linux.

Following the Or-BAC based concept, the network vulnerability policy is
given at an abstract level in terms of roles (an abstraction of subjects), activities
(an abstraction of actions) and views (an abstraction of objects). A subject in
this model is any host. An action is a network service such as snmp, ssh or ftp.
Actions are represented by a triple of protocol, source port and target port. An
object is a message sent to a target host. Currently only the target host or rather
the role of the target host is used for the view definition here. To specify the
access control policy using this approach, permissions are given between role,
activity and view.

To illustrate the concept described here, a small example scenario is given
in Fig. 1(a). Modelling concepts and typical analysis outcome will be illustrated
using this example scenario throughout the paper. One possible attack path is
sketched in the scenario. The policy rules for the example scenario are defined
by the table in Fig. 1(b).

Internet

intern zone

ICT network

PEP

CAN_2003_0715
CAN_2002_1262

management zone

CAN_2003_0694
CAN_2003_0693

dmz zone

CAN_xxxx_yyyy
CVE_xxxx_yyyy

Attacker

CAN_2003_0715

teleworker VPN zone

CVE_1999_0035
CAN_2003_0693
CAN_2003_0620

developer zone

CAN_2003_0715
CAN_2002_0649

with special db_host
production zone

vulnerabilities
unknown

customer zone

vulnerabilities
unknown

supplier zone

PEP

(a) ICT network and vulnerabilities

Role View Activity
(source) (target) (service)

internet internet any
any dmz ssh
any dmz smtp
dmz intern ssh
intern any net
intern internet ftp
intern internet rsh
intern dmz ssh
db host production rpc
teleworker dmz any

(b) Network security policy

Fig. 1. Scenario and network security policy

www.manaraa.com

3.3 Vulnerabilities

Vulnerability specifications for the formal model are derived from the Common
Vulnerabilities and Exposures (CVE/CAN) descriptions. The MITRE Corpo-
ration provides a CVE web site (http://www.cve.mitre.org/) with a list of
virtually all known vulnerabilities. The CVE name is the 13 character ID used
by the CVE standards group to uniquely identify a vulnerability. Additional
information about the vulnerabilities also covers preconditions about the target
host as well as network preconditions. Furthermore, the impact of an exploita-
tion of a vulnerability is described. The specifications for the formal model of
the vulnerabilities additionally comprise the vulnerability range and impact type
assessments provided by the National Institute of Standards and Technology
(NIST) (http://nvd.nist.gov/).

Vulnerability Severity. The Common Vulnerability Scoring System (CVSS)
[14] provides universal severity ratings for security vulnerabilities. These rat-
ings are used in the model as an example for a measure of the threat level.
Another example for such a measure is the metric used by the US-CERT (cf.
http://www.kb.cert.org/vuls/html/fieldhelp#metric). These measures are
based on information about the vulnerability being widely known, reported ex-
ploitation incidents, number of infected systems, the impact of exploiting the
vulnerability and the knowledge and the preconditions required to exploit the
vulnerability. Because the approximate values included in those measures may
differ significantly from one site to another, prioritising of vulnerabilities based
on such measures should be used with caution.

To have a vulnerable product installed on some host, does not necessarily
imply, that someone can exploit that vulnerability. A target host is configured
vulnerable, if (1) the target host has installed a product or products that are
vulnerable with respect to the given vulnerability, and (2) necessary other pre-
conditions are fulfilled (e.g. some vulnerabilities require that a trust relation is
established as for example used in remote shell hosts allow/deny concepts).

A second precondition to exploit a vulnerability is, that the target host is
currently running the respective products such as a vulnerable operating system
or server version. If a user interaction is required this also requires that the
vulnerable product is currently used (e.g. a vulnerable Internet explorer).

The third necessary preconditions is, that the network security policy permits
that the target host is reachable on the port the vulnerable product is using from
the host the attacker selected as source.

3.4 Attacker and System Behaviour

Attacker Knowledge. The knowledge of exploits and hosts and the creden-
tials on the known hosts constitute an attackers profile. Knowledge about hosts
changes during the computation of the attack graph because the attacker might
gain new knowledge when capturing hosts. On the other hand, some knowledge
may become outdated because the enterprise system changes ip-numbers or other

www.manaraa.com

configuration of hosts and reachability. In case a vulnerability is exploited, the
model has to cover the effects for the attacker (for example, to obtain additional
user or root credentials on the target host) and also the direct impact on the
network and host such as, to shut down a service caused by buffer overflow.

Dynamic System Behaviour. The information model presented so far covers
the description of a (static) configuration of an ICT network and its vulnerabil-
ities. In the formal model such a configuration describing the state of the ICT
network is represented by APA state components (APA representation of an ICT
network is covered in more detail in [1]).

To describe how actions of attacker(s) and actions of the system can change
the state of the ICT network model, specifications of APA state transitions
are used. These state transitions represent atomic exploits and optionally the
actions that the ICT network system can take to defend itself or to implement
vital services. Formally, a state transition can occur, when all expressions are
evaluable and all conditions are satisfied. So called interpretation variables are
used to differentiate the variants of execution of the same transition. All possible
variants of bindings of interpretation variables from the state components are
generated automatically. So for example for a transition modelling an exploit, all
possible combinations of bindings of source and target host are computed and
further evaluated.

Attacker Behaviour. Attacker capabilities are modelled by the atomic exploits
and by the strategy to select and apply them.

A state transition modelling an exploit is constructed from, (1) a predicate
that states that the attacker knows this exploit, (2) an expression to select source
and target hosts for the exploit, (3) a predicate that states that the target host
is vulnerable by this exploit, (4) an expression for the impact of the execution
of this exploit on the attacker and on the target host as for example the shut
down of services. Optional add-ons are, an assignment of cost benefit ratings to
this exploit and intrusion detection checks.

Several different attackers can easily be included because an attacker is mod-
elled as a role not a single instance and the tool can automatically generate
multiple instances from one role definition.

Modelling of Denial of Service (DoS) attacks aiming to block resources or
communication channels either directly or by side effects require a much more
detailed model of the resources involved. This could be accomplished using the
presented framework but is out of scope of this paper.

Some experiments have been made to generate a set of known exploits for the
attacker(s) from a given algorithm. If for example it is assumed that the attacker
knows 3 different exploits, then all combinations of 3 exploits from the set of all
specified exploits have to be computed and further analysed. Another example
for an attacker strategy is, that the attacker uses only exploits for vulnerabilities
with a severity above a given threshold. This is based on the assumption, that the
vulnerability severity reflects the probability of exploitation of a vulnerability.

www.manaraa.com

Composition of a Model and Computation of an Attack Graph. The SH
verification tool [13] is used to analyse this model. It manages the components
of the model, allows to select alternative parts of the specification and automat-
ically “glues” together the selected components to generate a combined model
of ICT network specification, vulnerability and exploit specification, network
security policy and attacker specification.

After an initial configuration is selected, the attack graph (reachability graph)
is automatically computed by the SH verification tool. Also, on the fly analysis
allows, to stop computation automatically when specified conditions are reached
(or invariants are broken), so called break conditions can be specified using
regular expressions. A violation of a security property for example, can in many
cases be specified as a break condition.

Attack Graph of the Example Scenario. The computed attack graph for
the simple example scenario (assuming the attacker knows all exploits) has 500
nodes and 4136 edges. Now we assume as a more realistic attacker behaviour,
that the attacker will only exploit vulnerabilities with a severity level above
a given minimum. In the example scenario, a severity level of 4 results in an
attack graph with 178 nodes and 1309 edges. This graph is still far too big to
inspect it manually. Figure 2 shows a small section of it. Nodes with circle shape
depict states where the successors are completely shown, nodes with rectangular
shape depict nodes where the successors are cropped. For example the edge
M4 −→ M5 depicts the application of an exploit where the ssh-vulnerability
CAN 2003 0693 was used and the edge M4 −→ M6 depicts an exploit based
on the same vulnerability but in this case operating stealth (not detected).

M-2

M-1

M-3

M-9

M-10

M-5

M-12

M-13

M-6

M-15

M-7

M-17

M-11

M-14

M-18

M-19
M-16

M-20

M-8

M-4

Service_answer

Service_answer
Service_answer

Service_answer

Service_answer

Service_answer

Service_answer

Service_answer

Service_answer

Preprocess_vulnerab.

A_select_exploit

Service_answer

A_select_exploit

Service_answer

Preprocess_vulnerab.

Service_answerA_CAN_2003_0693_ssh_exploit $(3 . 20)

A_CAN_2003_0693_ssh_exploit_stealth $(4 . 20)

A_CAN_2003_0694_sendmail_exploit $(4 . 20)

A_IE_caching_mail $(9 . 6)

Defence_Restart_sshd

A_CAN_2003_0693_ssh_exploit_stealth $(4 . 10) (2)
A_CAN_2003_0693_ssh_exploit $(3 . 10)

A_IE_caching_mail $(9 . 6)

Defence_Restart_sshd

A_CAN_2003_0693_ssh_exploit_stealth $(4 . 10) (2)
A_CAN_2003_0693_ssh_exploit $(3 . 10)

A_IE_caching_mail $(9 . 6)Service_answer

A_CAN_2003_0693_ssh_exploit_stealth $(4 . 10) (2)
A_CAN_2003_0693_ssh_exploit $(3 . 10)

A_IE_caching_mail $(9 . 6)

Service_answer

A_CAN_2003_0693_ssh_exploit $(3 . 20)

A_CAN_2003_0693_ssh_exploit_stealth $(4 . 20) (7)
A_CAN_2003_0693_ssh_exploit $(3 . 20)

A_CAN_2003_0694_sendmail_exploit $(4 . 20) (3)

A_CVE_1999_0035_ftp_exploit $(2 . 2)

A_CAN_2003_0693_ssh_exploit_stealth $(4 . 10) (2)
A_CAN_2003_0693_ssh_exploit $(3 . 10)

A_CAN_2003_0715_dcom_exploit $(4 . 10)

A_CAN_2002_0649_sql_exploit $(4 . 45)

Fig. 2. Attack graph of example scenario (small section)

www.manaraa.com

4 Evaluation of the Model

Abstractions. Abstract representations of the attack graph can be computed
to visualise and analyse compacted information focussed on interesting aspects
of the behaviour. The mappings used to compute the abstract representations
of the behaviour have to be property preserving, to assure that properties are
transported as desired from a lower to a higher level of abstraction and no critical
behaviour is hidden by the mapping. Such properties, namely simplicity, are
given in [15] and and a check for simplicity is implemented in the SH verification
tool [13]. In some applications the SH verification tool already computed graphs
of about 1 million edges in acceptable time and space. But it is impossible to
visualise a graph of that size. So abstraction focussing on some interesting aspect
is definitely a comfortable way to go in this case.

An Example for the Usage of Behaviour Abstraction. For this exper-
iment, the vulnerability range and impact type assessments provided by NIST
(cf. Sect. 3.3) are utilised. Range types of the vulnerabilities in the example sce-
nario are remote (remotely exploitable) and local (locally exploitable). Impact
types used here are unspecific (provides unauthorised access), user (provides
user account access) and root (provides administrator access).

Step 1 - Define a Mapping. Figure 3 defines a mapping of all transitions
representing the exploit of a vulnerability to the respective range and impact
types of the vulnerabilities.

Service_answer

Defence_Restart_sshd

system

A_select_exploit

Preprocessor_gen_vulnerabilities

preprocessing

A_IE_caching_mail

A_null_session

A_CAN_2002_0649_sql_exploit

A_rsh_login

unspecific

A_CVE_1999_0035_ftp_exploituser

A_CAN_2003_0694_sendmail_exploit

A_CAN_2003_0715_dcom_exploit

A_CAN_2003_0693_ssh_exploit_stealth

A_CAN_2003_0693_ssh_exploit

root

remote (Pol)

A_CAN_2003_0620_man_db_exploitlocal

scenario

Fig. 3. Definition of an abstract representation of the attack graph

www.manaraa.com

This mapping denotes, that all transitions (the leaves of the tree) are to be
represented by their respective father nodes, namely system, preprocessing,
unspecific, user, root and local in the abstract representation. The nodes
system and preprocessing are coloured in grey, symbolising that they are
mapped to ε, that means the transitions represented by these nodes are
invisible in the abstract representation. Please ignore the notation (Pol) at
the node remote for the moment.

Step 2 - Compute the Abstract Representation. Figure 4 shows the com-
puted abstract view focussing on the transition types root, user, unspecific
and local. This graph with only 20 states and 37 edges was derived from the
attack graph (cf. Fig. 2) with 178 states and 1309 edges. The simplicity of
this mapping that guarantees that properties are preserved was automati-
cally proven by the tool.

A-3

A-16

A-6

A-12

A-5

A-8

A-1

A-19

A-7

A-9

A-2

A-18

A-15

A-17

A-14

A-10

A-13

A-11

A-4
A-20
start:

(root)

(unspecific)

(root)

(unspecific)

(user)

(unspecific)

(root)

(unspecific)

(root)

(user)

(root)

(root)

(user)

(unspecific)

(root)

(user)

(unspecific)

(root)

(unspecific)

(root)

(user)

(root)
(root)

(unspecific)

(root)

(user)

(root)

(unspecific)

(unspecific)

(root)

(user)

(unspecific)

(user)

(root)

(root)

(unspecific)

(user)

Fig. 4. Abstract view on an attack graph

Step 3 - Optionally Refine the Mapping. If you want to know for exam-
ple, what policies are responsible to allow the attacks shown in Fig. 4 then a
refinement of the abstraction defined in Fig. 3 is necessary. It is possible to
“fine tune” the mapping so that the interpretation variables (cf. Sect. 3.4)
stay visible in the abstract representation. In this case the binding of the
interpretation variable Pol that contains the respective policy can be visu-
alised. This is denoted by (Pol) in the node remote in Fig. 3. The corre-
sponding refined abstract representation is a graph with 34 states and 121
edges when computed on the attack graph in Fig. 2. The initial nodes and
edges of this graph are shown in Fig. 5(a). In comparison to the initial edges
of the graph in Fig. 4 now the details on the related policies are visible.

www.manaraa.com

A-33

A-32

A-34
(unspecific ())

(root (Pol = (any_role,dmz_host,ssh))) (2)
(root (Pol = (any_role,dmz_host,smtp)))

(a) (any role, dmz host, ssh/smtp)

A-33

A-32

A-34
(unspecific ())

(root (Pol = (any_role,dmz_host,smtp)))

(b) (any role, dmz host, smtp)

Fig. 5. Details in the abstract view

Step 4 - Adapt/Optimise the System Configuration. Further analysis re-
veals, that, if the example policy given in Fig. 1(b) is changed to allow only
smtp instead of ssh and smtp for any role to dmz host then the analysis
yields a graph with only 94 states and 783 edges and performing the same
steps as described above leads to the same graph (Fig. 4) in step 2 but a
different one shown in Fig. 5(b) in the refinement step 3.

If alternatively the policy is restricted to allow only ssh instead of ssh and
smtp in the above example, then again you get a different attack graph with
167 states and 1203 edges but the abstract view in step 2 is still the same.

This stepwise analysis demonstrates that there may be differences in the
detailed attack graphs but no differences in the abstract representations thereof.
This indicates that the different policies are equally effective (or not) concerning
the enforcement of security goals on the abstract level, even if variations in the
attack paths are covered by different policy rules.

Using Predicates to Define Abstractions. Let us now assume that the host
db server in the scenario is the most valuable and mission critical host in the
ICT network. So we want to know if in the given scenario, (1) attacks to the
db server are possible, (2) on which vulnerabilities they are based, and, (3) what
policy rules are directly involved.

The abstraction in Fig. 6(a) exemplifies how predicates can be used to define
such a mapping. In this mapping the predicate (T = db server) matches only
those transitions that model direct attacks to the target host db server. The
remote transitions that don’t match that predicate are mapped to ε and so are
invisible.

Evaluating this abstraction on the attack graph from Fig. 2 above results in
the simple graph given in Fig. 6(b). This proves that, (1) in the current policy
configuration attacks to the db server are possible, (2) those attacks are based
on exploits of the vulnerability CAN 2002 0649, and, (3) they are utilising the
policy rule (intern hosts, any role, net). So to prevent this attack, it has to be
decided, if it is more appropriate to uninstall the product that is hurt by this
vulnerability or to restrict the internal hosts in their possible actions by replacing
the above policy with a more restrictive one.

Many further uses of these attack graphs are possible, such as cost benefit
analysis or analysis of intrusion detection configurations.

www.manaraa.com

system

preprocessing

 ~(,(T=db_server),)

 (,(T=db_server),)

remote (,(T=db_server),); (Vul,Pol)

local

scenario

(a) Abstraction used

A-2
start:

A-1

 Pol = (intern_host,any_role,net)))
 (Vul = CAN_2002_0649
((,(T=db_server),)

(b) Resulting graph

Fig. 6. Focus on attacks to the host db server

Liveness properties in this context reflect survivability and business continu-
ity aspects. When a system’s countermeasures and the behaviour of vital services
the system provides are included in the model, then these effects and the system’s
resilience can be analysed. Please refer to [1] for an example.

5 Further Research Objectives

The work presented in this paper brings together, (1) attack graph computation
technology, (2) state-of-the-art policy modelling, and, (3) formal methods for
analysis and computation of abstract representations of the system behaviour.
The aim is, to guide a systematic evaluation and assist the persons in charge
with optimising adaptation of the network security policy to an ever-changing
vulnerability setting.

To seamlessly integrate the methods and tool presented here into a network
vulnerability analysis framework, a tool-assisted transformation of up-to-date
ICT system configuration and vulnerability databases into a formal specifica-
tion of the model is required. This should preferably be based on automatically
updated information of network scanners because administration databases are
typically out-of-date. Recent work by Noel, Jajodia et al. in [7] and [8] already
covers this aspect but more work is needed to facilitate the transformation of
descriptions from vulnerability databases into formal vulnerability and exploit
specifications.

A summarisation of severity ratings for single security vulnerabilities as pro-
vided by CVSS or US-CERT (cf. Sect. 3.3) based on attack graphs has been
addressed in recent work of Kotenko and Stepashkin [9]. Interesting questions
in such an approach are, which attacker strategy or bundle of strategies to ap-
ply and how to “condense” the information in the graph into a comprehensive
measure of the security of an ICT network. Consideration of resilience against
unknown attacks could also contribute to such a measure.

An even more advanced objective is, to extend this framework to support
policy-based, automated threat response that makes use of alert information. Such
a self-adaptive response mechanism could substantially improve the resilience of
policy controlled ICT systems against network attacks.

www.manaraa.com

References

1. Rieke, R.: Tool based formal Modelling, Analysis and Visualisation of Enter-
prise Network Vulnerabilities utilising Attack Graph Exploration. In: In U.E. Gat-
tiker (Ed.), Eicar 2004 Conference CD-rom: Best Paper Proceedings, Copenhagen,
EICAR e.V. (2004)

2. Phillips, C.A., Swiler, L.P.: A graph-based system for network-vulnerability analy-
sis. In: NSPW ’98, Proceedings of the 1998 Workshop on New Security Paradigms,
September 22-25, 1998, Charlottsville, VA, USA, ACM Press (1998) 71–79

3. Swiler, L.P., Phillips, C., Ellis, D., Chakerian, S.: Computer-attack graph gen-
eration tool. In: DARPA Information Survivability Conference and Exposition
(DISCEX II’01) Volume 2,June 12 - 14, 2001, Anaheim, California, IEEE Com-
puter Society (2001) 1307–1321

4. Jha, S., Sheyner, O., Wing, J.M.: Two formal analyses of attack graphs. In: 15th
IEEE Computer Security Foundations Workshop (CSFW-15 2002), 24-26 June
2002, Cape Breton, Nova Scotia, Canada, IEEE Computer Society (2002) 49–63

5. Sheyner, O., Haines, J.W., Jha, S., Lippmann, R., Wing, J.M.: Automated gen-
eration and analysis of attack graphs. In: 2002 IEEE Symposium on Security
and Privacy, May 12-15, 2002, Berkeley, California, USA, IEEE Comp. Soc. Press
(2002) 273–284

6. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulner-
ability analysis. In: Proceedings of the 9th ACM conference on Computer and
communications security, ACM Press New York, NY, USA (2002) 217–224

7. Noel, S., Jajodia, S.: Managing attack graph complexity through visual hierarchical
aggregation. In: VizSEC/DMSEC ’04: Proceedings of the 2004 ACM workshop on
Visualization and data mining for computer security, New York, NY, USA, ACM
Press (2004) 109–118

8. Noel, S., Jacobs, M., Kalapa, P., Jajodia, S.: Multiple Coordinated Views for Net-
work Attack Graphs. In: IEEE Workshop on Visualization for Computer Security
(VizSec’05), Los Alamitos, CA, USA, IEEE Computer Society (2005)

9. Kotenko, I., Stepashkin, M.: Analyzing Network Security using Malefactor Action
Graphs. International Journal of Computer Science and Network Security 6 (2006)

10. Morin, B., Mé, L., Debar, H., Ducassé, M.: M2d2: A formal data model for ids
alert correlation. In: Recent Advances in Intrusion Detection, 5th International
Symposium, RAID 2002, Zurich, Switzerland, October 16-18, 2002, Proceedings.
Volume 2516 of Lecture Notes in Computer Science., Springer (2002) 115–137

11. Cuppens, F., Cuppens-Boulahia, N., Sans, T., Miège, A.: A formal approach to
specify and deploy a network security policy. In: Second Workshop on Formal
Aspects in Security and Trust (FAST). (2004)

12. Ochsenschläger, P., Repp, J., Rieke, R., Nitsche, U.: The SH-Verification Tool
Abstraction-Based Verification of Co-operating Systems. Formal Aspects of Com-
puting, The International Journal of Formal Method 11 (1999) 1–24

13. Ochsenschläger, P., Repp, J., Rieke, R.: The SH-Verification Tool. In: Proc.
13th International FLorida Artificial Intelligence Research Society Conference
(FLAIRS-2000), Orlando, FL, USA, AAAI Press (2000) 18–22

14. Schiffmann, M.: A Complete Guide to the Common Vulnerability Scoring System
(CVSS) (2005) http://www.first.org/cvss/cvss-guide.html.

15. Ochsenschläger, P., Repp, J., Rieke, R.: Verification of Cooperating Systems –
An Approach Based on Formal Languages. In: Proc. 13th International FLorida
Artificial Intelligence Research Society Conference (FLAIRS-2000), Orlando, FL,
USA, AAAI Press (2000) 346–350

www.manaraa.com

P11
A B S T R A C T I O N - B A S E D A N A LY S I S O F K N O W N A N D
U N K N O W N V U L N E R A B I L I T I E S O F C R I T I C A L
I N F O R M AT I O N I N F R A S T R U C T U R E S

Title Abstraction-based analysis of known and un-
known vulnerabilities of critical information
infrastructures

Authors Roland Rieke

Publication International Journal of System of Systems Engi-
neering (IJSSE), 1:59–77, 2008.

ISBN/ISSN ISSN 1748-0671

DOI http://dx.doi.org/10.1504/IJSSE.2008.

018131

Status Published

Publisher InderScience

Publication Type International Journal of System of Systems
Engineering (IJSSE), Vol. 1

Copyright 2008, InderScience

Contribution of
Roland Rieke

Author

Table 16: Fact Sheet Publication P11

Publication P11 [Rieke, 2008a] addresses the following research
question:

RQ7 To which extent is a networked system resilient against exploits of
unknown vulnerabilities?

This journal paper is an extended version of P10. In addition to
the results of P10 it provides an approach to analysis of unknown
vulnerabilities. In order to analyse resilience of critical information in-
frastructures against exploits of unknown vulnerabilities, generic vul-
nerabilities for each installed product and affected service are added
to the model. The reachability analysis now considers every possible
choice of product, and so all alternatives are evaluated in the attack
graph. The impact of changes to security policies or network structure
can be visualised by differences in the attack graphs. Results of this
analysis support the process of dependable configuration of critical
information infrastructures.

341

http://dx.doi.org/10.1504/IJSSE.2008.018131
http://dx.doi.org/10.1504/IJSSE.2008.018131

www.manaraa.com

c©2008 Inderscience Enterprises Ltd. This is an author-created post-peer review version of the work
with DOI: 10.1504/IJSSE.2008.018129. The original publication is available at:
http://www.inderscience.com/offer.php?id=18131

Abstraction-based analysis of known and unknown
vulnerabilities of critical information infrastructures

Roland Rieke

Fraunhofer Institute for Secure Information Technology SIT, Darmstadt, Germany
rieke@sit.fraunhofer.de

Abstract. The systematic protection of critical information infrastructures requires
an analytical process to identify the critical components and their interplay, to de-
termine the threats and vulnerabilities, to assess the risks and to prioritise coun-
termeasures where risk is unacceptable. The abstraction-based approach presented
here builds on a model-based construction of an attack graph with constraints given
by the network security policy. A unique feature of the presented approach is, that
abstract representations of these graphs can be computed that allow comparison of
focussed views on the behaviour of the system. In order to analyse resilience of crit-
ical information infrastructures against exploits of unknown vulnerabilities, generic
vulnerabilities for each installed product and affected service are added to the model.
The reachability analysis now considers every possible choice of product, and so all
alternatives are evaluated in the attack graph. The impact of changes to security
policies or network structure can be visualised by differences in the attack graphs.
Results of this analysis support the process of dependable configuration of critical
information infrastructures.

Key words: threats analysis, attack simulation, critical infrastructure protection,
network security policies, risk assessment, security modelling and simulation, un-
known vulnerabilities.

1 Introduction

Information and Communication Technology (ICT) is creating innovative systems and ex-
tending existing infrastructure to such an interconnected complexity that predicting the
effects of small internal changes (e.g. firewall policies) and external changes (e.g. the discov-
ery of new vulnerabilities and exploit mechanisms) becomes a major problem. The security
of such a complex networked system essentially depends on a concise specification of security
goals, their correct and consistent transformation into security policies and an appropriate
deployment and enforcement of these policies. This has to be accompanied by a concept
to adapt the security policies to changing context and environment, usage patterns and
attack situations. To help to understand the complex interrelations of security policies, ICT
infrastructure and vulnerabilities and to validate security goals in such a setting, tool-based
modelling techniques are required that can efficiently and precisely predict and analyse the
behaviour of such complex interrelated systems. Figure 1 shows an example of such an
infrastructure. Known and unknown vulnerabilities may be part of each of the connected
components and communication paths between them. Analysis methods should guide a sys-

www.manaraa.com

Fig. 1. Interplay of complex interrelated systems

tematic evaluation of such a critical information infrastructure assist the persons in charge
with finally determining exactly how to configure protection measures and which security
policy to apply.

A typical means by which an attacker (directly or using malware such as blended threats)
tries to break into such a network is, to use combinations of basic exploits to get more
information or more credentials and to capture more assets step by step. To find out if
there is a combination that enables an attacker to reach critical network resources or block
essential services, it is required to analyse all possible sequences of basic exploits, so called
attack paths.

For this type of analytical analysis, a formal modelling framework is presented that, on
the one hand, represents the information system and the security policy, and, on the other
hand, a model of attacker capabilities and profile. It is extensible to comprise intrusion de-
tection components and optionally a model of the system’s countermeasures. Based on such
an operational model, a graph representing all possible attack paths can be automatically
computed. It is called an attack graph in the following text. Based on this attack graph, it
is now possible to find out whether a given security policy successfully blocks attack paths
and is robust against changes in the given vulnerability setting.

One problem now is, that it is usually impossible to visualise an attack graph of a
realistic example directly because of the huge size. However, abstract representations of an
attack graph can be computed and used to visualise and analyse compacted information
focussed on interesting aspects of the behaviour. The impact of changes to security policies
can be visualised by finding differences in the attack graphs or the abstract representations
thereof.

This paper also shows, that abstract representations are very useful to analyse resilience
of critical information infrastructure with respect to attacks based on unknown vulnerabil-
ities because addition of unknown vulnerabilities results in very large attack graphs.

The subsequent paper is structured as follows. The modelling approach is described
in Sect. 2, while Sect. 3 presents an exemplary analysis. Section 4 presents an approach

www.manaraa.com

to analyse resilience of critical information infrastructures against exploits of unknown
vulnerabilities. Section 5 gives an overview of related work. Finally, this paper ends with
an outlook in Sect. 6.

2 Modelling information infrastructures and threats

The proposed operational model comprises, (1) an asset inventory including critical network
components, topology and vulnerability attributions, (2) a network security policy, (3)
vulnerability specifications and exploit descriptions, and (4) an attacker model taking into
account the attackers knowledge and behaviour.

2.1 ICT network components

The set of all hosts of the information system consists of the union of the hosts of the ICT
network and the hosts of the attacker(s). Following the M2D2 model [1], products are the
primary entities that are vulnerable. A host configuration is a subset of products that is
installed on that host and affects is a relation between vulnerabilities and sets of products
that are affected by a vulnerability. A host is vulnerable if its configuration is a superset
of a vulnerable set of products and the affected services are currently running. In order
to conduct a subsequent comparative analysis of attack paths, an asset prioritisation as to
criticality or worth regarding relative importance of the assets is required.

2.2 Network security policies

The model of the network security policies is based on the Organisation-Based Access
Control (Or-BAC) model [2]. The advantage of this choice is, that it is possible to link the
policies in the formal model at an abstract level to the low level vendor specific policy rules
for the Policy Enforcement Points (PEPs) such as firewalls in the concrete ICT network.

To illustrate the modelling concepts described here, a small example scenario is given
in Fig. 2. Modelling concepts and typical analysis outcome will be illustrated using this
example scenario throughout the paper. One possible attack path is sketched in the scenario.

Following the Or-BAC-based concept, the network vulnerability policy is given at an
abstract level in terms of roles (an abstraction of subjects), activities (an abstraction of
actions) and views (an abstraction of objects). A subject in this model is any host. An action
is a network service such as snmp, ssh or ftp. Actions are represented by a triple of protocol,
source port and target port. An object is a message sent to a target host. Currently only
the target host or rather the role of the target host is used for the view definition here. To
specify the access control policy using this approach, permissions are given between role,
activity and view. For the example scenario the hostnames telework, attacker, nix host,
ms host, db server and portal are used. The roles of these hosts are given by the table in
Fig. 3(a). The policy permissions are defined by the table in Fig. 3(b).

Mobile components. To model mobile components that can transport malware such as
blended threats from one network zone to another, it is convenient to allow a host to play

www.manaraa.com

Internet

intern zone
ICT network

PEP

CAN_2003_0715
CAN_2002_1262

management zone

CAN_2003_0694
CAN_2003_0693

dmz zone

CAN_xxxx_yyyy
CVE_xxxx_yyyy

Attacker

CAN_2003_0715

teleworker VPN zone

CVE_1999_0035
CAN_2003_0693
CAN_2003_0620

developer zone

CAN_2003_0715
CAN_2002_0649

with special db_host
production zone

vulnerabilities
unknown

customer zone

vulnerabilities
unknown

supplier zone

PEP

Fig. 2. ICT network and vulnerabilities

different roles. For example in Fig. 3(a) the host telework that plays the role telework host
can additionally be permitted to play the role intern host. In this case an attack path could
cross the zones from telework host to intern host without any restrictions by the network
security policy. Similar problems exist in infrastructures with mobile components such as
the example scenario shown in Fig.1.

2.3 Vulnerabilities

Vulnerability specifications for the formal model of the example scenario are derived from
the Common Vulnerabilities and Exposures (CVE/CAN) descriptions. The MITRE Corpo-
ration provides a list of virtually all known vulnerabilities (http://www.cve.mitre.org/).
The CVE name is the 13 character ID used by the CVE standards group to uniquely identify
a vulnerability. Additional information about the vulnerabilities also covers preconditions
about the target host as well as network preconditions. Furthermore, the impact of an ex-
ploitation of a vulnerability is described. The specifications for the formal model of the vul-
nerabilities additionally comprise the vulnerability range and impact type assessments pro-
vided by the National Institute of Standards and Technology (NIST) (http://nvd.nist.gov/).
Of course, other kinds of vulnerabilities could be added to the model in a similar manner.

Vulnerability severity. The Common Vulnerability Scoring System (CVSS) [3] provides
universal severity ratings for security vulnerabilities. These ratings are used in the model as
an example for a measure of the threat level. Another example for such a measure is the met-
ric used by the US-CERT (cf. http://www.kb.cert.org/vuls/html/fieldhelp#metric).

www.manaraa.com

Role Hosts

internet host attacker
dmz host portal
telework host telework
developer host nix host
management host ms host
db host db server
intern host db server,

ms host,
nix host

(a) Roles

Role (source) View (target) Activity (service)

internet host internet host any activity
any role dmz host ssh
any role dmz host smtp
dmz host intern host ssh
intern host any role net
intern host internet host ftp
intern host internet host rsh
intern host dmz host ssh
db host production host rpc
teleworker host dmz host any activity

(b) Network security policy

Fig. 3. Roles and network security policy

These measures are based on information about the vulnerability being widely known, re-
ported exploitation incidents, number of infected systems, the impact of exploiting the
vulnerability and the knowledge and the preconditions required to exploit the vulnerability.
Because the approximate values included in those measures may differ significantly from
one site to another, prioritising of vulnerabilities based on such measures should be used
with caution.

To have a vulnerable product installed on some host, does not necessarily imply, that
someone can exploit that vulnerability. A target host is configured vulnerable, if (1) the
target host has installed a product or products that are vulnerable with respect to the
given vulnerability, and (2) necessary other preconditions are fulfilled (e.g. some vulnera-
bilities require that a trust relation is established as for example used in remote shell hosts
allow/deny concepts).

The second precondition to exploit a vulnerability is, that the target host is currently
running the respective products such as a vulnerable operating system or server version. If a
user interaction is required this also requires that the vulnerable product is currently used
(e.g. a vulnerable Internet explorer).

The third necessary precondition is, that the network security policy permits that the
target host is reachable on the port the vulnerable product is using from the host the
attacker selected as source.

2.4 Attacker profile

The knowledge of exploits and hosts and the credentials on the known hosts constitute
an attackers profile. Knowledge about hosts changes during the computation of the attack
graph because the attacker might gain new knowledge when capturing hosts. On the other
hand, some knowledge may become outdated because the enterprise system changes ip-
numbers or other configuration of hosts and reachability. In case a vulnerability is exploited,
the model has to cover the effects for the attacker (e.g. to obtain additional user or root
credentials on the target host) and also the direct impact on the network and host such as,
to shut down a service caused by buffer overflow.

www.manaraa.com

2.5 Formal representation of the model

The information model presented so far covers the description of a (static) configuration of
an ICT network and its vulnerabilities. In the formal model such a configuration describing
the state of the ICT network is represented by APA state components.

Definition 1. An Asynchronous Product Automaton (APA) consists of

– a family of state sets (Zs)s∈S,
– a family of elementary automata (Φe, ∆e)e∈E and
– a neighbourhood relation N : E → P(S)
– an initial state q0

S and E are index sets with the names of state components and of elementary automata
and P(S) is the power set of S.

For each elementary automaton (Φe, ∆e) with Alphabet Φe, its state transition relation
is ∆e ⊆ ��s∈N(e)(Zs) × Φe × ��s∈N(e)(Zs). For each element of Φe the state transition
relation ∆e defines state transitions that change only the state components in N(e). An
APA’s (global) states are elements of ��s∈S(Zs). To avoid pathological cases it is generally
assumed that S =

⋃
e∈E(N(e)) and N(e) 6= ∅ for all e ∈ E. Each APA has one initial state

q0 = (q0s)s∈S ∈ ��s∈S(Zs). In total, an APA A is defined by

A = ((Zs)s∈S, (Φe, ∆e)e∈E, N, q0)

Finite state model of the scenario. The components of the model described previ-
ously are now specified for the proposed analysis method using the APA state compo-
nents S = { A known exploits state, A plvl state, affects state, configuration state, host service state,

host vulnerability state, host vulnerable user state, . . . }.
The initial state is composed of q0A known exploits state, q0A plvl state, . . . , where

q0A known exploits state contains the exploits known by the attacker,q0A plvl state contains a
sequence of pairs of host and access privileges of the attacker on that host (e.g. (attacker,root),
(db server,none), . . .),q0affects state contains a sequence of pairs of vulnerability and affected
product (e.g. (CAN 2002 0649,SQL Server 2000), (CAN 2002 1262,vulnerable IE), . . .),
q0configuration state contains a sequence of pairs of a host and a sequence of installed
products (e.g. (db server,W2000 Server.SQL Server 2000), . . .),q0host service state contains a se-
quence of pairs of host and associated service including used port and privileges (e.g.
(db server,((ftpd,ftp port),root)), (db server, ((sql res, ms sql m port), db user)). . . .), and,
q0host vulnerability state which is empty (the vulnerabilities are computed from affects state
and configuration state in a preprocessing transition).

To describe how actions of attacker(s) and actions of the system can change the state
of the ICT network model, specifications of APA state transitions are used. These state
transitions represent atomic exploits and optionally the actions that the system executes
itself (e.g. to implement vital services).

The set of elementary automata E = { Preprocessor gen vulnerabilities, Service answer,

A select exploit, Defence Restart sshd, A CAN 2002 1262 IE caching exploit,

A CAN 2002 0649 sql exploit, A CAN 2003 0694 sendmail exploit, . . . } represents the possible
actions. The actions starting with A . . . are the actions the attacker can perform. If multiple
attackers are modelled then A is replaced by the name of the attacker.

www.manaraa.com

A state transition can occur, when all expressions are evaluable and all conditions are
satisfied. So called interpretation variables are used to differentiate the variants of execution
of the same transition. All possible variants of bindings of interpretation variables from the
state components are generated automatically. So for example for a transition modelling an
exploit, all possible combinations of bindings of source and target host are computed and
further evaluated.

Definition 2. An elementary automaton (Φe, ∆e) is activated in a state q = (qs)s∈S ∈
��s∈S(Zs) as to an interpretation i ∈ Φe, if there are (ps)s∈N(e) ∈ ��s∈N(e)(Zs) with
((qs)s∈N(e), i, (ps)s∈N(e)) ∈ ∆e. An activated elementary automaton (Φe, ∆e) can execute
a state transition and produce a successor state p = (ps)s∈S ∈ ��s∈S(Zs), if qr = pr
for r ∈ S \ N(e) and (qs)s∈N(e), i, (ps)s∈N(e) ∈ ∆e. The corresponding state transition is
(q, (e, i), p).

A state transition in the given model could for example cause a change in the state com-
ponentA plvl state from (attacker,root).(db server,none). . . into (attacker,root)(db server,root). . . .

Attacker behaviour. Attacker capabilities are modelled by the atomic exploits and by
the strategy to select and apply them.

A state transition modelling an exploit is constructed from, (1) a predicate that states
that the attacker knows this exploit, (2) an expression to select source and target hosts for
the exploit, (3) a predicate that states that the target host is vulnerable by this exploit,
(4) an expression for the impact of the execution of this exploit on the attacker and on the
target host as for example the shut down of services. Optional add-ons are, an assignment
of cost benefit ratings to this exploit and intrusion detection checks.

Several different attackers can easily be included because an attacker is modelled as a
role not a single instance and the tool can automatically generate multiple instances from
one role definition.

Modelling of Denial of Service (DoS) attacks aiming to block resources or communication
channels either directly or by side effects require a much more detailed model of the resources
involved. This could be accomplished using the presented framework but is out of scope of
this paper.

Some experiments have been made to generate a set of known exploits for the attacker(s)
from a given algorithm. If for example it is assumed that the attacker knows 3 different
exploits, then all combinations of 3 exploits from the set of all specified exploits have
to be computed and further analysed. Another example for an attacker strategy is, that
the attacker uses only exploits for vulnerabilities with a severity above a given threshold.
This is based on the assumption, that the vulnerability severity reflects the probability of
exploitation of a vulnerability.

Composition of a model and computation of an attack graph. The SH verification
tool [4] is used to analyse this model. It manages the components of the model, allows to
select alternative parts of the specification and automatically “glues” together the selected
components to generate a combined model of ICT network specification, vulnerability and
exploit specification, network security policy and attacker specification. After an initial

www.manaraa.com

Attack Graphrange, cost, impact, IDS
vulnerability, severity, type

Exploits

initial state

possible global states

topology, asset prioritisation
hosts, services, vulnerabilities

ICT Network critical Services
Counteractions &

- apply Exploit
- select Source + Target
- select Exploit

Attacker

state transition
role x activity x view

Policy

q0

q1 q2 q3 q4 q5

Fig. 4. Computation of the attack graph

configuration is selected, the attack graph (reachability graph) is automatically computed
by the SH verification tool (see Fig. 4). Formally, the attack graph is the reachability graph
of the corresponding APA model.

Definition 3. The behaviour of an APA is represented by all possible coherent sequences of
state transitions starting with initial state q0. The sequence (q0, (e1, i1), q1) (q1, (e2, i2), q2)
(q2, (e3, i3), q3) . . . (qn−1, (en, in), qn) with ik ∈ Φek represents one possible sequence of ac-
tions of an APA. qn is called the goal of this action sequence.

State transitions (p, (e, i), q) may be interpreted as labelled edges of a directed graph
whose nodes are the states of an APA: (p, (e, i), q) is the edge leading from p to q and
labelled by (e, i). The subgraph reachable from the node q0 is called the reachability graph
of an APA.

Let Q denote the set of all states q ∈ ��s∈S(Zs) that are reachable from the initial state
q0 and let Ψ denote the set of all state transitions with the first component in Q.

The set L ⊂ Ψ∗ of all action sequences with initial state q0 including the empty sequence
ǫ denotes the action language of the corresponding APA. The action language is prefix
closed. By definition q0 is the goal of ǫ.

Attack graph of the example scenario. The computed attack graph for the simple
example scenario is shown in Fig. 5. This graph was computed under the assumption that
the attacker knows all exploits. Even if we assume as a more realistic attacker behaviour,
namely that the attacker will only exploit vulnerabilities with a severity level above a given
minimum, then the graph is still far too big to inspect it manually. Figure 6 shows a detail
of this attack graph. Please note that for better readability the interpretations are omitted
at the edge labels. For example the edge q13 −→ q38 depicts the application of an exploit
where attacker A uses the ssh vulnerability CAN 2003 0693 and there is a second exploit
(which is stealth, that means not detectable by intrusion detection systems) with the same
state transition. The edge q38 −→ q73 depicts an action of the system to restart the ssh

www.manaraa.com

Fig. 5. Attack graph of simple example scenario

daemon and the edge q73 −→ q73 depicts an action that models the availability of a critical
service.

Service_answer

A_CAN_2002_0649_sql_exploit

A_CAN_2003_0693_ssh_exploit_stealth (3)
A_CAN_2003_0693_ssh_exploit

Defence_Restart_sshd

A_CVE_1999_0035_ftp_exploit (3)

A_CAN_2003_0715_dcom_exploit (2)q13

q11

q38

q88

q78

q73

Fig. 6. Attack graph detail

For very large models, on the fly analysis allows to stop computation of the reachability
graph automatically when specified conditions are reached or invariants are broken.

3 Evaluation of the model

3.1 Cost benefit analysis

Cost benefit analysis can be used as a means to help to assess the likely behaviour of an
attacker. Cost ratings (from the view of an attacker) can be assigned to each exploit, for
example to denote the time it takes for the attacker to execute the exploit or the resources
needed to develop an exploit. Cost ratings can also be based on the severity ratings given

www.manaraa.com

by CVSS or US-CERT (cf. Sect.2.3). If not only technical vulnerabilities are modelled but
also human weaknesses are considered, then cost could mean for example the money needed
to buy a password.

Based on these cost assignments (weights of edges), the shortest path from the root of
the attack graph to a node representing a successful attack can be computed using Dijkstra’s
well-known algorithm. This path represents the least expensive combined attack breaking
a given security goal.

A benefit for the attacker based on the negative impact he achieves can also be assigned,
for example to indicate the worth regarding relative criticality of the captured asset. Sum-
marised costs and benefits can be compared for selected paths or the whole graph and used
for example to find the node with the greatest benefit for a potential attacker. Please refer
to [5] for an example.

Other security related properties such as the probability of being detected by intrusion
detection systems can be associated with APA transitions. This information when evaluated
in the analysis of an attack graph can lead to improvements of a given configuration of a
critical information infrastructure.

3.2 Abstraction-based analysis

Abstract representations. The SH verification tool usually computes graphs of about
1 million edges in acceptable time and space. The problem now is, that it is impossible to
visualise a graph of that size. However abstract representations of an attack graph can be
computed and used to visualise and analyse compacted information focussed on interesting
aspects of the behaviour.

Behaviour abstraction of an APA can be formalised by language homomorphisms, more
precisely by alphabetic language homomorphisms h : Σ∗ → Σ′∗ on the action language.

By these homomorphisms certain transitions are ignored and others are renamed, which
may have the effect, that different transitions are identified with one another. A mapping
h : Σ∗ → Σ′∗ is called a language homomorphism if h(ǫ) = ǫ and h(yz) = h(y)h(z) for each
y, z ∈ Σ∗. It is called alphabetic, if h(Σ) ⊂ Σ′ ∪ {ǫ}.

The mappings used to compute the abstract representations of the behaviour have to
be property preserving, to assure that properties are transported as desired from a lower
to a higher level of abstraction and no critical behaviour is hidden by the mapping. Such
properties, namely simplicity, are given in [6] and a check for simplicity is implemented in
the SH verification tool [4]. The tool provides an editor to define homomorphisms on action
languages, it computes corresponding minimal automata [7] for the homomorphic images
and checks simplicity of the homomorphisms.

Example of a mapping to define an abstract representation. Figure 7 defines a
mapping of the transitions representing an exploit of a vulnerability to the respective range
and impact type assessments of the vulnerabilities as provided by NIST (cf. Sect. 2.3). Range
types of the vulnerabilities in the example scenario are remote (remotely exploitable) and
local (locally exploitable). Impact types used here are unspecific (provides unauthorised
access), user (provides user account access) and root (provides administrator access).

www.manaraa.com

Service_answer

Defence_Restart_sshd

system

A_select_exploit

Preprocessor_gen_vulnerabilities

preprocessing

A_IE_caching_mail

A_null_session

A_CAN_2002_0649_sql_exploit

A_rsh_login

unspecific

A_CVE_1999_0035_ftp_exploituser

A_CAN_2003_0694_sendmail_exploit

A_CAN_2003_0715_dcom_exploit

A_CAN_2003_0693_ssh_exploit_stealth

A_CAN_2003_0693_ssh_exploit

root

remote (Pol)

A_CAN_2003_0620_man_db_exploitlocal

scenario

Fig. 7. Definition of an abstract representation of the attack graph

This mapping denotes, that all transitions (the leaves of the tree) are to be represented
by their respective father nodes, namely system, preprocessing, unspecific, user, root
and local in the abstract representation. The nodes system and preprocessing are coloured
in grey, symbolising that they are mapped to ǫ, that means the transitions represented by
these nodes will be invisible in the abstract representation. Please ignore the notation (Pol)
at the node remote for the moment.

Figure 8 shows the result of application of the mapping in Fig. 7 to the attack graph
from Fig. 5. This computed abstract representation (a graph with only 20 states and 37
edges) gives a visualisation focussing on the transition types root, user, unspecific and
local. The simplicity of this mapping that guarantees that properties are preserved was
automatically proven by the tool.

Refined mapping. To find out which policies permit the attacks shown in Fig. 8, a
refinement of the abstraction defined in Fig. 7 is necessary. It is possible to “fine tune”
the mapping so that the interpretation variables (cf. Sect. 2.5) stay visible in the abstract
representation. In this case the binding of the interpretation variable Pol that contains the
respective policy can be visualised. This is denoted by (Pol) in the node remote in Fig. 7.
The corresponding refined abstract representation is a graph with 34 states and 121 edges
when computed on the attack graph in Fig. 5. The initial nodes and edges of this graph

www.manaraa.com

start:

(user)

(unspecific)

(root)

(root)

(user)

(unspecific)

(user)

(root)

(unspecific)

(unspecific)

(root)

(user)

(root)

(unspecific)

(root)
(root)

(user)

(root)

(unspecific)

(root)

(unspecific)

(user)

(root)

(unspecific)

(user)

(root)

(root)

(user)

(root)

(unspecific)

(root)

(unspecific)

(user)

(unspecific)

(root)

(unspecific)

(root)

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

A16

A17A18

A19

A20

Fig. 8. Abstract view on an attack graph

are shown in Fig. 9(a). In comparison to the corresponding edges A20 −→ A19 and A20 −→

(unspecific ())

(root (Pol = (any_role,dmz_host,ssh))) (2)
(root (Pol = (any_role,dmz_host,smtp)))

A32

A33

A34

(a) (any role, dmz host, ssh/smtp)

(unspecific ())

(root (Pol = (any_role,dmz_host,smtp)))

A32

A33

A34

(b) (any role, dmz host, smtp)

Fig. 9. Details in the abstract view

A18 of the graph in Fig. 8 now the details on the related policies are visible.

Adapt/optimise the system configuration. Further analysis reveals, that, if the ex-
ample policy given in Fig. 3(b) is changed to allow only smtp instead of ssh and smtp for
any role to dmz host then the analysis yields of course a smaller graph than the original
shown in Fig.5, the coarse abstract representation in Fig. 8 is the same, but the finer map-
ping with interpretation variable Pol visible results in a different representation which is
shown in Fig. 9(b).

If alternatively the policy is restricted to allow only ssh instead of ssh and smtp in the
above example, then the result is yet a different attack graph but the abstract view in Fig. 8
is still the same.

This analysis demonstrates that there may be differences in the detailed attack graphs
but no differences in the abstract representations thereof. This indicates that the different
policies are equally effective (or not) concerning the enforcement of security goals on the
abstract level, even if variations in the attack paths are covered by different policy rules.

www.manaraa.com

Using predicates to define abstractions. Let us now assume that the host db server
in the scenario is the most valuable and mission critical host in the ICT network. So we
want to know if in the given scenario, (1) attacks to the db server are possible, (2) on which
vulnerabilities they are based, and, (3) what policy rules are directly involved.

The abstraction in Fig. 10(a) exemplifies how predicates can be used to define such
a mapping. In this mapping the predicate (T=db server) matches only those transitions
that model direct attacks to the target host db server. Furthermore the bindings of the
interpretation variables V ul and Pol that contain the respective vulnerability and policy
are used in the mapping. The remote transitions that don’t match that predicate are mapped
to ǫ and so are invisible.

system

preprocessing

 ~(,(T=db_server),)

 (,(T=db_server),)

remote (,(T=db_server),); (Vul,Pol)

local

scenario

(a) Abstraction used

start:

 Pol = (intern_host,any_role,net)))
 (Vul = CAN_2002_0649
((,(T=db_server),)

A1

A2

(b) Resulting graph

Fig. 10. Focus on attacks to the host db server

Evaluating this abstraction on the attack graph from Fig. 5 above results in the simple
graph given in Fig. 10(b). This proves that, (1) in the current policy configuration attacks
to the db server are possible, (2) those attacks are based on exploits of the vulnerability
CAN 2002 0649, and, (3) they are utilising the policy permission (intern hosts,any role,net). So
to prevent this attack, it has to be decided, whether it is more appropriate to uninstall the
product that is hurt by this vulnerability or to restrict the internal hosts in their possible
actions by replacing the above policy with a more restrictive one.

3.3 Liveness properties

As it is well known, system properties are divided into two types: safety (what happens
is not wrong) and liveness properties (eventually something desired happens) [8]. Liveness
properties in the context of ICT infrastructure security analysis cover availability and busi-
ness continuity aspects for example with respect to denial of service attacks.

On account of liveness aspects system properties are formalised by ω-languages (sets of
infinite long words). So to investigate satisfaction of properties “infinite system behaviour”
has to be considered. This is formalised by so called Eilenberg limits of action languages
(more precisely: by Eilenberg limits of modified action languages where maximal words are
continued by an unbounded repetition of a dummy action) [9].

www.manaraa.com

The usual concept of linear satisfaction of properties (each infinite run of the system
satisfies the property) is not suitable in this context because no fairness constraints are con-
sidered. We put a very abstract notion of fairness into the satisfaction relation for properties,
which considers that independent of a finitely long prefix computation of a system certain
desired events may occur eventually. To formalise such “possibility properties”, which are
of interest when considering what we call cooperating systems, the notion of approximate
satisfaction of properties is defined in [9].

Definition 4. A system approximately satisfies a property if and only if each finite be-
haviour can be continued to an infinite behaviour, which satisfies the property.

For safety properties linear satisfaction and approximate satisfaction are equivalent [9].
To deduce approximately satisfied properties of a specification from properties of its abstract
behaviour an additional property of abstractions called simplicity of homomorphisms on an
action language [10] is required. Simplicity of homomorphisms is a very technical condition
concerning the possible continuations of finite behaviours.

For regular languages simplicity is decidable. In [10] a sufficient condition based on
the strongly connected components of corresponding automata is given, which easily can be
checked. Especially: If the automaton or reachability graph is strongly connected, then each
homomorphism is simple. The following theorem [9] shows that approximate satisfaction of
properties and simplicity of homomorphisms exactly fit together for verifying cooperating
systems.

Theorem 1. Simple homomorphisms define exactly the class of such abstractions, for
which holds that each property is approximately satisfied by the abstract behaviour if and
only if the “corresponding” property is approximately satisfied by the concrete behaviour of
the system.

Formally, the “corresponding” property is expressed by the inverse image of the abstract
property with respect to the homomorphism.

When a system’s countermeasures and the behaviour of vital services the system provides
are included in the model, then availability properties such as the system’s resilience with
respect to denial of service attacks can be analysed.

The state transitions Defence restart sshd and Service answer in Fig. 6 give an ex-
ample for a modelling of system countermeasures and critical services availability. If for
example as a side effect of an ssh exploit the attacker kills the sshd then afterwards the
sshd is not active on the respective host and so some service possibly cannot answer re-
quests anymore. Now additionally a system countermeasure is considered that restarts the
sshd. No other details are added to keep the model small. A typical liveness question in this
scenario is “Will a client still get answers from a server when the network is attacked ?”.
Using the appropriate type of model checking, approximate satisfaction of temporal logic
formulae can be checked by the SH verification tool [11], [4]. In terms of temporal logic
the property in question above can be written as G F Service answer (always eventually
Service answer) which is found to be true by the tool.

www.manaraa.com

4 Resilience against exploits of unknown vulnerabilities

One way to consider resilience of an information infrastructure against attacks to unknown
vulnerabilities is, to define a new vulnerability for each installed product. For the model of
the scenario used in this paper this has been done by definition of a new vulnerability called
CAN generic with a variable part for the affected service. In the same way a generic exploit
based on this vulnerability is defined. Now in the preprocessing phase a state transition
selects an arbitrary product and inserts a generic vulnerability CAN generic for that product
and the related service. Because the reachability analysis considers every possible choice of
product, all alternatives are evaluated in the attack graph.

When analysing the (now much larger) attack graph, the mapping in Fig. 11 exemplarily
shows a possible use of resilience analysis. The state transition modelling an exploit of an
unknown generic vulnerability uses the additional interpretation variables RS and RT ,
where RS denotes the role of the source host and RT the role of the target host. So the
given predicate (RS = RT) matches only those transitions that model attacks of hosts in the
same role (within the same zone). Now the attacks that fulfil this predicate are mapped to ǫ
(coloured in grey in the mapping) and so are invisible, whereas the attacks with RS 6= RT
(across roles/zones) are visible. Furthermore the bindings of the interpretation variables
V ulServ and Pol that contain the respective vulnerable service and policy are used in the
mapping. All other transitions are mapped to ǫ.

 ~(,(RS=RT),)

 (,(RS=RT),)

unknown (,(RS=RT),); (VulServ,Pol)

preprocessing_system_local_remote

scenario

Fig. 11. Mapping for attacks against unknown vulnerabilities that cross zones

The abstract representation computed from that mapping is shown in Fig. 12. It gives
a clear overview about what kind of zone crossing attacks would be possible in case that
new unknown vulnerabilities were exploited. For each assumed vulnerable service it shows
the policies that would allow the attack.

Using a modified definition of the mapping in Fig. 11 allows to look into more detail
for example behind the edge (V ulServ = sendmaild Pol = (intern host, any role, net))
shown in bold font in Fig. 12. A refined mapping with predicate (RS 6= RT ∧ V ulServ =
sendmaild) and visible interpretation variables RS and RT results in an abstract repre-
sentation with 4 parallel edges labelled (RS = developer host RT = dmz host), (RS =
db host RT = dmz host), (RS = intern host RT = dmz host) and (RS = management -
host RT = dmz host) respectively. This shows that if an attacker knows a new exploit for
an unknown vulnerability of the product providing the sendmaild, then the current policy
rule (intern host, any role, net) would allow to use the exploit to cross the 4 given zones.

Now if the policies are quite restrictive and no new cross role/zone attacks are found by
the reachability analysis, then it can be concluded that the network configuration is resilient

www.manaraa.com

start:

(VulServ = sshd Pol = (dmz_host,intern_host,ssh))
(VulServ = sshd Pol = (intern_host,any_role,net))

(VulServ = sshd Pol = (dmz_host,intern_host,ssh))
(VulServ = sshd Pol = (any_role,dmz_host,ssh))
(VulServ = sshd Pol = (intern_host,dmz_host,ssh))
(VulServ = sshd Pol = (intern_host,any_role,net))

(VulServ = sshd Pol = (dmz_host,intern_host,ssh))
(VulServ = sendmaild Pol = (intern_host,any_role,net))
(VulServ = sql_res Pol = (intern_host,any_role,net))
(VulServ = ftpd Pol = (intern_host,any_role,net))

(VulServ = sshd Pol = (any_role,dmz_host,ssh))
(VulServ = sshd Pol = (intern_host,dmz_host,ssh))

(VulServ = sshd Pol = (intern_host,any_role,net))

A1

A2A3

A4

Fig. 12. Abstract representation of attacks against unknown vulnerabilities

with respect to attacks against one unknown vulnerability. In the same way resiliency with
respect to two or more unknown vulnerabilities can be analysed. Please note that in many
cases this will not be possible because of state space explosion problems but computation of
a section of the attack graph by giving a limitation on the number of edges to be computed
is possible and should help to find problems and to successively restrict the configuration
to an acceptable risk level.

5 Related work

This paper is based on the work presented in [12]. The network vulnerability modelling
part of the framework presented here is adopted from the approach introduced in [5] and is
similar in design to an approach by Phillips and Swiler in [13] and [14]. Related work of Jha,
Sheyner, Wing et al. used attack graphs that are computed and analysed based on model
checking in [15] and [16]. Ammann et al. presented an approach in [17] that is focussed on
reduction of complexity of the analysis problem by explicit assumptions of monotonicity.

To seamlessly integrate the methods and tool presented here into a network vulnerability
analysis framework, a tool-assisted transformation of up-to-date ICT system configuration
and vulnerability databases into a formal specification of the model is required. This should
preferably be based on automatically updated information of network scanners because
administration databases are typically out-of-date. Recent work by Noel, Jajodia et al.
in [18] and [19] already covers this aspect and also describes attack graph visualisation
techniques.

The work of Kotenko and Stepashkin in [20] is focussed on security metrics computations
and adaptive cooperative defence mechanisms [21].

To model the ICT network, the vulnerabilities and the intrusion detection systems, a
data model loosely resembling the formally defined M2D2 information model [1] is used.
Appropriate parts of this model are adopted and supplemented by concepts needed for

www.manaraa.com

description of exploits, attacker knowledge and strategy and information for cost benefit
analysis. A formal approach to use an Organisation-Based Access Control (Or-BAC) model
to specify network security policies was presented in [2]. This approach is adopted here to
model the network security policies in the attack graph analysis framework.

The modelling framework is based on Asynchronous Product Automata (APA), a flexible
operational specification concept for cooperating systems [11]. The applied analysis method
is implemented in the SH verification tool [4] that has been adapted and extended to support
the presented attack graph evaluation methods.

Major focus of the combined modelling framework presented in this paper, is the inte-
gration of formal network vulnerability modelling on the one hand and network security
policy modelling on the other hand. This aims to help adaptation of a network security pol-
icy to a given and possibly changing vulnerability setting. Recent methods for analysis of
attack graphs are extended to support analysis of abstract representations of these graphs.

Extensions to the APA-based model checking techniques are needed to be able to verify
entire families of systems, independent of the exact number of replicated components. Such
an approach to abstraction-based analysis of parameterised policy controlled systems is
presented in [22].

6 Further research objectives

The work presented in this paper brings together, (1) attack graph computation technology,
(2) state-of-the-art policy modelling, and, (3) formal methods for analysis and computation
of abstract representations of the system behaviour. The aim is, to guide a systematic
evaluation and assist the persons in charge with optimising adaptation of the network
security policy to an ever-changing vulnerability setting and so to improve the configuration
of the information infrastructure.

(Security) metrics in abstract representations. A summarisation of severity ratings
for single security vulnerabilities as provided by CVSS or US-CERT (cf. Sect. 2.3) based on
attack graphs has been addressed in recent work of Kotenko and Stepashkin [20]. Interesting
questions in such an approach are, which attacker strategy or bundle of strategies to apply
and how to “condense” the information in the graph into a comprehensive measure of the
security of an ICT network.

In an abstraction-based approach a method to assign measures to the nodes or edges in
the abstract representations is needed. One idea is to look at the origin nodes (nodes in the
attack graph) of an abstract node and then for example compute the minimum value of some
measure from the set of origin nodes. If for example a shortest path analysis (cf. Sect.3.1)
was computed on the attack graph, then each node of the attack graph is associated with
a value for the shortest (least expensive) path to that node. If now the semantics of these
values allows a comparison, then a function such as the minimum measure from the set of
origin nodes can be associated with each node in the abstract representation. If the cost
ratings of the transitions in the attack graph are based on severity ratings from CVSS or
US-CERT (cf. Sect.2.3) then the function for the transformation of the values in the origin
nodes to the abstract representation can be used for a metric of security of the critical
information under the abstract view defined by the mapping. Consideration of resilience

www.manaraa.com

against exploits of unknown vulnerabilities (cf. Sect. 4) could also contribute to such a
measure.

Threat response mechanisms. An even more advanced objective is, to extend this
framework to support policy-based, automated threat response that makes use of alert infor-
mation. Such a self-adaptive response mechanism could substantially improve the resilience
of policy controlled ICT systems against network attacks. A framework for simulation of
adaptive cooperative defense against internet attacks has been presented by Kotenko and
Ulanov in [21]. Analysis of distributed coordinated attacks and the controlling mechanisms
such as botnets using the abstraction-based approach presented in this paper would com-
plement their approach.

Acknowledgements. The author likes to thank Peter Ochsenschläger who conducted
most of the theoretical work on APA that this work is based on and Jürgen Repp who
implemented most of the SH verification tool that was used as basis for the modelling and
analysis presented here.

Part of the work presented in this paper was developed within the project SicAri being
funded by the German Ministry of Education and Research.

References

1. Morin, B., Mé, L., Debar, H., Ducassé, M.: M2d2: A formal data model for ids alert correlation.
In: Recent Advances in Intrusion Detection, 5th International Symposium, RAID 2002, Zurich,
Switzerland, October 16-18, 2002, Proceedings. Volume 2516 of Lecture Notes in Computer
Science., Springer (2002) 115–137

2. Cuppens, F., Cuppens-Boulahia, N., Sans, T., Miège, A.: A formal approach to specify and
deploy a network security policy. In: Second Workshop on Formal Aspects in Security and
Trust (FAST). (2004)

3. Schiffmann, M.: A Complete Guide to the Common Vulnerability Scoring System (CVSS)
(2005) http://www.first.org/cvss/cvss-guide.html.

4. Ochsenschläger, P., Repp, J., Rieke, R.: The SH-Verification Tool. In: Proc. 13th International
FLorida Artificial Intelligence Research Society Conference (FLAIRS-2000), Orlando, FL, USA,
AAAI Press (2000) 18–22

5. Rieke, R.: Tool based formal Modelling, Analysis and Visualisation of Enterprise Network
Vulnerabilities utilising Attack Graph Exploration. In: In U.E. Gattiker (Ed.), Eicar 2004
Conference CD-rom: Best Paper Proceedings, Copenhagen, EICAR e.V. (2004)

6. Ochsenschläger, P., Repp, J., Rieke, R.: Verification of Cooperating Systems – An Approach
Based on Formal Languages. In: Proc. 13th International FLorida Artificial Intelligence Re-
search Society Conference (FLAIRS-2000), Orlando, FL, USA, AAAI Press (2000) 346–350

7. Eilenberg, S.: Automata, Languages and Machines. Volume A. Academic Press, New York
(1974)

8. Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Letters 21(4) (1985)
181–185

9. Nitsche, U., Ochsenschläger, P.: Approximately satisfied properties of systems and simple
language homomorphisms. Information Processing Letters 60 (1996) 201–206

www.manaraa.com

10. Ochsenschläger, P.: Verification of cooperating systems by simple homomorphisms using the
product net machine. In Desel, J., Oberweis, A., Reisig, W., eds.: Workshop: Algorithmen und
Werkzeuge für Petrinetze, Humboldt Universität Berlin (1994) 48–53

11. Ochsenschläger, P., Repp, J., Rieke, R., Nitsche, U.: The SH-Verification Tool Abstraction-
Based Verification of Co-operating Systems. Formal Aspects of Computing, The International
Journal of Formal Method 11 (1999) 1–24

12. Rieke, R.: Modelling and Analysing Network Security Policies in a Given Vulnerability Setting.
In: Critical Information Infrastructures Security, First International Workshop, CRITIS 2006,
Samos Island, Greece. Volume 4347 of LNCS., Springer (2006) 67–78 c© Springer.

13. Phillips, C.A., Swiler, L.P.: A graph-based system for network-vulnerability analysis. In:
NSPW ’98, Proceedings of the 1998 Workshop on New Security Paradigms, September 22-25,
1998, Charlottsville, VA, USA, ACM Press (1998) 71–79

14. Swiler, L.P., Phillips, C., Ellis, D., Chakerian, S.: Computer-attack graph generation tool. In:
DARPA Information Survivability Conference and Exposition (DISCEX II’01) Volume 2,June
12 - 14, 2001, Anaheim, California, IEEE Computer Society (2001) 1307–1321

15. Jha, S., Sheyner, O., Wing, J.M.: Two formal analyses of attack graphs. In: 15th IEEE
Computer Security Foundations Workshop (CSFW-15 2002), 24-26 June 2002, Cape Breton,
Nova Scotia, Canada, IEEE Computer Society (2002) 49–63

16. Sheyner, O., Haines, J.W., Jha, S., Lippmann, R., Wing, J.M.: Automated generation and
analysis of attack graphs. In: 2002 IEEE Symposium on Security and Privacy, May 12-15,
2002, Berkeley, California, USA, IEEE Comp. Soc. Press (2002) 273–284

17. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulnerability analysis.
In: Proceedings of the 9th ACM conference on Computer and communications security, ACM
Press New York, NY, USA (2002) 217–224

18. Noel, S., Jajodia, S.: Managing attack graph complexity through visual hierarchical aggrega-
tion. In: VizSEC/DMSEC ’04: Proceedings of the 2004 ACM workshop on Visualization and
data mining for computer security, New York, NY, USA, ACM Press (2004) 109–118

19. Noel, S., Jacobs, M., Kalapa, P., Jajodia, S.: Multiple Coordinated Views for Network Attack
Graphs. In: IEEEWorkshop on Visualization for Computer Security (VizSec’05), Los Alamitos,
CA, USA, IEEE Computer Society (2005)

20. Kotenko, I., Stepashkin, M.: Analyzing Network Security using Malefactor Action Graphs.
International Journal of Computer Science and Network Security 6 (2006)

21. Kotenko, I., Ulanov, A.: Multi-agent Framework for Simulation of Adaptive Cooperative De-
fense against Internet Attacks. In: In Proceedings of International Workshop on Autonomous
Intelligent Systems: Agents and Data Mining (AIS-ADM-07). Lecture Notes in Artificial In-
telligence, Vol.4476. (2007)

22. Ochsenschläger, P., Rieke, R.: Abstraction Based Verification of a Parameterised Policy Con-
trolled System. In: International Conference ”Mathematical Methods, Models and Architec-
tures for Computer Networks Security” (MMM-ACNS-07). Volume 1 of CCIS., Springer (2007)
c© Springer.

www.manaraa.com

P12
A H O L I S T I C A P P R O A C H T O S E C U R I T Y P O L I C I E S –
P O L I C Y D I S T R I B U T I O N W I T H X A C M L O V E R C O P S

Title A Holistic Approach to Security Policies –
Policy Distribution with XACML over COPS

Authors Jan Peters, Roland Rieke, Taufiq Rochaeli,
Björn Steinemann, and Ruben Wolf

Publication In Proc. of the Second International Workshop
on Views On Designing Complex Architectures
(VODCA 2006), volume 168, pages 143–157.

ISBN/ISSN ISSN 1571-0661

DOI http://dx.doi.org/10.1016/j.entcs.2006.

08.025

Status Published

Publisher Elsevier

Publication Type Journal: Electronic Notes in Theoretical Com-
puter Science

Copyright 2007, Elsevier

License This article is published under the terms
of the Creative Commons Attribution-
NonCommercial-No Derivatives License
(CC BY NC ND). To view a copy of this
license, visit http://creativecommons.org/

licenses/by-nc-nd/3.0/.

Contribution of
Roland Rieke

Co-Author with significant contribution.
Specific contributions are: (1) design of
the policy provisioning framework for the
SicAri [Peters, 2013; Rieke & Ebinger, 2008]
platform architecture (distribution of XACML

policies using COPS) [Rieke, 2004a; Peters
et al., 2005], (2) design of the policy vali-
dation component for the SicAri platform
[Repp et al., 2005], and (3) contributions to
the overall policy architecture of the SicAri
platform [Heinemann et al., 2006].

Table 17: Fact Sheet Publication P12

361

http://dx.doi.org/10.1016/j.entcs.2006.08.025
http://dx.doi.org/10.1016/j.entcs.2006.08.025
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

www.manaraa.com

a holistic approach to security policies

Publication P12 [Peters, Rieke, Rochaeli, Steinemann & Wolf, 2007]
addresses the following research question:

RQ8 Does a policy correctly implement high-level security goals?

The potentials of modern information technology can only be ex-
ploited, if the underlying infrastructure and the applied applications
sufficiently take into account all aspects of IT security. This paper
presents the policy architecture of the SicAri project [Rieke & Ebinger,
2008; Peters, 2013] that aims to build a security platform for ubiqui-
tous Internet usage, and gives an overview of the implicitly and ex-
plicitly used security mechanisms to enable access control for service
oriented applications in distributed environments. The paper intro-
duces the security policy integration concept with a special focus on
distribution of security policies within the service infrastructure for
transparent policy enforcement. Specifically, extensions to the COPS

protocol to transport XACML payload for security policy distribution
and policy decision requests/responses are described.

362

www.manaraa.com

A Holistic Approach to Security Policies –
Policy Distribution with XACML over COPS

Jan Petersa Roland Riekeb Taufiq Rochaelic

Björn Steinemannb Ruben Wolfb

a Fraunhofer Institute for Computer Graphics Research IGD, Germany

b Fraunhofer Institute for Secure Information Technology SIT, Germany
c Technical University of Darmstadt, Department of Computer Science, IT-Security group, Germany

Abstract

The potentials of modern information technology can only be exploited, if the underlying infrastructure and
the applied applications sufficiently take into account all aspects of IT security. This paper presents the
platform architecture of the SicAri project, which aims to build a security platform for ubiquitous Internet
usage, and gives an overview of the implicitly and explicitly used security mechanisms to enable access
control for service oriented applications in distributed environments. The paper will introduce the security
policy integration concept with a special focus on distribution of security policies within the service infras-
tructure for transparent policy enforcement. We describe in details our extensions of the COPS protocol to
transport XACML payload for security policy distribution and policy decision requests/responses.

Keywords: service platform, security policies, policy distribution, policy decision, policy enforcement, web
services, XACML, COPS

1 Introduction

Professional usage of today’s communication and collaboration infrastructures re-

quires the consideration of appropriate security measures. In this paper, we intro-

duce the SicAri [4] project – an interdisciplinary approach to information security.

The project covers technical, cryptographic and usability issues, as well as various

legal issues in information security with respect to legislation and jurisdiction. The

overall goal is the conception and realization of a Java-based security platform and

its tools for ubiquitous Internet usage.

This platform supplies a bunch of applications and provides various security

services to the user in a transparent, seamless and integrated way. It is a modular

and integrative platform that allows the connection of various end user devices,

such as PCs, PDAs, and ambient intelligence devices and gives support for various

network types (e. g., wired and wireless networks) and communication paradigms

Electronic Notes in Theoretical Computer Science 168 (2007) 143–157

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.08.025

1571-0661 © 2007 Elsevier B.V. Open access under CC BY-NC-ND license.

www.manaraa.com

(e. g., client-server, peer-to-peer or ad-hoc networks). The behavior of the platform

in terms of security related action can be determined by security policies. They

provide a well-understood and suitable means to administer security issues. Such

policies allow to separate the administration, decision finding, and enforcement of

access control. But using policies raise additional questions in distributed environ-

ments where applications, services and nodes dynamically join and leave the system.

The distribution of policies, especially at bootstrapping time, and their update and

synchronization process has to be particularly considered. While open standards

and open source solutions for single isolated tasks around security policies exist we

have not been aware of any open holistic approach to them.

This paper first presents the SicAri platform from a conceptual, an architectural,

and partially from an implementation point of view, but the main focus is on our

distribution model of the underlying platform security policy which is based on the

Common Open Policy Service (COPS) protocol. We extended the COPS protocol

with a client type specification to transport eXtensible Access Control Markup

Language (XACML) policies.

The subsequent paper is structured as follows. Section 2 gives an overview of the

layers and the components of the platform. The holistic security policy approach

is described in Section 3, while Section 4 presents the policy processing including

policy enforcement, policy decision and policy distribution. Section 5 considers

some related work. Finally, the paper ends with an outlook in Section 6.

2 The SicAri Platform

The main function of the SicAri platform is to provide interfaces to the user’s appli-

cation to access the services provided by the platform, which are basic services and

application services (see below). Together with the middleware, the platform also

provides the communication infrastructure between distributed components. This

is realized through a consistent service management comprising service discovery,

service description, and service invocation. If desired, local services are automati-

cally provided as Web services to remote platforms during runtime, which enables

the interoperability of our service platform with other service-oriented architectures.

In case of new users requiring new application services, the platform architecture

supports modular and extensible building blocks, adding the possibility to incor-

porate new services. Therefore, reusability of existing building blocks should be as

easy as possible for developers.

All security related aspects of a platform instance are regulated by a security

policy. In the case of multiple platforms interacting with each other, all platforms

running in the same SicAri infrastructure share the same security policy. Each

platform has its own policy enforcement component. Access attempts to local or

remote services and resources are checked against the security policy considering the

requester’s current session ID with respect to a single-sign-on mechanism, activated

roles, the available permissions, and other parameters. In addition to policy deci-

sion and enforcement, the platform further covers the aspects of policy generation,

J. Peters et al. / Electronic Notes in Theoretical Computer Science 168 (2007) 143–157144

www.manaraa.com

administration, and validation (cf. Section 3).

Thereby, the platform’s architecture features a holistic approach to security

policies based on current standards and the support of implicit and explicit secu-

rity mechanisms in heterogeneous and distributed service infrastructures. Mobile

devices can easily be connected to this infrastructure directly, when running the

SicAri middleware, resp. through security-aware gateway components and specific

protocols, in case the full platform does not execute on the mobile device due to

resource limitations.

In spite of the platform features mentioned above, the platform is not intended

to completely replace the existing information infrastructure nor its existing secu-

rity mechanism, such as firewall, etc. The platform rather gives the opportunity of

building distributed and security-centered applications on top of its service infras-

tructure, which can easily be extended or be plugged into existing infrastructures.

2.1 Platform Architecture

Figure 1 (left-hand side) gives a high-level overview of the generic service architec-

ture. On top of the middleware, there is a service and application layer. A locally

authenticated user can directly interact with applications defined on this layer.

The applications themselves make use of the basic and application-specific services

of the platform’s service layer. On the one hand, these services integrate external

databases, legacy systems and applications; on the other hand, they provide ba-

sic security mechanisms, such as authentication or access control. The middleware

layer is responsible for the secure and seamless integration and communication of

applications and services, locally and remote.

App.

A

App.

B

App.

C

Service

1

Service

2

Service

n

App.

Z...

...

Data-

base

Legacy

System

Extermal

Application

Service

Layer

SicAri

Middleware
Middleware

Layer

Application

Layer

External

Application

Layer

SciAri

User

User

Layer

SicAri

Platform

SicAri Services

SicAri Kernel

Shell Environment
Security

Manager

Service
Service

Basic Service
Service

ServiceApplication

Service

Java Virtual Machine

SicAri Platform Instance

Operating System

Fig. 1. High-level and layered architecture of the SicAri platform

The platform is based on the SicAri kernel (see right-hand side of Figure 1) which

runs on top of a Java Virtual Machine and thereby attracts a broad spectrum of

potential users and of potential devices, ranging from mobile devices and personal

computers to scalable, distributed environments. The user application that runs

on the platform accesses obligatory basic services and optional application services

provided by the platform. The entirety of installed services thereby constitutes

the characteristic and specific use case of the local platform instance. Thus, this

platform is rather a collection of services which are flexibly loaded and configured

within a common environment on top of a Java Virtual Machine, than a monolithic

J. Peters et al. / Electronic Notes in Theoretical Computer Science 168 (2007) 143–157 145

www.manaraa.com

system designed as one static piece of software. Due to this architecture the platform

offers the following advantages: minimalist design, modularity and reusability of

services, extensibility, maintainability and intrinsic security features of the kernel.

2.2 Platform Components

This sections briefly describes the basic components of the architecture.

Environment. The environment is a hierarchical name space for service object in-

stances. Object instances can be registered, looked up, searched for, and removed.

This mechanism for local service management and service discovery is extended

by the transparent use of Web services for platform communication among dis-

tributed platforms. Services registered within this environment are implicitly

encapsulated by a security proxy which enforces the current security policy on a

search resp. access request to a service object.

Shell. The shell is a user interface for the environment. It allows administration of

and access to the environment. Hence, it supports at least the afore mentioned

operations register, lookup, search, and remove of object instances. Furthermore

it allows navigation in the name space and invoking of Java methods. The SicAri

shell compares to a UNIX Shell, where the environment stands for the file systems

and services can be compared with files.

Security Manager. The security manager is responsible for policy enforcement.

The Java programming language provides a standard security manager [8] which

is accessible via an API. SicAri replaces this security manager with an own im-

plementation.

Service. A service is a piece of software which fulfills a very specific task. It

provides a small, well-defined programming interface. Typically there is no direct

interaction between the user and a service. Every service is published as an

object instance in the environment which allows access from other services and

applications. Services are retrieved by means of the environment’s search and

lookup functionality. The service may be separated in a local access stub and

one or more remote components which provide the functionality. Further, a

service can integrate legacy applications and external data sources into the SicAri

architecture, by means of a wrapper or proxy.

SicAri kernel. The SicAri kernel (or just kernel) consists of the Java implemen-

tations of the environment, the shell, and the SicAri security manager as defined

above. Together they provide service bootstrapping and configuration, local ser-

vice management (registration/searching), and a consistent security context by

means of implicit access control.

SicAri platform. The platform consists of the kernel started on top of a Java

Virtual Machine, a number of mandatory basic services, and optional application

services. Any application can rely upon the availability of the basic services, as

there are among others the authentication manager, the identity manager, the

cryptographic key master, and the policy service.

J. Peters et al. / Electronic Notes in Theoretical Computer Science 168 (2007) 143–157146

www.manaraa.com

SicAri infrastructure. The infrastructure is a compound of several platforms

managed by the same security policy. These platforms may be distributed within

the infrastructure.

SicAri application. An application is a software which fulfills a complex task.

Since it usually interacts with the user, it provides both an interfaces for user-

interaction and a programming interface. Applications make use of services in

order to fulfill their tasks.

3 Holistic Approach to Security Policies

Policy-based control of networks and computer systems has the benefit that the

controlling units of the system are kept decoupled from the management compo-

nents and the rule base that governs the decisions. This enables the administrator

to easily run, manage and change the system’s behavior without having to modify

the software or the controlled nodes. The system is controlled by policies that spec-

ify behavior rules which are interpreted by decision components and are asserted

by enforcement components. Hence, if conditions change or new services or appli-

cations are added to the system one just adapts the policy rules. Using a central

administration component the platform administrator does not have to deal with

the multitude of different nodes in the system. This applies to network management

issues, e. g. Quality of Service (QoS) or resource allocation, as well as to network

and service security.

All security related tasks of the platform are controlled by a security policy.

The platform covers various aspects of security policies, such as policy specification,

policy patterns and policy compiler (see below), policy decision and enforcement,

policy negotiation and provisioning, policy administration, and conflict resolution.

Thereby, the security policy integration concept is based on manifold requirements

with respect to policies, as for example:

• Control of all security related processes and tasks. Impossibility to bypass the

policy enforcement component.

• Compatibility of the policy framework with the platform’s plug-in approach.

No need to change existing or upcoming services in order to enforce the plat-

form’s security policy. Transparency of policy control.

• Consideration of trade-off between expressiveness and complexity of the policy

description language.

• Support for platform administrators during policy management.

It is another goal of the platform to bridge the gap between the informal speci-

fication of security policies (i. e., what the security administrator wants to enforce)

and its corresponding machine-readable policy specification (i. e., what the system

actually enforces).

J. Peters et al. / Electronic Notes in Theoretical Computer Science 168 (2007) 143–157 147

www.manaraa.com

3.1 Policy Architecture

The policy architecture comprises the components of the policy framework and their

interactions in order to guarantee that all security relevant processes in the platform

are fulfilled according to the underlying security policy. Access control policies are

based on the Role-based Access Control (RBAC) standard. The general concepts of

RBAC are well-understood and extensively described in the literature, please refer

to [6,12,18]. RBAC is assumed to be policy-neutral. This means that RBAC pro-

vides a flexible means to deal with arbitrary security policies. The policy integration

concept of the SicAri platform requires the interaction of various components. Our

implementation of RBAC uses XACML [11] as its specification language.

XACML thereby serves as ”glue” between a couple of policy components: Start-

ing with the policy generation process which leads to XACML-based user-role as-

signments and XACML-based role-permission assignments, this XACML specifica-

tion is used as basis for policy validation, afterwards. The validated policy then is

distributed to resp. updated at all PDPs, and subsequently used for policy decisions.

Figure 2 depicts the component framework of the SicAri policy architecture.

The remainder of this section gives a more detailed overview of all the components

involved and their interactions with other components.

SicAri Applications

Platform

Authentication

Policy

Enforcement

SicAri

Services

Policy

Generation

Policy

Provisioning

Policy

Validation

Policy

Decision

Policy

Administration
Security

Policy

Fig. 2. Policy components of the SicAri platform

Policy Generation. We currently focus on generation of policies for access con-

trol to resources representing the required security properties. Such a policy is

generated using policy patterns formalized in OWL [21] that allow to specify tem-

plate policy archetypes for recurring security requirements. Policies are usually

derived from security requirements of business or organizational goals. For exam-

ple, the execution of the tasks ”credit request” and ”credit approval” with respect

J. Peters et al. / Electronic Notes in Theoretical Computer Science 168 (2007) 143–157148

www.manaraa.com

to a banking scenario require two different persons to give their affirmation to

complete the task. This security requirement can be satisfied by introducing an

assignment constraint in the model, for example, separation of duty.

Policy generation leads to a policy specification conforming with the RBAC

profile of the XACML 2.0 standard [13].

Policy Validation The task of the policy validation component is to evaluate,

whether a policy correctly implements given security goals. We extended the SH

verification tool [14,15] to accept a subset of XACML as input and to translate

it into transition patterns, which specify the behavior of Asynchronous Product

Automata (APA). APA are a class of general communicating automata and pro-

vide a means to model arbitrary distributed systems while transition patterns

define the possible state transitions of the modeled system. Each policy rule is

converted into such a transition pattern which then encodes the action that is

controlled by that rule. This in turn results in an operational model of the policy

system that can be executed in the SH verification tool. It allows to analyze the

policy system’s behavior, to simulate its potential information flow and to verify

the wanted security goals. For that purpose the system’s reachability graph is

computed which spans all possible sequences of transition steps that are allowed

by the given policy.

We have chosen to support a subset of XACML that comprises the most im-

portant elements and attributes of the language. One first goal was to reach

the expressiveness that allows to handle one well-known XACML example which

has been validated in the literature before [2,7]. Some concepts of XACML like

obligations and rule combining algorithms are not yet supported.

Policy Administration. Even if the ability of automated security policy genera-

tion is provided by the platform, there may be the need of fine granular policy

administration, e. g. a new user needs to be added, or the permissions of a user or

role need to be changed. Therefore, we provide an administration API based on

the RBAC standard and a corresponding graphical user interface (cf. Figure 3).

Fig. 3. Policy administration

J. Peters et al. / Electronic Notes in Theoretical Computer Science 168 (2007) 143–157 149

www.manaraa.com

Policy Provisioning. The components for policy generation, validation, and ad-

ministration mutually share access to the global security policy database con-

taining the current XACML-based policy specification. This whole policy spec-

ification resp. changes of policy subsets are subsequently distributed by policy

provisioning components. The component covers distribution of policies, policy

updates, as well as transport of policy decision requests and responses. Policy

provisioning is outlined in more detail in the next section.

Policy Decision. The policy decision component uses an extended version of

SUN’s reference implementation of an XACML evaluator [19]. It comprises of

library classes that can be used in building a Policy Enforcement Point (PEP) or

a Policy Decision Point (PDP). Since we use the RBAC profile of the XACML 2.0

standard to specify our policies, some modifications were necessary in order to

evaluate these XACML policies.

As described above, the policies in form of an RBAC model are stored into three

different categories, namely: Role Policy Set (RPS), Permission Policy Set (PPS)

and Role Authorization (RA). The RPS and the PPS contain the roles definition

and their corresponding permissions, respectively. Therefore, each RPS has a

reference to the corresponding PPS. However, the implementation of SunXACML

version 1.2 does not support references in policy. Therefore, we have extended

this implementation accordingly to actually support policy references.

Policy Enforcement. The policy enforcement component assures that all security

relevant tasks can only be fulfilled if they are in accordance with the underly-

ing security policy. The policy enforcement component detects security relevant

tasks, consults the policy decision component in order to decide upon a task, and

enforces the policy decisions, i. e. allows a platform entity to access a platform

resource or not.

SicAri Services. Interaction between applications and services and between one

service and another as well as access of local resources within services is implicitly

controlled by the policy enforcement component. Except the situation that a ser-

vice wants to explicitly request the policy decision component, policy processing

is done transparently during service execution. That is, SicAri services do not

have to be aware of the existence of a security policy. As consequence, there is no

need to modify or adapt existing or upcoming services to be compatible with the

policy integration concept. The only thing that needs to be done by a security

administrator is to configure resp. re-generate the security policy according to the

security requirements in the context of new services integrated into the service

infrastructure.

Platform Authentication. Finally and as another precondition for policy en-

forcement e. g. by means of access authorization, every acting entity in the service

infrastructure has to be successfully authenticated. Thus, several authentication

modules are provided locally on a platform instance to allow different user lo-

gin procedures according to the specific use case and characteristic of the local

platform instance.

J. Peters et al. / Electronic Notes in Theoretical Computer Science 168 (2007) 143–157150

www.manaraa.com

4 Policy Distribution with COPS and XACML

This sections takes on the policy distribution issue from the introduction. The

protocol framework for Policy Based Network Management (PBN) which has been

defined by the IETF Resource Allocation Protocol (RAP) work group offers a good

solution to those questions.

4.1 Policy Distribution with COPS

The core of the RAP framework is the COPS [5] protocol. It provides a means

to communicate policies and policy decisions in a distributed system. The main

characteristics are

(i) the logical and architectural separation of policy enforcement and policy de-

cision components, (ii) a client/server model of PEP and PDP, (iii) reliable trans-

port of messages between PEP and PDP via TCP, (iv) a flexible and extensible

framework through self-identifying objects that allow to define arbitrary protocol

payload, and (v) a stateful communication between PEP and PDP which share re-

quest/decision states that allow the PDP to asynchronously update decisions and

configuration information at the PEP.

COPS is designed to be used in two basic scenarios – outsourcing and configura-

tion. In the configuration scenario a local Policy Decision Point (LPDP) is available

and in the outsourcing scenario there is none. In the first case the PEP asks the

LPDP for local policy decisions and in the latter case the PEP delegates all policy

decisions to the remote PDP. Since the configuration scenario has already been im-

plemented in SicAri its concept is described in more detail in the next paragraph.

Section 4.2 explains how both scenarios integrate into the platform architecture.

COPS in Configuration Mode

In configuration mode the PEP requisitions a whole configuration for a compo-

nent. Because COPS is policy independent the configured component can be such

different things as router hardware or Web services.

SicAri-Service PEP PDP

init

OPN

CAT

REQ

DEC

DEC

RPT

RPT

REQ

DEC

RPT

done

KA

KA

msc Configuration

Fig. 4. Configuration request

J. Peters et al. / Electronic Notes in Theoretical Computer Science 168 (2007) 143–157 151

www.manaraa.com

Figure 4 shows the schematic sequence of the COPS configuration procedure

in form of a Message Sequence Chart (MSC). When a service is started for the

first time it contacts the PEP. The PEP sends a client open message (OPN) to the

corresponding PDP. This message contains a unique ID that identifies the PEP to

the PDP and it also contains a client specific information (ClientSI) object. This

object is necessary to enable the PDP to relay the OPN message to a PDP module

that can handle the requests for the incoming type of policy.

When the PDP is capable to serve the client type it answers with a client accept

(CAT) message and expects incoming requests. In the configuration scenario the PEP

sends one or more request messages (REQ) that contain context objects which identify

the message as configuration requests. The request messages also comprise ClientSI

objects that carry client specific information on the requested configuration data.

Each configuration request may be answered with a single decision message (DEC)

or a stream thereof. On reception and successful installation of the configuration

data the PEP acknowledges this to the PDP with a report state message (RPT) for

each of the DEC messages. When the PEP finally has received all configuration data

from the PDP it signals the installation back to the SicAri service which now can

rely on the LPDP to decide access requests.

From now on the PDP proactively keeps the policy at the PEP side up to date.

Whenever a change to the master policy at the PDP side is made, it passes it on

to all PEPs that make use of this policy. For that purpose both parties regularly

exchange keep alive (KA) messages to assure that the PEP always uses a policy that

is up to date.

4.2 Platform Integration

This section describes how the two policy distribution approaches can be integrated

into the platform architecture.

In contrast to the COPS specification, the definition of PEP and LPDP in

SicAri are slightly different: Whereas the PEP in COPS is defined as a local client

component communicating with a global PDP, in the COPS policy configuration

scenario this component corresponds best to the LPDP, as defined in SicAri (cf.

Figure 4 vs. Figure 5 (a)).

COPS Policy Configuration

The main characteristics of this scenario are the local PEP and LPDP (cf. Fig-

ure 5 (a)). The PEP interacts with the local policy service, which mainly consists of

the following components: LPDP, cached policy, and COPS adapter. The LPDP is

responsible for making policy decisions based on the input from the SicAri security

manager (PEP) and a locally cached version of the master security policy. The

LPDP is realized by an extended version of Sun’s XACML reference implementa-

tion (see below). The PEP uses the Java-API of Sun’s XACML engine in order to

communicate with the LPDP. A (potentially remote) policy provisioning component

provides a copy of the latest master policy to the LPDP using the COPS protocol.

J. Peters et al. / Electronic Notes in Theoretical Computer Science 168 (2007) 143–157152

www.manaraa.com

SicAri

Security Manager

(PEP)

Policy Service

Sun XACML Engine

(LPDP)

COPS-Adapter

Master

Policy

Cached

Policy

COPS-Adapter

SicAri

Service

SicAri

Security Context

PEP with LPDP

XACML over COPS

PDP

(a) Configuration Scenario

SicAri

Security Manager

Policy Service

COPS-Adapter

Master

Policy

COPS-Adapter

SicAri

Service

SicAri

Security Context

PEP

XACML over COPS

PDP

Sun XACML Engine

(b) Outsourcing Scenario

Fig. 5. Policy provisioning

COPS Policy Outsourcing

The main characteristic of the second scenario is that a local PEP delegates all

policy decisions to a remote PDP. This scenario is not yet implemented.

The policy service mainly consists of a COPS adapter which transforms the

policy decision request of the PEP into an XACML policy request. The COPS

adapter sends this request to the remote PDP which is responsible for providing the

policy decision based on the master security policy. The XACML policy decision

response is sent back from the remote PDP via COPS to the local PEP which

enforces the policy decision.

4.3 XACML over COPS

We extended the COPS framework with an XACML client type. All COPSmessages

start with a common header that determines the message type and the payload type.

Figure 6 shows the schema of this header whose relevant fields are described below.

Fig. 6. Common COPS header

The Op Code indicates the type of the message, e. g. REQ or KA. The Client Type

J. Peters et al. / Electronic Notes in Theoretical Computer Science 168 (2007) 143–157 153

www.manaraa.com

field provides a code that uniquely identifies the payload carried in the message. For

example client-type number 1 is a published Internet Assigned Numbers Authority

(IANA) number assigned to RSVP policy data [9].

Each COPS message may consist of different COPS objects. The message con-

tent is wrapped with the help of 16 different predefined COPS objects. Some of

these objects provide fields to carry client-type specific data.

The most important object is the afore mentioned ClientSI object that has

variable length and transports the client-type data. Figure 7 depicts the generic

COPS object structure. Depending on the type of COPS message that is signaled

zero, one or more COPS objects may follow the COPS header.

0 1 2 3

Length (octets) C−TypeC−Num

Object contents

Fig. 7. Generic COPS object

The C-Num and C-Type fields determine the class and the characteristics of the

object. For ClientSI objects the C-Num field is 9 and the variable length field for

the object content carries the policy data. This data has to be processed by special

COPS modules that can interpret the corresponding client type specific information.

Our implementation bases on an open source implementation of the COPS protocol

from the University of Waterloo [1,3]. We extended their PBN code with several

classes to multiplex incoming COPS messages at the PDP to modules which handle

client-specific content like XACML.

4.4 XACML Client Type for the COPS Protocol

As the next step a concept to extend the COPS protocol to transport XACML

polices as payload has been developed. For any extension to the COPS protocol

one has to take the peculiarity of the target policy language into account. The

structure of the client-type specific objects and the protocol extensions should be

specified in a supplementary document that defines how the PEP and the PDP

interpret and handle the policy specific payload.

Any XACML policy document is structured according to the respectively ef-

fective XACML schema. The XACML data flow model defines that a Policy Ad-

ministration Point (PAP) provides the PDP with XACML documents that contain

sets of policy and policyset elements. It is specified in the XACML schema that

policy and policyset elements can be nested inside a policyset. The distribu-

tion of XACML client-type data in the configuration mode will base on this tree

structure of XACML documents. Any leaf and any node of such a document will be

encapsulated in a single COPS object and send alone or in a group in a decision

message from the PDP to PEP. Our concept considers the policy and policyset

elements as such leaf and node objects since they define logical building blocks of

a policy. The PEP acknowledges any such COPS message with XACML content

with a COPS report message. On COPS’ PEP side the policy and policyset

J. Peters et al. / Electronic Notes in Theoretical Computer Science 168 (2007) 143–157154

www.manaraa.com

building blocks are assembled back into a copy of the XACML master policy which

is passed on to the LPDP as defined in SicAri.

The XML structure provides another advantage with respect to the proactive

update and delete mechanism of COPS PDPs. A PDP can address any policy

element in the XACML document using XPATH. Any administrative task mod-

ifying the master policy triggers a COPS message for the corresponding policy

and policyset element that has been changed. This COPS message will transport

one or more COPS decision objects containing replacement data that uniquely

identifies the processed policy elements using XPATH objects. This way the PDP

can generate fine-granular updates at the XML element level. The COPS protocol

assures that both, PEP and PDP, always work on the same XACML document.

Any policy document is definitely identified by the TCP connection between PEP

and PDP together with the client handle that the PEP uniquely assigns to each

request that it sends out.

5 Related Work

In [17], Ponnappan et al. describe a policy based QoS management system for

IntServ/DiffServ networks. This design uses COPS for interfacing with the network

devices and CORBA as middleware for component interaction.

An approach presented in [20] by Toktar et al. proposes an XACML-based

framework for distributing and enforcing access control policies to RSVP-aware ap-

plication servers. Access control policies are represented in an extension of XACML

(based on Sun XACML) which is an alternative to the IETF Policy Core Infor-

mation Model (PCIM) [10] based approach. The authors use COPS in outsorcing

mode to distribute policy requests and decisions between the policy server and the

RSVP server that is responsible to enforce the QoS measures.

In his dissertation [16], K. Phanse proposes a management framework for policy

based ad hoc network management. He builds on a distributed, hybrid architecture

that combines the outsourcing and provisioning models of COPS and COPS-PR to

provide an efficient and flexible solution for policy distribution in wireless ad hoc

networks. To translate the policy specification into device-specific configuration,

the management framework must be aware of the various resources available in the

system. Policy provisioning occurs after policies are distributed, and consists of

installing and implementing the policies using device specific mechanisms.

Since COPS seems to be the only open service for policy distribution of notable

propagation we find it hard to compare our approach to others. While it is difficult

to make a quantitative statement on the efficiency to transport XACML policies

via COPS it is easier to give a qualitative predication. COPS realizes some design

aspects that improve efficient distribution and maintenance of distributed policies.

After provisioning the initial policy in configuration mode to the LPDPs the central

PDP keeps them up-to-date with unsolicited decision messages whenever some part

of the policy changes. Since COPS allows to transport policy parts of arbitrary size

it is up to the developer of the payload extension to optimize the communication

J. Peters et al. / Electronic Notes in Theoretical Computer Science 168 (2007) 143–157 155

www.manaraa.com

overhead. COPS only demands that the transported pieces are uniquely address-

able. This perfectly fits to XACML because XPATH and unique element identifiers

allow to address and transport only those pieces of the master policy that have

really changed. Furthermore, COPS in configuration mode promises to economi-

cally use network resources because access control policies are not very likely to be

changed frequently. This enables the administrator to choose a higher value for the

KA timeout thus reducing the communication overhead when there are no updates.

The only drawback lurks in the fact that XACML is an XML-based language which

are inherently wordy.

6 Outlook

It is planned to implement the mechanism to encapsulate XACML payload in COPS

messages as described in Section 4.4. The open source JDOM (http://www.jdom.

org/) package for parsing and representing XACML documents as objects seems a

viable basis to build a solution upon.

We will furthermore develop a concept to use the policy administration, policy

validation, and policy provisioning mechanisms implemented in the platform, to

manage other policy domains such as network security policies (e. g. to configure

external PEPs such as firewalls).

An additional research aspect with respect to a holistic policy approach in dis-

tributed environments will be policy negotiation in case services from two different

security domains, enforcing security upon two different security policies, have to

interact with each other.

Acknowledgement

This paper was written while the authors were working within SicAri, a project

funded by the German Ministry of Education and Research

References

[1] Boutaba, R., A. Polyrakis and A. Casani, Active Networks as a Developing and Testing Environment
for Networks Protocols, Annals of Telecommunications 59, 2004, pp. 495–514.

[2] Bryans, J., Reasoning about XACML policies using CSP, in: SWS’05: Proceedings of the 2005 workshop
on Secure Web Services (2005), pp. 28–35.

[3] Casani, A., Implementation of a Policy Based Network Framework using Metapolicies (2001).

[4] Consortium, S., SicAri – A security architecture and its tools for ubiquitous Internet usage (2003),
http://www.sicari.de/ .

[5] Durham, D., J. Boyle, R. Cohen, S. Herzog, R. Rajan and A. Sastry, The COPS (Common Open Policy
Service) Protocol, RFC 2748 (Proposed Standard) (2000), updated by RFC 4261.

[6] Ferraiolo, D. F., D. R. Kuhn and R. Chandramouli, “Role-Based Access Control,” Computer Security
Series, Artech House, Boston, 2003.

[7] Fisler, K., S. Krishnamurthi, L. A. Meyerovich and M. C. Tschantz, Verification and change-impact
analysis of access-control policies, in: ICSE’05: Proceedings of the 27th International Conference on
Software engineering (2005), pp. 196–205.

J. Peters et al. / Electronic Notes in Theoretical Computer Science 168 (2007) 143–157156

www.manaraa.com

[8] Gong, L., “JavaTM 2 Platform Security Architecture, Version 1.2,” Sun Microsystems Inc., 2002.

[9] Herzog, S., J. Boyle, R. Cohen, D. Durham, R. Rajan and A. Sastry, COPS usage for RSVP, RFC
2749 (Proposed Standard) (2000).

[10] Moore, B., E. Ellesson, J. Strassner and A. Westerinen, Policy Core Information Model, Version 1
(2001).

[11] Moses, T., eXtensible Access Control Markup Language (XACML), Version 2.0, Technical report,
OASIS Standard (2005).

[12] National Institute of Standards and Technology (NIST), Role-Based Access Control,
http://csrc.nist.gov/rbac/ .

[13] OASIS
Open, Core and Hierarchical Role Based Access Control (RBAC) Profile of XACML v2.0 (2005),
http://docs.oasis-open.org/xacml/2.0/access control-xacml-2.0-rbac-profile1-spec-os.pdf .

[14] Ochsenschläger, P., J. Repp and R. Rieke, The SH-Verification Tool, in: Proc. 13th International Florida
Artificial Intelligence Research Society Conference (FLAIRS’00) (2000), pp. 18–22.

[15] Ochsenschläger, P., J. Repp, R. Rieke and U. Nitsche, The SH-Verification Tool – Abstraction-Based
Verification of Co-operating Systems, Formal Aspects of Computing, The International Journal of
Formal Methods 11 (1999), pp. 1–24.

[16] Phanse, K. S., Policy-Based Quality of Service Management in Wireless Ad Hoc Networks, Dissertation,
Virginia Polytechnic Institute and State University (2003).

[17] Ponnappan, A., L. Yang, R. Pillai and P. Braun, A Policy Based QoS Management System for the
IntServ/DiffServ Based Internet, in: Proc. of the 3rd IEEE International Workshop on Policies for
Distributed Systems and Networks (POLICY’02) (2002), p. 159ff.

[18] Sandhu, R., Role activation hierarchies, in: Proceedings of the 3rd ACM workshop on Role-based access
control (1998).

[19] Sun Microsystems, Inc., Sun’s XACML Implementation, Version 1.2. URL
http://sunxacml.sourceforge.net/

[20] Toktar, E., E. Jamhour and C. Maziero, RSVP Policy Control using XACML, in: Proc. of the 5th IEEE
International Workshop on Policies for Distributed Systems and Networks (POLICY’04) (2004), p.
87ff.

[21] World Wide Web Consortium, OWL Web Ontology Language – Overview (2004),
http://www.w3.org/TR/owl-features/ .

J. Peters et al. / Electronic Notes in Theoretical Computer Science 168 (2007) 143–157 157

www.manaraa.com

www.manaraa.com

P13
P R E D I C T I V E S E C U R I T Y A N A LY S I S F O R
E V E N T- D R I V E N P R O C E S S E S

Title Predictive Security Analysis for Event-
Driven Processes

Authors Roland Rieke and Zaharina Stoynova

Publication In Igor Kotenko and Victor Skormin, editors,
Computer Network Security – 5th International
Conference on Mathematical Methods, Models
and Architectures for Computer Network Secu-
rity, MMM-ACNS 2010 St. Petersburg, Russia,
September 2010, Proceedings, volume 6258 of
Lecture Notes in Computer Science, pages 321–
328, 2010.

ISBN/ISSN ISBN 978-3-642-14705-0

DOI http://dx.doi.org/10.1007/978-3-642-

14706-7_25

Status Published

Publisher Springer Berlin / Heidelberg

Publication Type Conference Proceedings (LNCS, Vol. 6258)

Copyright 2010, Springer

Contribution of
Roland Rieke

Main Author, editor, and presenter at the
MMM-ACNS conference 2010.
Specific contributions are: (a) design of the
architecture for security event processing
and predictive security monitoring, and (b)
the operational model for security event pre-
diction.

Table 18: Fact Sheet Publication P13

Publication P13 [Rieke & Stoynova, 2010] addresses the following
research question:

RQ9a How can operational models reflect the state of observed systems and
thus capture abstractions of runtime behaviour?

The main constraint of current systems is the restriction of Se-
curity Information and Event Management (SIEM) [Nicolett & Ka-
vanagh, 2009] to network infrastructure, and the inability to inter-
pret events and incidents from other layers such as the service view,

379

http://dx.doi.org/10.1007/978-3-642-14706-7_25
http://dx.doi.org/10.1007/978-3-642-14706-7_25

www.manaraa.com

predictive security analysis for event-driven processes

or the business impact view, or on a viewpoint of the service itself.
This paper presents an approach for predictive security analysis in
a business process execution environment. It is based on operational
process models and leverages process and threat analysis and sim-
ulation techniques in order to be able to dynamically relate events
from different processes and architectural layers and evaluate them
with respect to security requirements. Based on this, a blueprint of
an architecture is presented which can provide decision support by
performing dynamic simulation and analysis while considering real-
time process changes. It allows for the identification of close-future
security-threatening process states and will output a predictive alert
for the corresponding violation.

380

www.manaraa.com

With kind permission of Springer Science+Business Media.
This is an author-created version of: Computer Network Security; Lecture Notes in Com-
puter Science Volume 6258, 2010, pp 321-328; Predictive Security Analysis for Event-Driven
Processes; Roland Rieke, Zaharina Stoynova; c© Springer-Verlag Berlin Heidelberg 2010; DOI:
10.1007/978-3-642-14706-7 25; Print ISBN: 978-3-642-14705-0; Online ISBN: 978-3-642-14706-
7.
The original publication is available at www.springerlink.com.
http://link.springer.com/chapter/10.1007%2F978-3-642-14706-7_25

Predictive Security Analysis for Event-driven
Processes

Roland Rieke and Zaharina Stoynova

Fraunhofer Institute for Secure Information Technology SIT, Darmstadt, Germany
{roland.rieke,zaharina.stoynova}@sit.fraunhofer.de

Abstract. This paper presents an approach for predictive security anal-
ysis in a business process execution environment. It is based on opera-
tional formal models and leverages process and threat analysis and sim-
ulation techniques in order to be able to dynamically relate events from
different processes and architectural layers and evaluate them with re-
spect to security requirements. Based on this, we present a blueprint of an
architecture which can provide decision support by performing dynamic
simulation and analysis while considering real-time process changes. It
allows for the identification of close-future security-threatening process
states and will output a predictive alert for the corresponding violation.

Keywords: predictive security analysis, analysis of business process be-
haviour, security modelling and simulation, complex event processing

1 Introduction

With the increased adoption of service oriented infrastructures and architec-
tures, organisations are starting to face the need for an accurate management
of cross-process and cross-layer security information and events. The main con-
straint of current systems is the restriction of Security Information and Event
Management (SIEM) [8] to network infrastructure, and the inability to interpret
events and incidents from other layers such as the service view, or the business
impact view, or on a viewpoint of the service itself. Conversely, specific ser-
vice or process oriented security mechanisms are usually not aware of attacks
that exploit complex interrelations between events on different layers such as
physical events (e.g. access to buildings), application level events (e.g. financial
transactions), business application monitoring, events in service oriented archi-
tectures or events on interfaces to cloud computing applications. Nevertheless,
next generation systems should be able to interpret such security-related events
with respect to specific security properties required in different processes. On
the base of these events, the system should be able to analyse upcoming security
threats and violations in order to trigger remediation actions even before the
occurrence of possible security incidences.

In this paper we propose to combine process models with security policies and
a security model in order to identify potential cross-cutting security issues. We
furthermore suggest a blueprint of an architecture for predictive security analysis

www.manaraa.com

2 Roland Rieke and Zaharina Stoynova

that leverages process and threat analysis and simulation techniques in order to
be able to dynamically relate events from different execution levels, define specific
level abstractions and evaluate them with respect to security issues.

2 Related Work

Our work combines aspects of process monitoring, simulation, and analysis. Some
of the most relevant contributions from these broad areas are reviewed below.

Business Activity Monitoring (BAM). The goal of BAM applications,
as defined by Gartner Inc., is to process events, which are generated from multi-
ple application systems, enterprise service busses or other inter-enterprise sources
in real time in order to identify critical business key performance indicators and
get a better insight into the business activities and thereby improve the effec-
tiveness of business operations [6]. Recently, runtime monitoring of concurrent
distributed systems based on LTL, state-charts, and related formalisms has also
received a lot of attention [5, 3]. However these works are mainly focused on er-
ror detection, e.g. concurrency related bugs. In the context of BAM applications,
in addition to these features we propose a close-future security analysis which
provides information about possible security risks and threats reinforcing the
security-related decision support system components.

Complex Event Processing (CEP). CEP provides a powerful analytic
computing engine for BAM applications which monitor raw events as well as
the real-time decisions made by event scenarios. David Luckham [4] provides us
with a framework for thinking about complex events and for designing systems
that use such events. A framework for detecting complex event patterns can
be found e.g. in [10]. However such frameworks concentrate on detecting events
important for statistical aspects, redesign and commercial optimisation of the
business process. Here we want to broaden the scope of the analysed event types
by introducing complex security events in the CEP alphabet.

Simulation. Different categories of tools that are applicable for simulation
of event-driven processes including process modelling tools based on different
semi-formal or formal methods such as Petri Nets [2] or Event-driven Process
Chains (EPC) [1]. Some process managements tools, such as FileNet [7] offer
a simulation tool to support the design phase. Also some general purpose sim-
ulation tools such as CPNTools [11] were proven to be suitable for simulating
business processes. However, independently from the tools and methods used,
such simulation tools concentrate on statistical aspects, redesign and commercial
optimization of the business process. On the contrary, we propose an approach
for on-the-fly intensive dynamic simulation and analysis considering the current
process state and the event information combined with the corresponding steps
in the process model.

Security Information Management (SIM). SIM systems generally rep-
resent a centralized server acting as a ”security console”, sending it informa-
tion about security-related events, which displays reports, charts, and graphs
of that information, often in real time. Commercial SIEM products include

www.manaraa.com

Predictive Security Analysis for Event-driven Processes 3

Cisco Security Monitoring Analysis and Response System (http://www.cisco.
com/en/US/products/ps6241/index.html), EventTracker by Prism Microsys-
tems (http://www.prismmicrosys.com/EventTrackerSIEM/index.php), Sen-
Sage (http://www.sensage.com/products/sensage-40.php) and others. All
these products monitor the low-level events (such as network events) and per-
form event correlation only on the base of event patterns and rules. Our ap-
proach additionally considers the business process level events combined with
the current process state and business process information provided by a pro-
cess specification.

3 Blueprint of Architecture for Security Event Processing
and Predictive Security Monitoring

In this section we introduce our approach for security evaluation of event-driven
processes. Figure 1 depicts the core components which we consider necessary in
order to be able to perform a security event processing and monitoring analysis
in the context of a running event-driven business process.

Security Model and Policies

merge and translate

Process and Event Specification
Model
Editor

E

Reachability
Graph

Generator

E E

Formal Process
Model

Security
Events

Security
Simulator /
Analyzer

Event
Preprocessor

E

E

E ?
History
Logs

Event
PatternsE

Security
Alerts

Fig. 1. Predictive Security Analyser

The input elements which we need comprise, (1) a process model given in
a notation such as EPC, BPEL, YAWL or BPMN that contains a specification
of the events which can be triggered during runtime, (2) security policies which
contain information about the relations between the users involved in the process,
their roles and the relations between the roles and resources deployed by the
process, (3) a security model that should provide information about the process’s

www.manaraa.com

4 Roland Rieke and Zaharina Stoynova

predefined security requirements which will be used to construct the security
events patterns, and, (4) real-time events which will be triggered during runtime.

Model Editor. In order to analyse the system behaviour with tool support,
an appropriate formal representation has to be chosen because semi-formal lan-
guages such as BPMN allow to create models with semantic errors [2]. In our
approach, we use an operational finite state model based on Asynchronous Prod-
uct Automata (APA) [9]. An APA consists of a family of so called elementary
automata communicating by common components of their state (shared mem-
ory). The process model, the organisational model and the security model should
be imported and merged in a high-level model of the process and then this model
is translated into an APA, which will enable the computation of the possible sys-
tem behaviour. In general, we could also use other descriptions of processes with
unambiguous formal semantics here such as the approaches in [2] for BPMN or
[1] for EPC that allow for computation of possible system’s behaviour.

Reachability Graph Generator. Formally, the behaviour of an APA can
be given by a reachability graph which represents all possible coherent sequences
of state transitions starting with the initial state. In the context of on-the-fly
security analysis the reachability graph will represent the path given by the al-
ready triggered events, forwarded by the Event Preprocessor. The computation
will be automatically paused each time when the current state (according to
the triggered events) of the process is reached. In the context of predictive sim-
ulation analysis the Reachability Graph Generator computes all possible near-
future paths according to the given process specification, (e.g. sequences of at
most 2-3 plausible events). This will allow exhaustive analysis of all near-future
states to be performed in order to compute whether there exist possible security-
threatening states of the process which can compromise the process security and
match some of the event patterns saved in the Event Patterns database.

Security Simulator/Analyser. During the computation of the graph this
component will check for each state, whether the specified security properties are
fulfilled and trigger security alarms when possible security violations are found.
Furthermore, it is possible to detect new security violations that were not pre-
dicted by the available security patterns. In order to include them in the analysis
of future process instances, they will be logged in the History Logs database
and then they will be transformed into security event patterns and saved in the
Event Patterns database. The simulator will also enable security analysis by per-
forming intensive simulation which inspects the behaviour of complex/parallel
processes under given hypotheses (what-if analysis) concerning changes in the
organisational model/security policies or the process model.

Security Event Patterns. These patterns which are relevant for the cor-
responding process are kept in the Event Patterns database and they should be
extracted from the provided security model. In order to be able to reason about
potential security problems, based on real life events, specific abstractions are
included in this extraction process so that the abstraction levels for the various
types of security-related events can be interrelated. Solutions for these kind of
security analysis are already available but usually limited to a narrow field of

www.manaraa.com

Predictive Security Analysis for Event-driven Processes 5

application such as IDS where e.g. the detection of a number of abnormal con-
nections could lead to a “worm detection” alarm. We propose a generic approach
leveraging these ideas and incorporating other types of security related events.

Event Preprocessor. In the context of on-the-fly security analysis the
Event Preprocessor is responsible for receiving the real-life events triggered dur-
ing runtime, matching them against the available security event patterns and
forwarding them to the Reachability Graph Generator. During predictive secu-
rity analysis the Event Preprocessor will generate all possible events according to
the process specification and will match them against the event patterns. Then
it will forward them to the Reachability Graph Generator in oder to enable the
computation of the process graph.

History Logs. In the History Logs database newly detected security-violating
sequences of events will be logged. These will be used to create new security event
patterns.

4 An Application Scenario

For illustrating how our architecture components, described in the previous sec-
tion, collaborate we will refer to a common example scenario for online credit
application.

4.1 Process Model

In an EPC graph events are represented as hexagons and functions that describe
state transitions are represented as rounded rectangles. Now consider the online
credit application process expressed in EPC notation in Fig. 2. The process
starts when an applicant submits an application form. Upon receiving a new ap-
plication form a credit clerk performs checks in order to validate the applicant’s
income and other relevant information. Depending on the requested loan amount
different checks are performed. Then the validated application passed on to a
manager to decide whether to accept or reject it. In both cases the applicant is
notified of the decision and the process ends.

new
appl.

check
loan

amount

xor

large
amount
req.

small
amount
req.

check
large
amount

check
small
amount

check
large
done

check
small
done

xor
make
deci-
sion

xor

credit
ap-
proved

credit
de-
nied

send
ap-
prove

send
deny

approve
re-

ceived

deny
re-

ceived

xor
complete
appl.

appl.
ended

Fig. 2. Business Process Model

www.manaraa.com

6 Roland Rieke and Zaharina Stoynova

4.2 Predicting Security Events

In our example scenario we consider the security event “large credit ALERT”
which is raised when too many large credits are approved for one customer (see
Fig. 3(a)). This is an example of an event abstraction or complex event generated
by a certain sequence of simple events, triggered in the process. Such complex
events are generated by CEP engines whenever certain predefined sequences of
events have been triggered.

Additionally, we apply such complex event patterns in a predictive way. This
means that whenever an event pattern is probably going to match by taking
into account a current partial match and a possible continuation of the current
state, these abstractions can be generated prior to the real-time triggering of the
simple events. In our example we generate an abstraction of the atomic events
“large amount requested” and “credit approved” triggered by the same customer,
namely the complex event “large credit approved”. Then if this complex event
is generated e.g. two times within a certain time and according to security reg-
ulations only two large credits can be given to one customer we can generate
the alert “large credit ALERT” in the upper abstraction level prior to the next
approval in order to ensure that the security regulations will not be overseen by
taking the credit decision.

large
requested

<person X>

credit
approved

<person X>

large credit
approved

<person X>

large
credit

ALERT

within time <T>

Triggered <C> times

!
Alert

(a) On-the-fly security violations

M-10

M-8M-9

M-6M-7

M-4M-5

M-2M-3

M-1

complete_appl complete_appl

send_approve send_deny

make_decision
make_decision make_decision

make_decision

check_large_amount check_small_amount

check_loan_amount check_loan_amount

(b) Reachability graph of business process

Fig. 3. Predict near future security violations

4.3 Operational Model for Security Event Prediction

A computation of the possible system behaviour of a formal APA model of the
business process in Fig. 2 results in the reachability-graph depicted in Fig. 3(b).

www.manaraa.com

Predictive Security Analysis for Event-driven Processes 7

The state M -3 e.g. represents the situation where an event of type “large amount
requested” is available and can be processed by the action “check large amount”
which in turn will trigger an event of type “check large done”. After this, the
process is in state M -5, where the action “make decision” can be executed and
lead to one of the two possible followup states M -6 or M -7. M -7 is reached iff
the decision results in an event “credit approved”.

From this we now conclude that a predictive alert “large credit ALERT” can
be generated if, (1) the system is in a state where the number of large credits
allowed for one customer is exhausted, (2) an event “large amount requested” for
the same customer is received, and, (3) an evaluation of possible continuations of
the process’s behaviour based on the operational model shows that an additional
event of type “large credit approved” is possible within the forecast window.

The method described in this paper addresses security properties that can be
stated as safety properties. Possible violations of these properties are identified
by reachable states in the predicted system behaviour. Some examples of security
related event types that can be analysed by the method given in this paper are:

Confidentiality. Consider an event sending a cleartext password. Predict that in
one possible continuation of a process, an event about processing a cleartext
password locally may lead to an event sending that password.

Authenticity. Consider the physical presentation of a token which is known to
be unique such as a credit card or passport as parameter of two different
events with very close time and very different location.

Authorisation. Consider two events with persons with the same biometric pa-
rameters in different locations at the same time.

Integrity/Product counterfeiting. Consider RFIDs being scanned in places where
they are not expected.

Integrity/Safety. Consider two trains on the same railtrack. Predict that a spe-
cific constellation of switches leads to a crash in one possible continuation.

5 Conclusions and Further Work

In this paper we proposed a blueprint of an architecture for predictive security
analysis of event-driven processes that enables exhaustive process analysis during
runtime based on the triggered real-life events. Our approach is based on the
specification of an operational finite state model of the process behaviour We
have demonstrated how our methods can be applied in order to ensure certain
security regulations in the process of online credit application and how we can
construct event abstractions on different levels in order to detect current and
near-future threats.

Currently our components are prototypically implemented without auto-
mated merging and translation mechanisms for the input models and specifica-
tions, automated event pattern extraction and new event pattern composition.
We used the SH verification tool [9] to analyse an exemplary business process
model for different concrete instantiations (numbers of clients, and time-horizon)
of the model. In the future, we will further develop such techniques in order to

www.manaraa.com

8 Roland Rieke and Zaharina Stoynova

automate the security analysis and simulation and extend the method to cover
liveness properties.

Furthermore, alerts in today’s monitoring systems by themselves bring little
value in the process security management if they cannot be acted upon. There-
fore, we have to provide additionally to the alerts alternative counter-measure
scenarios that can be quantifiable evaluated thanks to simulation. In this way
our analysis can be extended to provide feedback to the operators on feasibility
and impacts of both attacks and counter-measures.

Acknowledgments. The work presented in this paper was developed in the
context of the project Alliance Digital Product Flow (ADiWa) that is funded
by the German Federal Ministry of Education and Research. Support code:
01IA08006F.

References

1. Dijkman, R.M.: Diagnosing Differences Between Business Process Models. In: Du-
mas, M., Reichert, M., Shan, M.C. (eds.) BPM. Lecture Notes in Computer Science,
vol. 5240, pp. 261–277. Springer (2008)

2. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)

3. Kazhamiakin, R., Pistore, M., Santuari, L.: Analysis of communication models in
web service compositions. In: WWW’06: Proc. of the 15th international conference
on World Wide Web. pp. 267–276. ACM, New York (2006)

4. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley (2002)

5. Massart, T., Meuter, C.: Efficient online monitoring of LTL properties for asyn-
chronous distributed systems. Tech. rep., Université Libre de Bruxelles (2006)

6. McCoy, D.W.: Business Activity Monitoring: Calm Before the Storm. Gartner
Research (2002)

7. Netjes, M., Reijers, H., Aalst, W.P.v.d.: Supporting the BPM life-cycle with
FileNet. In: Proceedings of the Workshop on Exploring Modeling Methods for
Systems Analysis and Design (EMMSAD’06), held in conjunction with the 18th
Conference on Advanced Information Systems (CAiSE’06), Luxembourg, Luxem-
bourg, EU. pp. 497–508. Namur University Press, Namur, Belgium, EU (2006)

8. Nicolett, M., Kavanagh, K.M.: Magic Quadrant for Security Information and Event
Management. Gartner RAS Core Reasearch Note (May 2009)

9. Ochsenschläger, P., Repp, J., Rieke, R., Nitsche, U.: The SH-Verification Tool
Abstraction-Based Verification of Co-operating Systems. Formal Aspects of Com-
puting, The International Journal of Formal Method 11, 1–24 (1999)

10. Pietzuch, P.R., Shand, B., Bacon, J.: A framework for event composition in dis-
tributed systems. In: Middleware ’03: Proceedings of the ACM/IFIP/USENIX 2003
International Conference on Middleware. pp. 62–82. Springer-Verlag New York,
Inc., New York, NY, USA (2003)

11. Rozinat, A., Wynn, M.T., van der Aalst, W.M.P., ter Hofstede, A.H.M., Fidge,
C.J.: Workflow simulation for operational decision support. Data Knowl. Eng.
68(9), 834–850 (2009)

www.manaraa.com

P14
M O D E L - B A S E D S I T U AT I O N A L S E C U R I T Y
A N A LY S I S

Title Model-based Situational Security Analysis

Authors Jörn Eichler and Roland Rieke

Publication In Proceedings of the 6th International Work-
shop on Models@run.time at the ACM/IEEE
14th International Conference on Model Driven
Engineering Languages and Systems (MODELS
2011), Wellington, New Zealand, pages 25–36.
2011.

ISBN/ISSN ISSN 1613-0073

URL http://ceur-ws.org/Vol-794/paper_1.pdf

Status Published

Publisher RWTH Aachen

Publication Type CEUR Workshop Proceedings, Vol. 794

Copyright 2011, Papers’ Authors

Contribution of
Roland Rieke

Main Author, editor, and presenter at the 6th
MRT workshop 2011.
Specific contributions are: (a) the process
and event model, (b) the security require-
ments elicitation, (c) the formal model, and
(d) the security reasoning during runtime op-
eration.

Table 19: Fact Sheet Publication P14

Publication P14 [Eichler & Rieke, 2011] addresses the following re-
search questions:

RQ10 How can security analysis at runtime exploit process models to iden-
tify current and close-future violations of security requirements?

Security analysis is growing in complexity with the increase in
functionality, connectivity, and dynamics of current electronic busi-
ness processes. To tackle this complexity, the application of models in
pre-operational phases is becoming standard practice. Runtime mod-
els are also increasingly applied to analyse and validate the actual
security status of business process instances. This paper presents an
approach to support not only model-based evaluation of the current

389

http://ceur-ws.org/Vol-794/paper_1.pdf

www.manaraa.com

model-based situational security analysis

security status of business process instances, but also to allow for deci-
sion support by analysing close-future process states. The approach is
based on operational formal models derived from development-time
process and security models. This paper exemplifies the approach
utilising real world processes from the logistics domain and demon-
strates the systematic development and application of runtime mod-
els for situational security analysis.

390

www.manaraa.com

Model-based Situational Security Analysis

Jörn Eichler and Roland Rieke

Fraunhofer Institute for Secure Information Technology SIT, Darmstadt, Germany
{joern.eichler,roland.rieke}@sit.fraunhofer.de

Abstract. Security analysis is growing in complexity with the increase
in functionality, connectivity, and dynamics of current electronic busi-
ness processes. To tackle this complexity, the application of models in
pre-operational phases is becoming standard practice. Runtime models
are also increasingly applied to analyze and validate the actual security
status of business process instances. In this paper we present an approach
to support not only model-based evaluation of the current security status
of business process instances, but also to allow for decision support by an-
alyzing close-future process states. Our approach is based on operational
formal models derived from development-time process and security mod-
els. This paper exemplifies our approach utilizing real world processes
from the logistics domain and demonstrates the systematic development
and application of runtime models for situational security analysis.

Keywords: security requirements elicitation, predictive security anal-
ysis, analysis of business process behavior, security modeling and simu-
lation, security monitoring

1 Introduction

Electronic business processes connect many systems and applications. This leads
to an increasing complexity when analyzing distinctive properties of those busi-
ness processes. Additionally, frequent changes to business process models are
applied to address changing business needs. Current approaches apply changes
to those models at runtime [4]. This situation challenges operators and partici-
pants in electronic business processes as the assessment of the status of business
process instances at runtime becomes difficult. An example for these difficulties
is the assessment whether instances of business processes violate security policies
or might violate them in the near future.

Traditionally, approaches to security analysis of electronic business processes
are executed at development-time. In this perspective, the analysis of possible
violations of security policies is part of the requirements engineering process
[13]. To cope with the growing complexity of the electronic business processes,
the application of security models in the course of the requirements engineer-
ing process is becoming a common strategy [5]. Nevertheless, the requirements
engineering process is generally limited to development-time.

Contributions. To support security analysis at runtime we utilize formal
models based on development-time process and security models. On the basis of

www.manaraa.com

sound methods for the elicitation and modeling of security requirements provided
in [7] and an architectural blueprint described in [18], we document in this paper
our approach to analyze the security status of electronic business processes. The
security analysis consumes events from the runtime environment, maps those
events to security events and feeds them to our runtime model, an operational
finite state model. This allows to match and synchronize the state of the real
process with the state of the model. Annotations of security requirements to
the states of the model can now be used to check for security violations and
possibly generate alarms. These alarms are then in turn converted to events and
sent to the running business process. Furthermore, a computation of possible
close-future behavior, which is enabled by the model of the business process, is
used to evaluate possible security critical states in the near future at runtime.
This knowledge about possibly upcoming critical situations can be used to raise
respective predictive alarms.

security events

present
time

future
time

Feasible
security

violations

Fig. 1. Predict feasible security violations

In section 2 we provide an application scenario from the logistics domain
and elicit security requirements. The formalization of the scenario is given in
section 3. Section 4 analyzes the runtime operation and exemplifies generated
security alerts. Section 5 reviews shortly related work to our approach. Conclud-
ing remarks and further research directions are given in section 6.

2 Application Scenario

In order to demonstrate what kind of security requirements we are able to con-
sider and how our model-based runtime analysis is applied, we have chosen a
small part of a “Pickup” target process which is analysed in the project Alliance
Digital Product Flow (http://www.adiwa.net/).

www.manaraa.com

2.1 Process and Event Model

The “Pickup” process is initiated when the truck driver is notified about new
pickup orders. He accepts the received list of orders and the system calculates a
route plan based on the addresses. When the driver arrives at a pickup address,
he checks visually the packages for deviations with regard to the description in
the order. In case of deviations he consults with the sender whether this package
is to be transported. If the truck driver accepts the new package, the package
description in the list of orders is updated accordingly. For each accepted package
the system receives a confirmation that it has been loaded. The system links
each loaded package and its transporting truck using the corresponding radio-
frequency identification (RFID) tag identifiers. An Event-driven Process Chain
(EPC) flowchart of the considered subprocess is depicted in Figure 2. Rectangles
with rounded corners denote actions and chamfered rectangles denote events.

Truck x

Trusted Agent

Freight Forwarder

Accept pickup order

Truck at customer’s location (GPS)

Sec. Warn.

Verify Authenticity of GPS

Confirm Authenticity of GPS

imminent truck delay

identify critical payload

critical payload

compute replan proposals

replan proposals

select plan

xor

replan ¬ replan

Sec. Req.

Fig. 2. Model of a part of the Pickup Process (EPC notation)

As an example of a security threatening misuse case, we consider a situation
where the system performs a rescheduling because of a delay of one or more
trucks on the basis of not confirmed Global Positioning System (GPS) locations.
In this case there is a possibility for an attacker to send false GPS data to the
system, which may result in ineffective rescheduling and possible time loss in
completing the orders.

2.2 Security Requirements Elicitation

In order to derive the security requirements in the given scenario, we follow the
scheme described in [7]. We assume that the functional dependencies between
the actions in our scenario are given by Fig. 3.

www.manaraa.com

Truck x Freight Forwarder

Airport y

gpsx(pos)

recvx(route)

sendx(pos) broadcast(TMC) send(route)

recv(pos)

recv(schedule)

replan(routing)

prio(payload)

recv(flight) send(schedule)

Fig. 3. Functional dependencies

We apply a general security goal: Whenever a certain output action happens,
the input actions that presumably led to it must actually have happened. As an
example for a specific security goal, in the following we will use the authenticity
requirement: Whenever a rescheduling action is performed, the GPS coordinates
of each truck should be authentic for the dispatcher in terms of origin, content
and time. The formal syntax to describe these requirements in parameterized
form is defined as (see [8]):

Definition 1. auth(a, b, P): Whenever an action b happens, it must be authentic
for an Agent P that in any course of events that seem possible to him, a certain
action a has happened.

Therefore, our selected authenticity requirement can be written as:

auth(gpsx(pos), replan(routing), dispatcher). (Auth 1)

We will use the authenticity requirement (Auth 1) to describe the reasoning
process with the help of an appropriate operational model.

There are of course many other security requirements necessary in this sce-
nario. For example, while loading a package on the truck the RFID data and
the truck driver should be authentic in terms of content and identification num-
ber. Analysis and application in our situational security analysis follow the same
procedure as for (Auth 1). Therefore, we will exemplify only (Auth 1) in the
following.

3 Formal Model

In order to analyze the system behavior with tool support, an appropriate for-
mal representation has to be chosen. In our approach, we use an operational
finite state model of the behavior of the given process which is based on Asyn-
chronous Product Automata (APA), a flexible operational specification concept

www.manaraa.com

for cooperating systems [16]. An APA consists of a family of so called elementary
automata communicating by common components of their state (shared mem-
ory). We now introduce the formal modeling techniques used, and illustrate the
usage by our application example.

Definition 2 (Asynchronous Product Automaton (APA)). An Asyn-
chronous Product Automaton A = ((Zs)s∈S, (Φt, ∆t)t∈T, N, q0) consists of a
family of state sets Zs, s ∈ S, a family of elementary automata (Φt, ∆t), with
t ∈ T, a neighborhood relation N : T → P(S) and an initial state q0 =
(q0s)s∈S ∈ ��s∈S(Zs). S and T are index sets with the names of state com-
ponents and of elementary automata and P(S) is the power set of S. For each
elementary automaton (Φt, ∆t) with Alphabet Φt, its state transition relation
is ∆t ⊆ ��s∈N(t)(Zs) × Φt × ��s∈N(t)(Zs). For each element of Φt the state
transition relation ∆t defines state transitions that change only the state com-
ponents in N(t). An APA’s (global) states are elements of ��s∈S(Zs). To avoid
pathological cases it is generally assumed that N(t) 6= ∅ for all t ∈ T. An ele-
mentary automaton (Φt, ∆t) is activated in a state p = (ps)s∈S ∈ ��s∈S(Zs)
as to an interpretation i ∈ Φt, if there are (qs)s∈N(t) ∈ ��s∈N(t)(Zs) with
((ps)s∈N(t), i, (qs)s∈N(t)) ∈ ∆t. An activated elementary automaton (Φt, ∆t) can
execute a state transition and produce a successor state q = (qr)r∈S ∈ ��s∈S(Zs),
if qr = pr for r ∈ S\N(t) and ((ps)s∈N(t), i, (qs)s∈N(t)) ∈ ∆t. The corresponding
state transition is (p, (t, i), q).

A simplified model of the part of the “Freight Forwarder” business process
shown in Fig 2 contains the APA state components pstate and event represent-
ing the current process state and event. Formally, S = {pstate, event}, with
Zevent = {imminent truck delay, . . . , replan,¬replan}, Zpstate =

The elementary automata T = {identify critical payload, . . . , select plan}
represent the possible actions that the systems can take. The neighborhood
relation between elementary automata and state components of the APA model
is depicted by the edges in Fig. 4.

pstate

compute replan proposalsidentify critical payload select plan

event

Fig. 4. Elementary automata and state components in the APA process model

Formally, the behavior of our operational APA model of the business process
is described by a reachability graph. In the literature this is sometimes also
referred to as labeled transition system (LTS).

www.manaraa.com

Definition 3 (Reachability graph). The behavior of an APA is represented
by all possible coherent sequences of state transitions starting with initial state
q0. The sequence (q0, (t1, i1), q1)(q1, (t2, i2), q2) . . . (qn−1, (tn, in), qn) with ik ∈
Φtk represents one possible sequence of actions of an APA. State transitions
(p, (t, i), q) may be interpreted as labeled edges of a directed graph whose nodes
are the states of an APA: (p, (t, i), q) is the edge leading from p to q and labeled
by (t, i). The subgraph reachable from q0 is called reachability graph of an APA.

We use the SH verification tool [16] to analyse the process model. This tool
provides components for the complete cycle from formal specification to exhaus-
tive validation as well as visualisation and inspection of computed reachability
graphs and minimal automata. The applied specification method based on APA
is supported. The tool manages the components of the model, allows to select al-
ternative parts of the specification and automatically glues together the selected
components to generate a combined model of the APA specification.

q0

q1

q2

q3 q4

(identify critical payload, critical payload)

(compute replan proposals, replan proposals)

(select plan, ¬replan) (select plan, replan)

Fig. 5. Close-future (3 Steps) Reachability Analysis

Figure 5 shows the initial part of the reachability graph resulting from the
analysis of the model when reaching the part of the business process of the
freight forwarder shown in Fig. 2. An example for a state transition of the model
in this situation is: (q0,(identify critical payload, critical payload),q1). Please
note that there are two different transitions from the state q2 because the inter-
pretation of a variable can have the values replan or ¬ replan, respectively.

4 Runtime Operation and Generated Alerts

During runtime, the events from the business process are used to synchronize
the state of the model with the real process. In our exemplary setup, the events
are produced by a Complex Event Processing (CEP) engine which is provided
by one of the project partners. The events are described by an XML schema and
communicated by the Java Message Service (JMS). The events from the event
bus are used to provide the information about the state and input to the business
process. In our finite state model, this information is represented in the state

www.manaraa.com

components pstate and event (cf. Fig. 4). This constitutes the initial state of
the model from which a simulation is then started. In addition to the predicted
system behavior, we also need the information on the security requirements in
order to identify critical situations. In [18] we proposed to use APA to specify
meta-events, which match security critical situations, to generate alerts. How-
ever, since this is slow and not easily usable by end-users, we decided to build
the matching algorithm directly into the SH verification tool. We use monitor
automata [22] to specify the security requirements graphically. These automata
monitor the behaviour of the abstract system during the run of the simulation
and provide interfaces to trigger alerts. This concept could be further extended
to make use of the built-in temporal logic based reasoning component if more
complex reasoning is necessary.

4.1 Security Reasoning – No Authenticity Approval of GPS Event

In order to demonstrate the use of process models at runtime, let us assume the
following situation. We are currently at logical time 0 as depicted on the timeline
in Figures, 7, 8, 9, 10. We further assume that the trusted agent inspects the
events generated by GPS units of the trucks and sends additional events which
attest to the authenticity of each GPS event within a timeframe of 2 logical time
units. Please note that it is also a possibility that the trusted agent would filter
the events and only let authentic events pass the filter. We furthermore assume
that we know from the analysis of dependencies of actions and specifically from
the requirement (Auth 1) that whenever a rescheduling action is performed, the
GPS coordinates of each truck should be authentic for the process planner in
terms of origin, content and time.

We now describe the reasoning process where the authenticity of the GPS
event is not approved by the trusted agent. In the diagrams we use pentagon
symbols to depict events on the event bus such as GPS information and we use
triangles to depict Security Warnings (SW), Predictive Security Alerts (PSA)
and Security Alerts (SA) generated by the reasoning process.

Step 1: A GPS event is received

0 1 2 3 4 5 6 7 8 9

Timeline

GPS Auth

Fig. 6. Security Reasoning - Authenticity Approval of GPS Event - step 1

Figure 6 shows the situation when a GPS event is received. This event is
matching a precondition in the requirement pattern: GPS needs confirmation

www.manaraa.com

in 2 steps. This requirement (warn-level) is triggered by the GPS event. The
reachability analysis reveals no critical actions within the scope (3 steps) of the
analysis. We conclude from Fig. 6 that everything is OK at this point. A future
event might confirm authenticity of the GPS location received.

Step 2: Confirmation of GPS event not received

-2 -1 0 1 2 3 4 5 6 7

Timeline

GPS
¬

Auth

SW

Fig. 7. Security Reasoning - No Authenticity Approval of GPS Event - step 2

Figure 7 shows the situation when an expected event from the trusted agent,
namely the authenticity approval of this GPS event is recognized as missing.
The missing event indicates a broken security requirement: GPS needs confir-
mation in 2 steps. The reachability analysis in this situation shows that no
other security requirement will be triggered within the scope of the analysis.
However, some forthcoming security relevant action might require authenticity
of this GPS event. Therefore, an alert action associated with a broken warn-level
requirement, such as issuing a security warning (SW), is now triggered.

Step 3: Replan event in analysis scope

0 1 2 3

Timeline

GPS
¬

Auth
replan

SW PSA

Fig. 8. Security Reasoning - No Authenticity Approval of GPS Event - step 3

In Fig. 8, an arbitrary event is received from which, in one possible execu-
tion sequence of the business process, a replan event is reachable within the
scope of the analysis. In our scenario imminent truck delay is such an event.
The reachability graph is similar to the one depicted in Fig. 5. It shows that
the select plan action may happen in the future if replan is chosen. But there

www.manaraa.com

is another possible path in the graph where replan is not chosen. The replan
event in the prediction scope is matching a precondition in a requirement pat-
tern: auth(GPS, replan, dispatcher), but the GPS event is not approved to be
authentic. Therefore, a replan event with broken security requirement is pos-
sible. An action associated with this (possibly) broken alert-level requirement,
such as issuing a predictive security alert (PSA), is now executed.

Step 4a: Expected replan event received

0

Timeline

GPS
¬

Auth
replan

SW PSA SA

Fig. 9. Security Reasoning - No Authenticity Approval of GPS Event - step 4a

Figure 9 shows the situation when a replan event is received as predicted (cf.
Fig. 5 transition q2 → q4). At this time we know that the security requirement
(Auth 1) is broken. Therefore, an action associated with a broken alert-level
requirement, such as issuing a security alert (SA), is now executed.

Step 4b: Predicted replan event not received after step 3

0

Timeline

GPS
¬

Auth
¬
replan

SW PSA

Fig. 10. Security Reasoning - No Authenticity Approval of GPS Event - step 4b

Figure 10 shows the situation when a replan event is not received as expected
(cf. Fig. 5 transition q2 → q5). In this case, we know that the issued predictive
security alert (PSA) was a “False Positive”, so a corrective action may be nec-
essary. Corrective actions might be the reduction of a general security warning
level or lifting of restrictions on the business process depending on the operating
environment. However, the security warning issued in step 2 is still valid because
some future event might require authenticity of the GPS event.

www.manaraa.com

5 Related Work

The work presented here combines specific aspects of security analysis with
generic aspects of process monitoring, simulation, and analysis. The background
of those aspects is given by the utilization of models at runtime [6]. A blueprint
for our architecture of predictive security analysis is given in [18].

Security analysis at development-time to identify violations of security poli-
cies is usually integrated in the security requirements engineering process. An
overview of current security requirements engineering processes is given in [5,13].
The security requirements elicitation methods developed in [7] are used in sec-
tion 2 to derive the requirements which are needed to assess possible security
policy violations at runtime. A formalized approach for security risk modeling
in the context of electronic business processes is given in [21]. It touches also
the aspect of simulation, but does not incorporate the utilization of runtime
models. Approaches that focus security models at runtime are given in [14] or in
[12]. Morin et. al [14] propose a novel methodology to synchronize an architec-
tural model reflecting access control policies with the running system. Therefore,
the methodology emphasizes policy enforcement rather than security analysis.
The integration of runtime and development-time information on the basis of an
ontology to engineer industrial automation systems is discussed in [12].

Process monitoring has gained some popularity recently in the industrial
context prominently accompanied with the term Business Activity Monitoring
(BAM). The goal of BAM applications, as defined by Gartner Inc., is to process
events, which are generated from multiple application systems, enterprise service
buses or other inter-enterprise sources in real-time in order to identify critical
business key performance indicators and get a better insight into the business
activities and thereby improve the effectiveness of business operations [11]. Re-
cently, runtime monitoring of concurrent distributed systems based on linear
temporal logic (LTL), state-charts, and related formalisms has also received a
lot of attention [9,10]. However, these works are mainly focused on error detec-
tion, e.g., concurrency related bugs. A classification for runtime monitoring of
software faults is given in [1]. Patterns to allow for monitoring security prop-
erties are developed in [20]. In the context of BAM applications, in addition
to these features we propose a close-future security analysis as it is detailed
in section 4. Our analysis provides information about possible security policy
violations reinforcing the security-related decision support system components.

Different categories of tools applicable for simulation of business processes
including process modeling tools are based on different semi-formal or formal
methods such as Petri Nets [3] or Event-driven Process Chains (EPC) [2]. Some
process management tools such as FileNet [15] offer a simulation tool to support
the design phase. Also, some general-purpose simulation tools such as CPNTools
[19] were proven to be suitable for simulating business processes. However, inde-
pendently from the tools and methods used, such simulation tools concentrate
on statistical aspects, redesign and commercial optimization of the business pro-
cess. On the contrary, we propose an approach for on-the-fly dynamic simulation
and analysis on the basis of operational APA models detailed in section 3. This

www.manaraa.com

includes consideration of the current process state and the event information
combined with the corresponding steps in the process model.

6 Conclusions and Further Work

In this paper we demonstrated the application of runtime models to analyze the
security status of business processes and to identify possible violations of the
security policy in the near future. Therefore, we started with a business process
model from the logistics domain and analyzed corresponding security require-
ments. Utilizing both development-time models we derived a runtime model.
The runtime model consumes events from the runtime environment, evaluates
current violations of the security policy, and identifies close-future violations of
the security policy. Within the logistics domain we applied our approach to iden-
tify situations in which an attacker might try to disrupt or degrade the process
performance. By issuing predictive security alerts, users or operators (in this
case: the dispatcher in the logistic process) are able to act securely without the
need to understand the security policy or infrastructure in detail.

Other novel uses of such models at runtime can enable anticipatory impact
analysis, decision support and impact mitigation by adaptive configuration of
countermeasures. The project MASSIF (http://www.massif-project.eu/), a
large-scale integrating project co-funded by the European Commission, addresses
these challenges within the management of security information and events in
service infrastructures. In MASSIF [17] we will apply the presented modeling
concept in four industrial domains: (i) the management of the Olympic Games IT
infrastructure; (ii) a mobile phone based money transfer service, facing high-level
threats such as money laundering; (iii) managed IT outsource services for large
distributed enterprises; and (iv) an IT system supporting a critical infrastructure
(dam).

Acknowledgments. The work presented here was developed in the context of
the project MASSIF (ID 257475) being co-funded by the European Commis-
sion within the Seventh Framework Programme and the project Alliance Digital
Product Flow (ADiWa) (ID 01IA08006F) which is funded by the German Federal
Ministry of Education and Research.

References

1. Delgado, N., Gates, A., Roach, S.: A taxonomy and catalog of runtime software-
fault monitoring tools. IEEE Transactions on Software Engineering 30(12), 859–872
(2004)

2. Dijkman, R.M.: Diagnosing differences between business process models. In: Busi-
ness Process Management (BPM 2008). LNCS, vol. 5240, pp. 261–277. Springer
(2008)

3. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Information and Software Technology 50(12), 1281–1294 (2008)

www.manaraa.com

4. Döhring, M., Zimmermann, B., Karg, L.: Flexible workflows at design- and runtime
using BPMN2 adaptation patterns. In: Business Information Systems (BIS 2011),
LNBIP, vol. 87, pp. 25–36. Springer (2011)

5. Fabian, B., Gürses, S., Heisel, M., Santen, T., Schmidt, H.: A comparison of security
requirements engineering methods. Requirements engineering 15(1), 7–40 (2010)

6. France, R., Rumpe, B.: Model-driven development of complex software: A research
roadmap. In: Future of Software Engineering. pp. 37–54. IEEE (2007)

7. Fuchs, A., Rieke, R.: Identification of Security Requirements in Systems of Systems
by Functional Security Analysis. In: Architecting Dependable Systems VII, LNCS,
vol. 6420, pp. 74–96. Springer (2010)

8. Gürgens, S., Ochsenschläger, P., Rudolph, C.: On a formal framework for security
properties. Computer Standards & Interfaces 27, 457–466 (2005)

9. Kazhamiakin, R., Pistore, M., Santuari, L.: Analysis of communication models in
web service compositions. In: World Wide Web (WWW 2006). pp. 267–276. ACM
(2006)

10. Massart, T., Meuter, C.: Efficient online monitoring of LTL properties for asyn-
chronous distributed systems. Tech. rep., Université Libre de Bruxelles (2006)

11. McCoy, D.W.: Business Activity Monitoring: Calm Before the Storm. Gartner
Research (2002)

12. Melik-Merkumians, M., Moser, T., Schatten, A., Zoitl, A., Biffl, S.: Knowledge-
based runtime failure detection for industrial automation systems. In: Workshop
Models@run.time. pp. 108–119. CEUR (2010)

13. Mellado, D., Blanco, C., Snchez, L.E., Fernndez-Medina, E.: A systematic review
of security requirements engineering. Computer Standards & Interfaces 32(4), 153–
165 (2010)

14. Morin, B., Mouelhi, T., Fleurey, F., Le Traon, Y., Barais, O., Jézéquel, J.M.:
Security-driven model-based dynamic adaptation. In: Automated Software Engi-
neering (ASE 2010). pp. 205–214. ACM (2010)

15. Netjes, M., Reijers, H., Aalst, W.P.v.d.: Supporting the BPM life-cycle with
FileNet. In: Exploring Modeling Methods for Systems Analysis and Design (EMM-
SAD 2006). pp. 497–508. Namur University Press (2006)

16. Ochsenschläger, P., Repp, J., Rieke, R., Nitsche, U.: The SH-Verification Tool
Abstraction-Based Verification of Co-operating Systems. Formal Aspects of Com-
puting 10(4), 381–404 (1998)

17. Prieto, E., Diaz, R., Romano, L., Rieke, R., Achemlal, M.: MASSIF: A promising
solution to enhance olympic games IT security. In: International Conference on
Global Security, Safety and Sustainability (ICGS3 2011) (2011)

18. Rieke, R., Stoynova, Z.: Predictive security analysis for event-driven processes. In:
Computer Network Security, LNCS, vol. 6258, pp. 321–328. Springer (2010)

19. Rozinat, A., Wynn, M.T., van der Aalst, W.M.P., ter Hofstede, A.H.M., Fidge,
C.J.: Workflow simulation for operational decision support. Data & Knowledge
Engineering 68(9), 834–850 (2009)

20. Spanoudakis, G., Kloukinas, C., Androutsopoulos, K.: Towards security monitoring
patterns. In: Symposium on Applied computing (SAC 2007). pp. 1518–1525. ACM
(2007)

21. Tjoa, S., Jakoubi, S., Goluch, G., Kitzler, G., Goluch, S., Quirchmayr, G.: A for-
mal approach enabling risk-aware business process modeling and simulation. IEEE
Transactions on Services Computing 4(2), 153–166 (2011)

22. Winkelvos, T., Rudolph, C., Repp, J.: A Property Based Security Risk Analysis
Through Weighted Simulation. In: Information Security South Africa (ISSA 2011).
IEEE (2011)

www.manaraa.com

P15
A R C H I T E C T I N G A S E C U R I T Y S T R AT E G Y
M E A S U R E M E N T A N D M A N A G E M E N T S Y S T E M

Title Architecting a Security Strategy Measure-
ment and Management System

Authors Roland Rieke, Julian Schütte, and Andrew
Hutchison

Publication In Proceedings of the Workshop on Model-
Driven Security, MDsec’12, pages 2:1–2:6.

ISBN/ISSN ISBN 978-1-4503-1806-8

DOI http://dx.doi.org/10.1145/2422498.

2422500

Publisher ACM, New York, NY, USA

Publication Type ACM digital library

Status Published

Copyright 2012, ACM

Contribution of
Roland Rieke

Main Author, editor, and presenter at the
workshop on Model-Driven Security 2012.
Specific contributions are: (a) Security Infor-
mation Meta Model (SIMM), (b) contributions
to Security Strategy Meta Model (SSMM), and
(c) the design of the conceptual security strat-
egy management framework.
Related contributions: Roland Rieke also
contributed to the closely related paper
“Model-Based Security Event Management“
[Schütte et al., 2012] and gave a related talk
together with Co-Author Andrew Hutchi-
son about “Measuring Progress in Cyber-
Security: An Open Architecture for Secu-
rity Measurement Consolidation” at the 2012

Workshop on Cyber Security and Global Af-
fairs and Global Security Forum [Hutchison
& Rieke, 2012].

Table 20: Fact Sheet Publication P15

Publication P15 [Rieke, Schütte & Hutchison, 2012] addresses the
following research question:

403

http://dx.doi.org/10.1145/2422498.2422500
http://dx.doi.org/10.1145/2422498.2422500

www.manaraa.com

architecting a security strategy measurement and

management system

RQ11 How can security analysis at runtime be integrated in a security
management strategy?

This paper presents a model driven approach for architecting a
security strategy measurement and management system. Concretely, it de-
scribes the definition of security objectives for a particular system,
and a mechanism for collecting information from operational systems
in a manner which enables assessment and measurement of how well
the system is fulfilling the security objectives. Existing Security Infor-
mation and Event Management (SIEM) solutions are limited, while
this approach overcomes these contextual restrictions (typically pre-
defined, closed models) offering an extensible and open model, en-
compassing all parts of the security monitoring and decision support
process, namely: (i) detecting threatening events; (ii) putting them
in context of the current system state; (iii) explaining their potential
impact with respect to some security- or compliance model; and (iv)
taking appropriate actions. The proposed deployment model brings
together all parts of security runtime management, namely, detection,
reporting, handling, and explanation of security incidents, which are
to date covered by different systems, such as intrusion detection sys-
tems, Complex Event Processing (CEP) engines [Esper contributors
and EsperTech Inc., 2012], SIEM systems [AlienVault, 2012; Prelude -
CS Group, 2014; Araknos, 2012], intrusion response systems [Shameli-
Sendi et al., 2012], cyber attack information systems [Skopik et al.,
2012], and governance, risk management, and compliance systems
[Racz et al., 2010]. So, the model supports an integration of function-
alities of these existing systems into one coherent security strategy
management framework.

404

www.manaraa.com

c© 2012 Association for Computing Machinery, Inc. Reprinted by permission. Rieke, Roland
and Schütte, Julian and Hutchison, Andrew, Architecting a security strategy measurement
and management system, MDsec ’12 Proceedings of the Workshop on Model-Driven Security,
Article No. 2, (2012) http://doi.acm.org/10.1145/2422498.2422500

Architecting a Security Strategy Measurement and
Management System

Roland Rieke
Fraunhofer Institute SIT

Rheinstrasse 75
Darmstadt, Germany

roland.rieke@
sit.fraunhofer.de

Julian Schütte
Fraunhofer Institution AISEC

Parkring 4
Garching, Germany
julian.schuette@

aisec.fraunhofer.de

Andrew Hutchison
T-Systems South Africa

4 Churchill Close, Bellville
Cape Town, South Africa
andrew.hutchison@

t-systems.co.za

ABSTRACT
The use of formal models to guide security design is appeal-
ing. This paper presents a model driven approach whereby
security systems in operation can be assessed and measured
against various requirements that are defined when the sys-
tem is created. By aligning with organisational policy, and
business requirements of a specific system, design and oper-
ation can proceed in a way that allows measurement of how
successfully security objectives are being achieved. This pa-
per describes a model driven approach which overcomes the
contextual restrictions of existing solutions. In particular,
where models have been used previously these have tended
to be predefined and closed models, whereas the approach
described here is an extensible model that comprises all parts
of the security monitoring and decision support process. By
means of interlinked semantic concepts, the proposed secu-
rity strategy meta model provides a way to model security
directives at an abstract level, which can be automatically
compiled into specific rules for an underlying framework of
monitoring, decision support, and enforcement engines.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection; D.2.1 [Software Engi-
neering]: Requirements/Specifications; C.2.3 [Computer-
Communication Networks]: Network Operations—Net-
work management,Network monitoring

General Terms
Security,Management,Measurement

Keywords
Security strategy, security monitoring, decision support, se-
curity information and event management, information se-
curity measurement model, governance and compliance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MDSec’12 September 30 2012, Innsbruck, Austria
Copyright 2012 ACM 978-1-4503-1806-8/12/09 ...$15.00.

1. INTRODUCTION
Cyber Security is an area of great global focus, yet it is

both hard to manage and – arguably – even harder to mea-
sure. But the two concepts go together: if some sort of mea-
surement approach can be implemented, it should at least be
possible to manage systems better and assess whether they
are meeting the security objectives that they were designed
with. In spite of the fact that technical security solutions
are deployed, there are numerous instances of processes or
transactions being compromised. Part of the challenge with
security implementations is that they are made in isolation
from any formal specification or model of what the security
profile should look like. In the absence of a holistic view
that extends from business process to logical and techni-
cal security realisation, there is high potential for gaps or
mismatches to occur. Fueling this situation is the fact that
life-cycle approaches to security are not easily applied – or
measured.

In this paper we argue for a meta model approach to drive
security from design to implementation, through an analy-
sis and refinement approach, and also through a security
measurement approach which would enable assessment of
the system’s performance against the security requirements
it was designed for. To achieve a meta model approach for
security, several phases are required and in this paper we
present a Security Information Meta Model (SIMM) consist-
ing of: (a) high level goal setting, (b) security requirements,
(c) measurement requirements, and (d) objects of measure-
ment. Through applying this model, high level goals for
security can be established and defined. Importantly, mea-
surement objectives can also be developed and stated at this
point. By proceeding in this way, security can be designed
in such a way that it can be measured (and managed). Ac-
tivities of analysis and refinement are required to move from
security requirements to measurement requirements. In this
process, objects of measurement also need to be identified.

In order to cover the operational aspects of this concept,
we make use of a Security Strategy Meta Model (SSMM)
[23] that describes the control flow at runtime, independent
from the underlying event description language. A specific
rule from a Security Strategy Model (SSM) that adheres
to the SSMM is called Security Directive (SD). A distin-
guished Security Strategy Component controls the execution
of the SDs. It can execute a SD or parts of it directly or
delegate workload to a specialised Security Strategy Process-
ing Component (SSPC). The overall aim is to overcome the
contextual restrictions of existing solutions, with their pre-

www.manaraa.com

defined and closed models, and rather to provide an extensi-
ble model that spans all parts of the security monitoring and
decision support process, namely: (i) detecting threatening
events; (ii) putting them in context of the current system
state; (iii) explaining their potential impact with respect to
some security- or compliance model; and (iv) taking appro-
priate actions. Depending on the outcome of the analysis
of these components, other components that implement de-
cision support and enforcement will be triggered. The pro-
posed SSMM together with the framework of SSPCs could
be used as a core of a technology platform for an integrated
concept for governance, risk and compliance [19]. Further-
more, we consider the proposed approach to be applicable
within the design of a cyber attack information system [24],
which uses collaborative detection and response mechanisms
for high-level situational awareness and coordination of local
incident response.

The structure of the paper is as follows: first the use of
Security Information and Event Management (SIEM) tech-
niques for information security management in general is
discussed; next integration into a system architecture is pre-
sented and this is then also contrasted with existing work,
positioning how this approach differs from other similar work.

2. USING SIEM FOR INFORMATION SE-
CURITY MANAGEMENT

Information security management is needed to protect in-
formation and information infrastructure assets of an organ-
isation against the risks of loss, misuse, disclosure or dam-
age. It specifically describes controls that an organisation
needs to implement to ensure that it is sensibly managing
the risks. The ISO/IEC 27000-series comprises information
security standards in the context of an Information Security
Management System (ISMS). Specifically, the ISO/IEC
27004 standard [11] provides guidance on the development
and operation of measures and measurement, and reporting
of the results, with the aim to help organisations to system-
atically improve the effectiveness of their ISMSs.

2.1 Information Security Measurement
The ISO/IEC 27004 standard defines an Information Se-

curity Measurement Model (ISMM) that provides a struc-
ture linking an information need to the relevant object of
measurement. Furthermore, it describes how the attributes
of an object of measurement are quantified and converted to
indicators, thus providing a basis for decision making. Fig-
ure 1 depicts an abstract view of the ISMM. Specific objects
of measurement relevant for the work presented here include
the status of information assets protected by the controls
and the measurement of process behaviour. This standard
further provides a template for an information security mea-
surement construct and several examples of concrete mea-
surement constructs. Further examples are given in [15].
The frequency of reporting measurement results is in most
of the given examples “monthly”, “quarterly” or “yearly”.
The design of measurement constructs as described in the
ISO/IEC 27004 standard covers in detail the steps needed
to derive the measurement results from a given object of
measurement [15]. However, the method for identification
of the objects of measurement from the information needs
is not specified in detail (cf. the dashed arrow in Fig. 1).

In the following, we show how we map relevant parts of

Information needs
of information

security manage-
ment processes

Measurement
results

Object of
measurement

Measurement

Effectiveness

Measurement method

Decision Criteria

Figure 1: Abstract view of the ISMM

the information security measurement process to a SIEM
information flow. While the former usually takes months
or years to be updated, through manual inspection and cre-
ation of checklists, the latter allows a near-realtime obser-
vation of incidents and the mapping of them back to the
information security management requirements. Thus, by
the application of our model, we expect a semi-automatic
and significantly faster update cycle of compliance checks.

2.2 Security Information and Event Manage-
ment

SIEM systems provide important security services. They
collect and analyse data from different sources, such as sen-
sors, firewalls, routers or servers, and provide decision sup-
port based on anticipated impact analysis. This enables
timeous response to (or prevention of) attacks as well as
impact mitigation by adaptive configuration of countermea-
sures. The frequency of reporting measurement results is in
most cases very high. In [18], e.g., it is reported that for the
Beijing 2008 Olympic Games, more than 12 million IT secu-
rity events were collected and filtered each day to detect any
potential security risk for the Olympic Games IT systems.
From these, less than 100 were identified as real issues. All
were resolved, with no impact at all on the Olympic Games.
The rules for measurements and correlation are usually a

mixture of predefined rules from the SIEM system provider
and specific rules from the SIEM system user. Compared
to the ISMM, a SIEM based approach presents several key
advantages:

1. the measurement frequency is much higher,

2. the system is tool based and most actions are executed
automatically, and

3. a decision support system or intrusion response system
[25] may offer automatic countermeasures.

There are also disadvantages though:

1. the rules are written in vendor specific notation,

2. back-traceability across layers of derived measures from
base measures is not always possible,

3. rules don’t necessarily use contextual information,

4. the effects of countermeasures are not clear,

5. there is no clear derivation of the measurement rules
from the information needs,

6. therefore, there is no traceback possibility from mea-
surement results to information needs, and

www.manaraa.com

7. because there are also – best practice – rules used from
external sources, there is no clear way to express how
these rules are related to the company goals.

In order to combine the advantages of both ISMM and
SIEM concepts, we propose a Security Strategy Meta Model
(SSMM) that addresses the above mentioned disadvantages.

2.3 Interlinked Semantic Concepts
The SIEM information flow is based on rules specifying

which system behaviours to observe. However, simply re-
acting to individual rules is of little help for users who need
to understand the actual incident that has been detected
and its implications in terms of the security model. For
this purpose, we propose firstly, to refine the left side of the
ISMM by an Security Information Meta Model (SIMM),
which should be derived in an measurement requirements
elicitation process [20]. The most important objectives of
this process are:

Coverage of Security Goals. The requirements elicita-
tion method should ensure that uncovered aspects of high-
level security goals are revealed.

Information Needs. A lack of SIEM monitoring capa-
bilities would prevent the derivation of assumptions neces-
sary for the reasoning process. This should be detected in
the requirements elicitation process.

Sufficiency of Monitoring Capabilities. Assumptions
can be derived from the monitoring capabilities for reason-
ing whether the given requirements are fulfilled under these
assumptions. This reasoning process can’t be successful if
monitoring capabilities are insufficient or can’t be assigned
to entities used in the current abstraction level of the system
model.

Traceability. The derived relations between security event
measurements, the associated security requirements and cor-
responding assumptions, and the security goals can be used
to identify the concrete high-level goals affected by the mea-
surements.

Secondly, we propose to use an SSMM that comprises all
aspects of SIEM functionality as well as countermeasure con-
figuration support in order to cover the operational aspects
of the overall security management goal. By means of in-
terlinked semantic concepts, the SSMM provides a way for
users to model incident detection rules at an abstract level,
which are automatically compiled into specific rules for an
underlying Complex Event Processing (CEP) engine. Thus,
the SSMM serves as a generic and extensible model on top
of a specific rule language used for actual event evaluation.
At the model level, these rules are linked to environmental
conditions, countermeasures, and explanations based on an
external security model. The SSMM is constructed of four
parts : on, : if , : do, and : why , which are derived from the
measurement requirements on the one hand, and which refer
back to the SIMM on the other hand (cf. Fig. 2).

The : on part specifies the incident detection by means
of an event stream property. This addresses the first of the
“disadvantages” mentioned previously, by abstracting from
specific event processing languages. Once specified, event
stream properties can be reused across different CEP engines
and do not require users to be expert in such systems. This
supports a separation of duty, where security engineers can
concentrate on modelling security information measurement
and do not necessarily need to be knowledgeable regarding
all the technical details of a CEP engine.

Security Informa-
tion Meta Model

Security Strategy
Meta Model

High-level
Goals

Security
Requirements

Measurement
Requirements

Object of
Measurement

: on Event Stream
property

: if Condition
(w.r.t.
Context)

: do Action

: why Security
Pertinence

Requirements

Elicitation

Analysis +

Refinement

attribute toS
ec
u
ri
ty

re
q
u
ir
em

en
ts

a
n
a
ly
si
s

Security Directives

Figure 2: Security Information Meta Model and Se-
curity Strategy Meta Model

Addressing the second stated “disadvantage”, the model
is able to express correlations of incoming events “horizon-
tally” (i.e., as steps in a workflow), as well as “vertically”.
While most SIEMs focus on horizontal correlation, vertical
correlation is an interesting feature, because it allows the
linking of information across different levels of abstraction,
such as events from an intrusion detection system with the
currently threatened protection goal. To address the third
“disadvantage”, the : if part of the model allows for inclu-
sion of context information. This is of special importance for
stateful incident detection, as encountered in the monitoring
of ongoing processes, and also to increase the likelihood of
discovery of a targeted attack. Addressing the fourth “dis-
advantage”, our model allows combination of SIEM func-
tionality – for detecting incidents – with an actual handling
of these. This is modelled by the : do part of the model
that refers to countermeasures to be taken, ranging from
a simple reporting, to autonomous re-configurations of the
system. In [22], we have shown how such an autonomous
and goal-driven re-configuration can be realised. In order to
close the traditional plan-do-check-act [8] cycle of Informa-
tion Security Measurement, addressing the fifth, sixth and
seventh “disadvantages”, we finally need to link security in-
cident detection to the high-level security requirement. This
is achieved by the : why part of the SSMM, represented by
the dotted arrow in Fig. 2. The : why part should contain
information similar to the information security measurement
construct defined in the ISO/IEC 27004 standard.
In [23], we have defined a language from which to form a

model that satisfies these requirements.

3. INTEGRATION INTO SYSTEM ARCHI-
TECTURE

We now describe a mapping of the SSMM to the compo-
nents of a proposed monitoring infrastructure. The goal is
to enable the inclusion of existing engines, which need not
know about the overall security strategy but only receive

www.manaraa.com

specific tasks in their respective language. We first describe
the concept and then continue with a prototypical imple-
mentation.

3.1 Security Strategy Processing Components
Conceptually, the implementation of the processing of the

SSMM is composed of SSPCs. The main components and
some optional components of the proposed system architec-
ture are illustrated in Fig. 3. A distinguished Security Strat-

: if

: on

: do

: why

Security

Strategy

Component

Intrusion Visuali-

sation

Sensing Events

Correlating

Events

Application State

Predicted State

Network State

Attack State

Process Visuali-

sation

Mitigation Visu-

alisation

Decision Support

Policy Enforce-

ment

Sensor Manage-

ment

Security Informa-

tion Modeller

Strategy Visuali-

sation

Figure 3: Conceptual components of the framework

egy Component controls the execution of the SDs. It can ex-
ecute a SD, or parts of it, directly or delegate the workload to
specialised components. The Security Strategy Component
initially gets the SSM from the Security Information Mod-
eller. It parses the SDs of the SSM, identifies the responsible
SSPCs for each subtask, and distributes a respective config-
uration to the relevant SSPC. The CEP engine normally
processes the : on part of the SD. The security monitor-
ing probes, which are described at an abstract level in the
SSM, have to be compiled to the configuration language of
the actual CEP engine, if an engine specific specification is
not given in the : on part of the SD. Optionally, the events
could be processed directly. Furthermore, other event pro-
cessing components such as intrusion visualisation could be
triggered. The : if part of the SD can be processed by sev-
eral different components, responsible for different aspects
of the domain or several domains. One component, which
will be needed in most implementations, is that responsi-
ble for the provisioning of the network state information.
Other components could, e.g., provide cyber-physical mod-
els, workflow specifications, business process information or
process visualisation. For example, in the project MAS-
SIF [3] we are currently implementing an advanced SIEM
architecture that comprises an Attack Modeling and Secu-

rity Evaluation Component (AMSEC) [13] and a Predictive
Security Analyser (PSA) [9]. The AMSEC component pro-
vides attack scenario recognition by real-time event analysis
and prognosis of future attack steps by recognition of the
attacker model. The PSA component provides advanced,
application aware security monitoring capabilities. Specifi-
cally, it supports close-future process behaviour simulation
and prediction of possible security violations. Prior to the
start of the engine, the process description and security goal-
s/events are transformed into “PSA understandable” mod-
els, which are then used for the continuous real-time analysis
and close-future simulation. Thus, : if components such as
AMSEC and PSA provide situational awareness with regard
to network state, attack state, and application state.

Depending on how the : if condition evaluates, the respec-
tive : do components will be triggered. These components
can implement, e.g., simulative mitigation visualisation, de-
cision support, policy enforcement or sensor management. A
sensor management component can control the configuration
of sensors in a monitored system, e.g., the (de-)activation
and the adaptation of the sampling rate to an optimal level
[5].

A security information modeller component is responsible
for maintaining the security strategy and a strategy visuali-
sation component can help to assist in the : why determina-
tion, thus resolving the traceability requirement.

As a special case, the functionalities of some or all compo-
nents could also be implemented within one engine. In this
case no translation into the specific configuration languages
is needed and the SDs could be interpreted directly.

3.2 Prototype Implementation
We have implemented the model in a prototype in order

to test whether it can be used, as intended, for detecting
security incidents. Additionally, the prototype implementa-
tion should confirm that our component based system ar-
chitecture is applicable and the idea of SSPC extensions is
practical. For this purpose, we implemented a simple Secu-
rity Strategy Component which processes a given SSM and
coordinates the different SSPCs for evaluating it. When the
SSM is loaded, the Security Strategy Component first parses
the : on part of a SD and transforms it into a query for the
registered CEP engine. Then, the query is registered at the
respective engine and the Security Strategy Component re-
ceives a callback whenever the query is triggered, i.e., the
: on part of the SD has been met. In that case, the Security
Strategy Component creates an evaluation context object,
which acts as container during the evaluation process, and
writes the attributes received from the event stream to it.
The evaluation context is then passed on to subsequent com-
ponents for evaluating the condition in the : if part of the
SD. If the condition has evaluated to “true”, the Security
Strategy Component loads the action components indicated
by the : do part and invokes them, passing the evaluation
context object as parameter. Because in the prototype, the
: why part provides merely explanatory reasons, it is not in-
volved in the evaluation process and can rather be explored
by users to investigate security implications of the detected
incident.

Each of the components, i.e., the Security Strategy Com-
ponent, as well as the SSPCs, has been created in the form
of OSGi bundles and communicates over R-OSGi, a binary
RPC protocol. This allows us to dynamically load and un-

www.manaraa.com

load components, even from a remote repository, so that it is
possible to support additional actions by providing respec-
tive components in the repository. As an event correlation
engine, we have used Esper [2], which comes with its own
EPL query language. Listing 1 shows an example of an
event description (written in Turtle notation), referring to
an anomaly in the traffic to the syslog service, and in List-
ing 2 its translation into EPL. While the EPL representation
is more compact, it is only applicable to the specific CEP en-
gine and does not bear any semantics which could be linked
to external models of security requirements and controls.

Listing 1: Modelled Event Condition
: h i s t o r y E v e n t

: hasName ”HistoryDBServerAnomaly ” ;
: h a s C r i t e r i o n [: hasParam1 ”a v gT r a f f i c ” ;

: hasParam2 42ˆˆ f l o a t ;
: hasBooleanOp : gt] ;

: h a sE x t r a c t o r [
: hasEventChanne l [r d f : t ype : Sy s l ogChanne l ;

: h a s F i e l d s ”s ou r c e IP ” ;
: hasName ”IPStreamToIPX ” ;
: h a s F i e l d s ”FIXEDdestIP ” , ” t r a f f i c ”] ;

: ha sFunc t i on [
: hasParam1 ” t r a f f i c ” ;
: p r o v i d e s V a r i a b l e ”a v gT r a f f i c ” ;
: hasScope ”30 sec ” ;
: hasOp : avg] .

Listing 2: Generated EPL Query
SELECT sou r c e IP ? ,

avg (c a s t (t r a f f i c ? , f l o a t)) AS a v gT r a f f i c
FROM Sys l ogChanne l . win : t ime (30 sec)
HAVING ca s t (a v gT r a f f i c ? , f l o a t)>42

The combination of our semantic model with a CEP en-
gine allows us to efficiently evaluate incoming event patterns,
while still being able to refer to their semantic description,
once the pattern has been found. While an extensive eval-
uation of our prototype is still outstanding, first results are
encouraging and make us confident that it is practically ap-
plicable.

4. RELATED WORK
Work related to ours is on the one hand concerned with

modelling security-relevant information in a way that creates
the possibility to reason about it and link it to the ISMM
[11]. On the other hand, we review current SIEM systems
to highlight how they could be improved by adding a model-
based SIMM. In this paper, we rely on the overall plan-do-
check-act cycle [8] and the information flow described by the
ISO27004 standard [11].

In [10], an approach to create ISO27001-based metrics
based on a security ontology is proposed. While it lacks
the automatic gathering of measurements, it could serve
as a later extension to our SIMM, which is more focused
on measurable technical events. Further, linking seman-
tic attacker models to the : why part of the SSMM could
be promising (cf. the AMSEC model [13]). Another ex-
ample for a potential information source is the Engineering
Knowledge Base (EKB) [16], which is an ontology relating
to sensor values and combining run-time with development-
time models. It is focused on the analysis of industrial au-
tomation systems, and is used to define SPARQL or SWRL
queries over sensor definitions. As we have a similar goal of

finding inconsistencies, we believe that an approach like the
EKB could help defining which inconsistencies to look for
in event streams, and thus which measurement points might
indicate violations of the security requirements. Other ap-
proaches of interest to this end are the modelling concepts
in [12], where business, application, physical, and technical
information is merged and related, as well as concepts to
use event-triggered rules for sensing and responding to busi-
ness situations in [21]. In this paper, we focused on a model
to bridge the gap between high-level security measurements
and data gathered by SIEM engines, like OSSIM [4], Pre-
lude [17], or Akab [1]. OSSIM detects events at the network
layer and stores respective attributes like IP address or port
number in a relational database. Thus, while it is possi-
ble to link these attributes to our model, OSSIM itself does
not support reasoning over gathered data, nor extending its
model. Similarly, Akab [1] is a SIEM appliance for moni-
toring network events. It uses a proprietary event format
and also stores collected events persistently in a database.
Prelude [17] is an open source SIEM framework which relies
on the open IDMEF [7] event format. Also related to the
model-based security information measurement that we en-
visage are commercial tools RSA Archer, ArcSight ESM, or
IBM Tivoli Security Information and Event Manager [6]. Al-
though they also aim at relating incidents to compliance cat-
alogues and corporate policies, they rely on predefined event
structures, comprising specific technical attributes [14]. The
RSA Archer Threat Monitor manages an assets catalogue
and links it to security-relevant information, such as known
vulnerabilities and patch levels. It does not however feature
an extensible and semantic model which would enable au-
tomatic reasoning regarding the implications of a detected
incident as it relates to the affected security requirements.
It could also make amendments based on information from
external sources like our PSA.

5. CONCLUSION
This paper has presented a model driven approach for ar-

chitecting a security strategy measurement and management
system. Concretely, it has described the definition of secu-
rity objectives for a particular system, and a mechanism for
collecting information from operational systems in a manner
which enables assessment and measurement of how well the
system is fulfilling the security objectives. Existing SIEM
solutions are limited, while this approach overcomes these
contextual restrictions (typically predefined, closed models)
offering an extensible and open model, encompassing all
parts of the security monitoring and decision support pro-
cess, namely: (i) detecting threatening events; (ii) putting
them in context of the current system state; (iii) explain-
ing their potential impact with respect to some security- or
compliance model; and (iv) taking appropriate actions. The
proposed deployment model brings together all parts of se-
curity runtime management, namely, detection, reporting,
handling, and explanation of security incidents, which are
to date covered by different systems, such as intrusion de-
tection systems, CEP engines [2], SIEM systems [4, 17, 1],
intrusion response systems, cyber attack information sys-
tems [24], and governance, risk management, and compli-
ance systems [19]. So, the model supports an integration
of functionalities of these existing systems into one coherent
security strategy management framework.

www.manaraa.com

6. ACKNOWLEDGMENTS
The work presented here was developed in the context of

the projects MASSIF (ID 257475) being co-funded by the
European Commission within the Seventh Framework Pro-
gramme, the project SealedCloud being funded by the Ger-
man Federal Ministry of Economics and Technology (BMWi),
and the project ACCEPT (ID 01BY1206D) being funded by
the German Federal Ministry of Education and Research.

7. REFERENCES
[1] Araknos website. http://www.araknos.it/en.html,

2012. [Online; accessed 16-Sep-2012].

[2] Esper – Complex Event Processing.
http://esper.codehaus.org/, 2012. [Online; accessed
16-Sep-2012].

[3] Project MASSIF website.
http://www.massif-project.eu/, 2012. [Online;
accessed 16-Sep-2012].

[4] AlienValult. AlienVault Unified SIEM.
http://alienvault.com/, 2012. [Online; accessed
16-Sep-2012].

[5] L. Baumgärtner, P. Graubner, M. Leinweber,
R. Schwarzkopf, M. Schmidt, B. Seeger, and
B. Freisleben. Mastering Security Anomalies in
Virtualized Computing Environments via Complex
Event Processing. In Proceedings of the The Fourth
International Conference on Information, Process, and
Knowledge Management (eKNOW 2011), pages 76–81.
XPS, 2012.

[6] A. Buecker, J. Amado, D. Druker, C. Lorenz,
F. Muehlenbrock, and R. Tan. IT Security Compliance
Management Design Guide with IBM Tivoli Security
Information and Event Manager. IBM Redbooks, July
2010. ISBN 0-7384-3446-9.

[7] H. Debar, D. Curry, and B. Feinstein. The Intrusion
Detection Message Exchange Format (IDMEF). RFC
4765 (Experimental), March 2007.

[8] W. E. Deming. The new economics for industry,
government, education. Massachusetts Institute of
Technology, Center for Advanced Engineering Study,
Cambridge, MA, 1993.

[9] J. Eichler and R. Rieke. Model-based Situational
Security Analysis. In Proceedings of the 6th
International Workshop on Models@run.time at the
ACM/IEEE 14th International Conference on Model
Driven Engineering Languages and Systems
(MODELS 2011), volume 794 of CEUR Workshop
Proceedings, pages 25–36. 2011.

[10] S. Fenz. Ontology-based generation of it-security
metrics. In Proceedings of the 2010 ACM Symposium
on Applied Computing, SAC ’10, pages 1833–1839,
New York, NY, USA, 2010. ACM.

[11] I. Iec. ISO/IEC 27004:2009 - Information technology -
Security techniques - Information security
management - Measurement. ISOIEC, 2009.

[12] F. Innerhofer-Oberperfler and R. Breu. Using an
enterprise architecture for it risk management. In
J. H. P. Eloff, L. Labuschagne, M. M. Eloff, and H. S.
Venter, editors, ISSA, pages 1–12. ISSA, Pretoria,
South Africa, 2006.

[13] I. Kotenko, A. Chechulin, and E. Novikova. Attack

Modelling and Security Evaluation for Security
Information and Event Management. In P. Samarati,
W. Lou, and J. Zhou, editors, SECRYPT, pages
391–394. SciTePress, 2012.

[14] Lieberman Software. Common event format
configuration guide, Jan. 2010.

[15] K. Lundholm, J. Hallberg, H. Granlund, and
T. forskningsinstitut. Informationssystem. Design and
Use of Information Security Metrics: Application of
the ISO/IEC 27004 Standard. FOI-R. Information
systems, Swedish Defence Research Agency, 2011.

[16] M. Melik-Merkumians, T. Moser, A. Schatten,
A. Zoitl, and S. Biffl. Knowledge-based runtime failure
detection for industrial automation systems. In
Workshop Models@run.time, pages 108–119. CEUR,
2010.

[17] PreludeIDS Technologies. Prelude PRO 1.0.
http://www.prelude-technologies.com/, 2010.

[18] E. Prieto, R. Diaz, L. Romano, R. Rieke, and
M. Achemlal. Massif: A promising solution to enhance
olympic games it security. In C. K. Georgiadis et al.,
editors, Global Security, Safety and Sustainability &
e-Democracy, volume 99 of Lecture Notes of the
Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, pages 139–147.
Springer, 2012.

[19] N. Racz, E. Weippl, and A. Seufert. A Frame of
Reference for Research of Integrated Governance, Risk
and Compliance (GRC). In B. D. Decker and
I. Schaumüller-Bichl, editors, Communications and
Multimedia Security, volume 6109 of Lecture Notes in
Computer Science, pages 106–117. Springer, 2010.

[20] J. Repp and R. Rieke. Formal Specification of Security
Properties. Deliverable D4.2.1, MASSIF Project,
September 2011.
http://www.massif-project.eu/sites/default/files/
deliverables/D4.2.1%20-%20Formal%20Speci%EF%
AC%81cation%20of%20Security v1.0 final.pdf.

[21] J. Schiefer, S. Rozsnyai, C. Rauscher, and G. Saurer.
Event-driven rules for sensing and responding to
business situations. In H.-A. Jacobsen, G. Mühl, and
M. A. Jaeger, editors, DEBS, volume 233 of ACM
International Conference Proceeding Series, pages
198–205. ACM, 2007.

[22] J. Schütte. Goal-based policies for self-protecting
systems. In Proceedings of the International
Conference on Advanced Information Networking and
Applications (AINA). IEEE Computer Society, 2012.

[23] J. Schütte, R. Rieke, and T. Winkelvos. Model-based
security event management. In International
Conference ”Mathematical Methods, Models and
Architectures for Computer Networks Security”
(MMM-ACNS-12). Springer, 2012.

[24] F. Skopik, Z. Ma, P. Smith, and T. Bleier. Designing a
cyber attack information system for national
situational awareness. In N. Aschenbruck, P. Martini,
M. Meier, and J. Tölle, editors, Future Security,
volume 318 of Communications in Computer and
Information Science, pages 277–288. Springer, 2012.

[25] N. Stakhanova, S. Basu, and J. Wong. A taxonomy of
intrusion response systems. Int. J. Inf. Comput.
Secur., 1(1/2):169–184, Jan. 2007.

www.manaraa.com

P16
M A S S I F : A P R O M I S I N G S O L U T I O N T O E N H A N C E
O LY M P I C G A M E S I T S E C U R I T Y

Title MASSIF: A Promising Solution to Enhance
Olympic Games IT Security

Authors Elsa Prieto, Rodrigo Diaz, Luigi Romano,
Roland Rieke, and Mohammed Achemlal

Publication In Christos K. Georgiadis et al., editors,
Global Security, Safety and Sustainability & e-
Democracy, pages 139–147.

ISBN/ISSN ISBN 978-3-642-33448-1

DOI http://dx.doi.org//10.1007/978-3-642-

33448-1_20

Status Published

Publisher Springer Berlin Heidelberg

Publication Type Book Chapter: Lecture Notes of the Institute
for Computer Sciences, Social Informatics
and Telecommunications Engineering, Vol.
99

Copyright 2012, Springer

Contribution of
Roland Rieke

Co-Author with significant contribution
with respect to specific challenges and over-
all MASSIF concepts.
Related contributions: (a) presentation of the
topic titled “Advanced Security Monitoring:
Challenges, Advances, and Foundations -
The MASSIF project” at the the Cyber Secu-
rity & Privacy EU Forum 2012 [Rieke, 2012a],
and (b) invited talk titled “Enhancing Situa-
tional Awareness, Security and Trustworthi-
ness of Processes in Systems of Systems” at
the Second International Workshop ’Scien-
tific Analysis and Policy Support for Cyber
Security’ [Rieke, 2012b].

Table 21: Fact Sheet Publication P16

Publication P16 [Prieto, Diaz, Romano, Rieke & Achemlal, 2012]
addresses the following research question:

411

http://dx.doi.org//10.1007/978-3-642-33448-1_20
http://dx.doi.org//10.1007/978-3-642-33448-1_20

www.manaraa.com

massif : a promising solution to enhance olympic games it

security

RQ12a Can the developed methods and tools be successfully adapted to
large scale industrial scenarios?

This paper addresses the security management challenges that arise
in the cyber-security of Olympic Games and how advanced SIEM can
help to improve it. Nowadays, Olympic Games have become one of
the most profitable global media events, becoming at the same way
more and more attractive target from the terrorist perspective due
to their media diffusion and international dimension. Critical for the
success of such a highly visible event is protecting and securing the
business and the supporting cyber-infrastructure enabling it. In this
context, the MASSIF project aims to provide a new generation SIEM

framework for service infrastructures supporting intelligent, scalable,
and multilevel/multi-domain security event processing and predic-
tive security monitoring.

412

www.manaraa.com

With kind permission of Springer Science+Business Media.
This is an author-created version of: Global Security, Safety and Sustainability & e-
Democracy; Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications; Engineering Volume 99, 2012, pp 139-147; MASSIF: A Promising Solu-
tion to Enhance Olympic Games IT Security; Elsa Prieto,Rodrigo Diaz,Luigi Romano,Roland
Rieke, Mohammed Achemlal; c© Institue for Computer Science, Social Informatics and
Telecommunications Engineering 2012; DOI: 10.1007/978-3-642-33448-1 20; Print ISBN: 978-
3-642-33447-4; Online ISBN: 978-3-642-33448-1.
The original publication is available at www.springerlink.com.
http://link.springer.com/chapter/10.1007%2F978-3-642-33448-1_20

MASSIF: A Promising Solution to Enhance Olympic
Games IT Security

Elsa Prieto1, Rodrigo Diaz1, Luigi Romano2, Roland Rieke3 and Mohammed
Achemlal4

1 Atos Research and Innovation (ARI), Atos Origin

{elsa.prieto, rodrigo.diaz}@atosresearch.eu
2 Consorzio Interuniversitario Nazionale per l’Informatica (CINI)

{lrom}@uniparthenope.it
3 Fraunhofer - Institut für Sichere (SIT)

{roland.rieke}@sit.fraunhofer.de
4 Orange - France Telecom SA

{mohammed.achemlal}@orange-ftgroup.com

Abstract: Nowadays, Olympic Games have become one of the most profitable
global media events, becoming at the same way more and more attractive target
from the terrorist perspective due to their media diffusion and international
dimension. Critical for the success of such a highly visible event is protecting
and securing the business and the supporting cyber-infrastructure enabling it. In
this context, the MASSIF project aims to provide a new generation SIEM
framework for service infrastructures supporting intelligent, scalable, and multi-
level/multi-domain security event processing and predictive security
monitoring.

Keywords: Information Security Management, Security Event Management,
Systems Safety, Data Security, Software Protection, Secure Architecture
Design.

1 Introduction

Recent terrorist attacks across the world indicated that terrorists continue to target
crowded places and show how vulnerable high profile venues and events can be used
to perpetrate such incidents for maximum impact across the globe.

Terrorism attacks can adopt many forms, not just a physical attack on life and limb.
It can include interference with vital information or communication systems, causing
disruption and economic damage. For this reason, in addition to the physical security
of the event venues, the cyber-security of the IT event infrastructure should be
protected in the same way.

Nowadays, Olympic Games have become one of the most profitable global media
events. From the terrorist perspective, Olympics can be seen as one of the most
attractive events to commit actions due to their media diffusion, international
dimension and symbolic representation. As a consequence of this, security has
become a top focus and budget priority. Surpassing all before it in size and scope,

www.manaraa.com

security at the Vancouver Olympic Games of 2010 cost an estimated USD $1 billion
and included a 15,000-person force of Canadian military, Vancouver police, U.S.
security forces, and private contractors to guard the city by air, land, and sea[1].
Vancouver marked a transition into an unparalleled era of Olympic security in terms
of cross-national cooperation, planning, and spending. The scope, however, was
limited—the majority of funds and efforts aimed to maintain calm during the two-
week event and did not address longer-term security concerns.

As the Worldwide IT Partner for the Olympic Games and Top sponsor, Atos
Origin integrates, manages and secures the vast IT system that relays results, events
and athlete information to spectators and media around the world. The Atos Origin
contract with the International Olympic Committee (IOC) is the world’s largest sports
related IT contract and was recently extended to cover the Sochi Olympic Winter
Games in 2014 in Russia and the Rio Olympic Summer Games in 2016 in Brazil. The
major challenge is to create an IT solution for each Olympic Games that allows the
capture and reporting of every moment of the action and brings it to the world via
television and the Internet. Critical for the success of such a highly visible event is
protecting and securing the business and the supporting cyber-infrastructure enabling
it and naturally, security is a top priority.

With innovation as the cornerstone of its business and strategy, Atos Origin is
coordinating the European research project MASSIF (MAnagement of Security
information and events in Service Infrastructures, http://www.massif-project.eu/). The
MASSIF Consortium consists of 12 project partners from 6 different European
countries (France, Germany, Italy, Portugal, Russia, Spain) and South Africa
including three different groups of business roles: scenario providers (Atos Origin,
Epsilon, France Telecom and T-Systems), scientific partners (Fraunhofer SIT, Institut
Telecom, SPIIRAS, C.I.N.I., Universidad Politécnica de Madrid and Universidade de
Lisboa) and SIEM developers (Alienvault and 6cure). This paper addresses the
challenges that arise in the cyber-security of Olympic Games and how the results of
the MASSIF project can help to improve it.

The paper is structured as follows: Section 2 provides an overview of the existing
IT infrastructure while Section 3 includes the challenges addressed by the MASSIF
project. Section 4 gives an overview of the related work. Finally, Section 5 concludes
this paper and provides pointers for future work.

2 Olympic Games IT Infrastructure

Olympic Games are getting more and more huge events, numbers in this context
are gigantic. For instance, in the Beijing games 10.708 athletes were competing, 5.600
written press & photographers were accredited, 12.000 rights holding broadcaster
staff, 70.000 volunteers, more than 60 competition and non-competition venues
(http://en.beijing2008.cn/media/usefulinfo/).

The Olympic Games, must successfully issue and activate more than 200,000
accreditations for Games that comprise around 300 events representing over 4,500
hours of live competition. Live commentator services are delivered for around 20
sports. More than 15 million information pages are viewed, with peaks of 1 million

www.manaraa.com

pages viewed on specific days. Over 3Gb of live results are provided in around
800,000 messages to the Olympic website, broadcasters and sports federations.

The complex, massive IT infrastructure of the Olympic Games is deployed by
large teams of people into different environments every other year. Such a major task
could potentially pose significant risks, but these can be offset through preserving and
sharing the knowledge gained from previous Games.

The Olympic Games have 3 core systems that support the operations of the Games.
These systems are summarised below:

Core Games System (CGS). CGS is a set of applications for assisting in the
capture and management of data about people who will be attending the Games
events and the staff supporting them. Among others, this includes Accreditation and
Workforce management (including Volunteers)

Information Diffusion System (INFO). INFO comprises of a set of applications
that retrieve and distribute information related to, and supporting, of the Games. The
information is provided by different sources e.g. Results system, interfaces with CGS,
Weather provider etc. The information is processed and distributed to internal clients
e.g. broadcasters, journalists, and other members of the Olympic and Paralympics
Families. IT is also sent to external clients e.g. World News Press Agencies (WNPA),
sports federations and governing bodies, and Internet Service Providers (ISPs).

Results Systems, are grouped into two sets of systems:
Timing & Scoring Systems (T&S) capture real-time data during the competition.

Through electronic feeds to other systems, this data is made available for use on the
scoreboard, in TV graphics and other related outputs, by OVR.

On Venue Results Systems (OVR) running at each of the competition venues
receives both data from T&S and manually entered data to calculate results of each
Olympic event. OVR Systems then distribute the results to INFO.

Concerning the security of the IT infrastructure, for the Beijing 2008 Olympic
Games, more than 12 million IT security events were collected and filtered events
each day to detect any potential security risk for the Olympic Games IT systems.
From these, less than 100 were identified as real issues. All were resolved, with no
impact at all on the Olympic Games (http://www.atosorigin.com/olympic_games).

For an event of this magnitude, deadlines are not negotiable, when world-class
athletes are ready to compete for gold after years of rigorous training and qualification
and viewers are anxious to enjoy such a show, there are no second chances. System
disruption or failure is not acceptable. In this context, the main challenge of the SIEM
infrastructure in Olympic Games is to protect the games IT infrastructure from any
undesired and/or uncontrolled phenomena which can impact any part of the result
chain and associated services.

3 Security Management Challenges

 Security Information Event Management (SIEM) solutions have become the
backbone of the all Service Security systems. They collect data on events from
different security elements, such as sensors, firewalls, routers or servers, analyze the
data, and provide a suitable response to threats and attacks based on predefined

www.manaraa.com

security rules and policies. Despite the existence of highly regarded commercial
products, their technical capabilities show a number of constraints in terms of
scalability, resilience and interoperability.

The MASSIF project aims at achieving a significant advance in the area of SIEMs
by integrating and relating events from different system layers and various domains
into one more comprehensive view of security-aware processes and by increasing the
scalability of the underlying event processing technology. The main challenge that
MASSIF will face is to bring its enhancements and extensions into the business layer
with a minimum impact on the end-user operation.

A further goal of the MASSIF project is to integrate these results in two existing
Open Source SIEM solutions, namely OSSIM (http://alienvault.com/community) and
Prelude (http://www.prelude-technologies.com/) and to apply them to four industrial
scenarios, including the Olympic Games IT infrastructure.

Aligned with the security needs of these scenarios, MASSIF challenges can be
arranged according to the following dimensions:

3.1 Collection

The data gathering must have the ability to deal with a large number of highly
heterogeneous data feeds. The capabilities of the SIEM will be improved by the
integration of new types of security tools/probes. This implies that the
parsing/processing logic (and code) should be as much as possible decoupled from the
specific characteristics of the data format and related technologies. Additionally, the
parsing logic and related languages must allow effective processing of virtually any
type of security relevant event in cyber-environment, including, in the future, possible
extensions to capture and process security events from physical security equipment.

Moreover, the volume of events to be collected and processed per unit of time can
occasionally increase resulting in load peaks. The data collection layer should be able
to handle such peaks and to propagate relevant events to the SIEM core platform
without loss of information.

These concepts are implemented in MASSIF by the Generic Event Translation
(GET) framework. The GET framework relies on grammar-based parsing [2], [3] and
compiler-compiler technology to implement effective processing of security-relevant
events. The main components of the Generic Event Translation Framework are
represented in Figure 1. A brief description of each component is provided in the
following:

Generic Event Translation (GET) Manager. This component is responsible for
the activation of all the modules which belong to the Generic Event Translation
framework. In particular, it is in charge of the generation of new Adaptable Parser
modules, as new grammars are added to the system.

Event Dispatcher. This component connects each source of sensor events to the
appropriate GET Access Point (GAP), in order to provide it with an Adaptable Parser
which is capable of processing the specific event format.

GET Access Point (GAP). It is responsible for orchestrating the translation
process of the GET. It is in charge of extracting the content of source messages in the
source specific format, using the event parsing capabilities of the Adaptable Parsers

www.manaraa.com

and requesting the final conversion to the MASSIF Event Format by the MASSIF
Event Manager (MEM).

Format-specific Grammars. These contain semantic description of the different
event formats that are used for the creation of the Adaptable Parsers.

Adaptable Parsers. These components provide the parsing capabilities for the
different types of events used in MASSIF. They allow for extraction of the relevant
information for the event to be inserted in the MASSIF Event Format.

MASSIF Event Manager (MEM). It translates the event content, extracted by the
Adaptable Parser to the MASSIF Event Format, thus allowing the event to be sent to
the reliable event bus. It also attaches to each MASSIF Event a timestamp, which is
made available by the synchronized time source of the Resilient Architecture.

Sender Agent. It is the component that finally sends MASSIF-formatted events to
the reliable event bus.

Figure 1: Generic Event Translation main components

3.2 Processing

The core of MASSIF is an event processing engine capable of handling high input
rates and of optimizing the amount of resources based on the actual load [4]. In other
words, the system should monitor both input loads and vital parameters, such as CPU
utilization, in order to adjust the amount of resources, i.e., provision more resources
during peak load times and decommission them during valley load periods. The
system must process input data at high rate and provide meaningful results with soft
real-time requirements. The engine should be able to aggregate, abstract and correlate
heterogeneous events from multiple sources at different levels of the system stack.

3.3 Correlation

MASSIF targets at correlation capabilities across layers of security events, from
network and security devices as well as from the service infrastructure such as

www.manaraa.com

correlation of physical and logical event sources. The engine should be shipped with a
set of predefined correlation rules to identify well-known attacks. However, it should
also support easy and intuitive creation of user-defined rules.

3.4 Resilience

Special emphasis will be placed on providing a highly resilient architecture against
attacks, concurrent component failures, and unpredictable network operation
conditions. The event flows should be protected, from the collection points through
their distribution, processing and archival. The designed mechanisms should offer
flexible and incremental solutions for node resilience, providing for seamless
deployment of necessary functions and protocols. These mechanisms should take into
consideration particular aspects of the infrastructure, such as edge-side and core-side
node implementations.

3.5 Timeliness

The infrastructure should provide for (near) real-time collection, transmission and
processing of events, and ensure the corresponding reliable and timeliness generation
of alarms and countermeasures when needed.

3.6 Sensitive information

 MASSIF features for forensic support will satisfy the following requirements:
Data authenticity. Security event data contents, as well as additional/added

information related to data origin and destination, must be the reliably stored.
Fault and intrusion-tolerant stable storage. The stable storage system on which

data for forensic use will be persisted must be tolerant both to faults and to intrusions.
Least persistence principle. With respect to sensitive data, only information

which is actually needed should be persisted to stable storage (most of the data should
be processed in real-time and thrown away).

Privacy of forensic records. Forensic evidence related to security breaches will be
made available only to authorized parties.

4 Related Work

The research in MASSIF combines aspects of process monitoring, simulation, and
analysis as well as trustworthiness and scalability of the complex event processing
architecture itself. Relevant contributions from these broad areas are:

Attack modelling, simulation and risk evaluation. The technology most relevant
to the modelling and simulation methods to be developed for MASSIF is commonly
called attack-graph analysis, an approach presented by Phillips and Swiler [5] in. Two

www.manaraa.com

participants of the MASSIF team namely Fraunhofer SIT and SPIIRAS are actively
researching in that area [6], [7].

Predictive Security Analysis. The predictive security analysis in MASSIF will
use the method given in [8] to analyse the security requirements. Based on this, the
attack models together with the SIEM’s information about the current attack state and
the process models together with the SIEM’s information about the current process
state can be used to derive a near future view of possible upcoming security problems
[9]. This information can now be used in an ontology-driven approach to select
appropriate countermeasures [10].

SIEM Scalability and Trustworthiness. Complex Event Processing (CEP) is a
promising technology to improve current SIEM systems. It allows processing of large
amounts of streaming data in real time and provides information abstraction and
correlation, similarly to SIEM correlation engines. MASSIF will develop new parallel
distributed CEP technology that overcomes scalability limitations due to single node
bottlenecks or high distribution overhead [4]. The trustworthiness of the SIEM
architecture will be improved by utilising secure digital chains of evidence [11].

5 Conclusions and Outlook

The MASSIF project is still at an early stage. However, the challenges that the
project aims to achieve will provide a significant advance in the area of Security
Information and Event Management (SIEM) by integrating and relating events from
different system layers and various domains into one more comprehensive view of
security-aware processes and by increasing the scalability of the underlying event
processing technology. To address the challenges the MASSIF partners plan to
develop a novel SIEM system with the following solutions and implied research and
development needs.

In order to enable a highly scalable security situation assessment, the MASSIF
event engine will provide a flexible language to express filtering, transformation,
abstraction, aggregation, intra-layer and cross-layer correlation as well as storage of
security events. The event engine will be able to process with the same language both
the real-time event flow as well as stored events for forensic analysis. Additionally,
specific collectors to translate from the external languages into the event engine
language will be provided.

Ideally, the MASSIF system should be able to analyze upcoming security threats
and violations in order to trigger remediation actions even before the occurrence of
possible security incidences. Therefore, new process and attack analysis and
simulation techniques will be developed in order to be able to relate events
dynamically from different execution levels, define specific level abstractions,
evaluate them with respect to security issues and during runtime interpret them in
context of specific security properties. Novel adaptive response technologies will
enable anticipatory impact analysis, decision support and support impact mitigation
by adaptive configuration of countermeasures such as policies.

Due to the highly distributed and heterogeneous nature of the various components,
and the hostile and unpredictable operational environment, it becomes a challenge to

www.manaraa.com

design an integrated solution for the protection of the SIEM framework itself.
Therefore, the MASSIF system will be based on a resilient, trust-enabling architecture
with trusted collection of security-relevant data from highly heterogeneous trusted
networked devices in order to ensure unforgeability of stored security events and to
support criminal/civil prosecution of attackers.

Acknowledgements

The work in this paper has been sponsored by the EC Framework Programme as part
of the ICT MASSIF project (grant agreement no. 257644).

References

1. S. R. McRoskey. Security and the Olympic Games: Making Rio an Example. Yale Journal
of International Affairs. 2010.

2. Turmo, J., Ageno, A., and Catala, N.: Adaptive Information Extraction. ACM Computing
Surveys, vol. 38, no. 2, 2006

3. F. Campanile, A. Cilardo, L. Coppolino, L. Romano: Adaptable Parsing of Real-Time Data
Streams. In proc. of The Fifteen Euromicro Conference on Parallel, Distributed and
Network-based Processing (PDP07), February 7-9, 2007, Naples, Italy, pp. 412-418, IEEE
Computer Society Press, Los Alamitos, CA (USA).

4. V. Gulisano, R. Jimenez-Peris, M. Patiño-Martínez, P. Valduriez: A Large Scale Data
Streaming System. 30th IEEE Int. Conf. on Distributed Systems (ICDCS), Genoa, Italy,
2010.

5. Cynthia A. Phillips and Laura Painton Swiler: A graph-based system for network-
vulnerability analysis. In NSPW '98, Proceedings of the 1998 Workshop on New Security
Paradigms, pages 71-79. ACM Press, 1998.

6. Roland Rieke: Abstraction-based analysis of known and unknown vulnerabilities of critical
information infrastructures. International Journal of System of Systems Engineering
(IJSSE), 1:59-77, 2008.

7. I.Kotenko, M.Stepashkin, E.Doynikova: Security Analysis of Computer-aided Systems
taking into account Social Engineering Attacks. 19th Euromicro International Conference
on Parallel, Distributed and network-based Processing (PDP 2011). Ayia Napa, Cyprus.

8. Andreas Fuchs and Roland Rieke: Identification of Security Requirements in Systems of
Systems by Functional Security Analysis. In Antonio Casimiro, Rogério de Lemos, and
Cristina Gacek, editors, Architecting Dependable Systems VII, volume 6420 of Lecture
Notes in Computer Science, pages 74-96. Springer, 2010.

9. Roland Rieke and Zaharina Stoynova: Predictive Security Analysis for Event-Driven
Processes. In Igor Kotenko and Victor Skormin, editors, Computer Network Security,
volume 6258 of LNCS, pages 321-328. Springer Berlin / Heidelberg, 2010.

10. N. Cuppens-Boulahia, F. Cuppens, J. Lopez, E. Vasquez, J. Guerra, and H. Debar: An
ontology-based approach to react to network attacks. International Journal of Information
and Computer Security, 3:280-305, 2009.

11. Nicolai Kuntze, Carsten Rudolph: Secure digital chains of evidence. Sixth International
Workshop on Systematic Approaches to Digital Forensic Engineering (SADFE) 2011.
Oakland (USA)

www.manaraa.com

P17
S E C U R I T Y A N D R E L I A B I L I T Y R E Q U I R E M E N T S F O R
A D VA N C E D S E C U R I T Y E V E N T M A N A G E M E N T

Title Security and Reliability Requirements for
Advanced Security Event Management

Authors Roland Rieke, Luigi Coppolino, Andrew
Hutchison, Elsa Prieto, and Chrystel Gaber

Publication In Igor Kotenko and Victor Skormin, editors,
Computer Network Security – 6th International
Conference on Mathematical Methods, Models
and Architectures for Computer Network Secu-
rity, MMM-ACNS 2012 St. Petersburg, Russia,
October 2012, Proceedings, volume 7531 of Lec-
ture Notes in Computer Science, pages 171–180,
2012.

ISBN/ISSN ISBN 978-3-642-33703-1

DOI http://dx.doi.org/10.1007/978-3-642-

33704-8_15

Status Published

Publisher Springer Berlin Heidelberg

Publication Type Conference Proceedings (LNCS, Vol. 7531)

Copyright 2012, Springer

Contribution of
Roland Rieke

Main Author and editor.
Related contributions: (a) main authorship
of the description of work for the MASSIF

project which provided the base for the
guidelines for next generation SIEM de-
scribed here, (b) presentation of this topic ti-
tled “Challenges for Systems of Systems Se-
curity Information and Event Management”
at the 2010 Workshop on Cyber Security and
Global Affairs [Rieke, 2010a], and (c) joined
talk with Co-Author Andrew Hutchison ti-
tled “Management of Security Information
and Events in Future Internet” at the 2011

Workshop on Cyber Security and Global Af-
fairs [Hutchison & Rieke, 2011].

Table 22: Fact Sheet Publication P17

421

http://dx.doi.org/10.1007/978-3-642-33704-8_15
http://dx.doi.org/10.1007/978-3-642-33704-8_15

www.manaraa.com

security and reliability requirements for advanced

security event management

Publication P17 [Rieke, Coppolino, Hutchison, Prieto & Gaber, 2012]
addresses the following research question:

RQ12a Can the developed methods and tools be successfully adapted to
large scale industrial scenarios?

This paper addresses security information management in complex
application scenarios. SIEM systems collect and examine security re-
lated events, with the goal of providing a unified view of the moni-
tored systems’ security status. While various SIEMs are in production,
there is scope to extend the capability and resilience of these sys-
tems. The use of SIEM technology in four disparate scenario areas is
used in this paper as a catalyst for the development and articulation
of Security and Reliability requirements for advanced security event
management. The scenarios relate to infrastructure management for
a large real-time sporting event, a mobile money payment system,
a managed services environment and a cyber-physical dam control
system. The diversity of the scenarios enables elaboration of a com-
prehensive set of security and reliability requirements which can be
used in the development of future SIEM systems.

422

www.manaraa.com

With kind permission of Springer Science+Business Media.
This is an author-created version of: Computer Network Security; Lecture Notes in Com-
puter Science Volume 7531, 2012, pp 171-180; Security and Reliability Requirements for Ad-
vanced Security Event Management; Roland Rieke,Luigi Coppolino,Andrew Hutchison, Elsa
Prieto,Chrystel Gaber; c© Springer-Verlag Berlin Heidelberg 2012; DOI: 10.1007/978-3-642-
33704-8 15; Print ISBN: 978-3-642-33703-1; Online ISBN: 978-3-642-33704-8.
The original publication is available at www.springerlink.com.
http://link.springer.com/chapter/10.1007%2F978-3-642-33704-8_15

Security and Reliability Requirements for Advanced
Security Event Management

Roland Rieke1, Luigi Coppolino2, Andrew Hutchison3, Elsa Prieto4, Chrystel Gaber5

1 Fraunhofer Institute SIT, Darmstadt, Germany
2 Epsilon S.r.l., Naples, Italy

3 T-Systems, South Africa
4 Atos Research & Innovation

5 Orange Labs - France Telecom

Abstract. This paper addresses security information management in complex
application scenarios. Security Information and Event Management (SIEM) sys-
tems collect and examine security related events, with the goal of providing a
unified view of the monitored systems’ security status. While various SIEMs are
in production, there is scope to extend the capability and resilience of these sys-
tems. The use of SIEM technology in four disparate scenario areas is used in this
paper as a catalyst for the development and articulation of Security and Reliabil-
ity requirements for advanced security event management. The scenarios relate to
infrastructure management for a large real-time sporting event, a mobile money
payment system, a managed services environment and a cyber-physical dam con-
trol system. The diversity of the scenarios enables elaboration of a comprehensive
set of Security and Reliability requirements which can be used in the development
of future SIEM systems.

Keywords: security requirements, security information and event management,
SIEM, architecting trustworthy systems

1 Introduction

Security information and event management (SIEM) systems provide important secu-
rity services. They collect and analyse data from different sources, such as sensors,
firewalls, routers or servers, and provide decision support based on anticipated impact
analysis. This enables timeous response to (or prevention of) attacks as well as im-
pact mitigation by adaptive configuration of countermeasures. However, there are also
a number of constraints for current commercial solutions. These constraints include the
inability of systems to consider events from a multiple organisations or the ability to
provide high degree of trustworthiness or resilience in the event collection environment.

The project MASSIF [3], a large-scale integrating project co-funded by the Euro-
pean Commission, addresses these challenges with respect to four industrial domains:
(i) the management of the Olympic Games information technology (IT) infrastructure
[12]; (ii) a mobile phone based money transfer service, facing high-level threats such as
money laundering; (iii) managed IT outsource services for large distributed enterprises;
and (iv) an IT system supporting a critical infrastructure (dam) [4].

www.manaraa.com

In undertaking the development of next-generation SIEM concepts and constructs,
it became clear that the Security and Reliability of the SIEM itself are critical to the
successful deployment of SIEM in a particular environment. With this in mind, we set
about analysing each of the mentioned scenarios in some detail, to create an explicit list
of Security and Reliability requirements. The intention is that these requirements can be
used to guide and assess SIEM development, and ensure that these important attributes
are incorporated.

2 Large Scale Scenarios in four Industrial Domains

In this section, four deployment scenarios for SIEM technology are introduced. The
elements of the scenario which can benefit from further SIEM development are also
outlined in each case. From the introduction of the scenarios and their unique character-
istics, a set of consolidated requirements for a next-generation SIEM can be compiled.

2.1 Scenario 1: SIEM technologies used in The Olympic Games

The Olympic Games is one of the largest and most high profile sporting events that takes
place, and there is a large technical infrastructure to support many aspects of the games
both asynchronously and in real-time. SIEM infrastructure is used with the Olympic
Games systems, to protect the games IT infrastructure from any undesired and/or un-
controlled phenomena which could impact any part of the result chain and associated
services. The nature of this kind of event presents a big challenge to SIEM infrastruc-
tures, for example the next London 2012 games cater for 79 days of competition, 26
sports, 94 venues, 17.000 athletes, 20.000 journalists, 70.000 volunteers, 4.000 IT team
members, 900 servers, 1,000 network and security devices and more than 10,000 com-
puters deployed. One of the new challenges will be the amount of data generated from
the results systems, representing 30% more than in the Beijing Olympics in order to
provide real-time information to fans, commentators and broadcasters world wide. The
intensity and complexity of this kind of sporting event presents a big challenge to SIEM
infrastructure, mainly, due to two very characteristic features: the number of security
event types (about 20,000), and the volume of generated events to be handled (around
11,000,000 alerts per day). However, the most critical aspect that a SIEM system faces
in the Olympic Games is that those security events must be processed and reacted upon
in real-time.

Advanced SIEM system contribution. The Olympic Games scenario is valuable
to demonstrate the enhancement on scalability, processing enormous amounts of gen-
erated data events in real-time. Furthermore the scenario can contribute to validate
the cross-layer correlation of events (service, application, infrastructure) from multi-
ple sources.

2.2 Scenario 2: Mobile money transfer service

Use of Mobile Phones to effect payment is a widely used service, particularly in devel-
oping markets where banking systems may not be as dense or available as in developed

www.manaraa.com

countries. Characteristics and challenges of authentication, confidentiality, integrity and
mobility all have to be considered in this scenario.

From a SIEM perspective, mobile money transfer is an interesting and challeng-
ing scenario for the unique attributes that the scenario presents. Indeed, this scenario is
quite complex because it requires to analyze past and present data and to extract infor-
mation from raw events. It is also very sensitive to the performance of detection as the
rate of false positives and true negatives should be optimised. Finally, all this should
be done while keeping the service scalable and secure. The service allows end users to
convert cash to “electronic money” (and vice versa) at merchants, who act as distribu-
tors and act as channel users. The electronic money can be used to pay purchases at the
merchants’ or for bills such as electricity. Furthermore the electronic money can also
be transferred between the end users. End users access the service with their mobile
phones and distributors can access the service either via mobile phone or directly on
the Internet. Both means of access are handled by front-end servers that then access the
back-end servers containing the transactions etc.

Advanced SIEM system contribution. Like any other money transfer service, the
service is exposed to the risk of money laundering and other types of fraud. The money
laundering risk implies misuse through disguising illegally obtained funds to make them
seem legal, and more generally the fraud risk implies any intentional deception made
for financial gain. In addition, any money transfer service that has part of its infrastruc-
ture exposed via the Internet and/or the end user can access the service using electronic
means (a mobile device such as a phone or a pad in this use case), has an increased
exposure to fraud, via both attacks against the service infrastructure itself and the abuse
of normal service functionality. The objective of including this scenario is to achieve
greater protection and transactional integration of SIEM protection through next gen-
eration SIEM services. The ultimate intention is to protect the money transfer service
against fraud both by detection and application of relevant counter-measures.

2.3 Scenario 3: Managed Enterprise Service Infrastructures

The use of managed services by businesses is an increasingly used model, whereby ele-
ments of IT and infrastructure are “outsourced” to specialist service providers. In some
instances, services are provided by an outsourcer via shared platforms, giving customers
economies of scale. In other instances, managed services are performed by a provider
on the infrastructure belonging to a customer. Mixed approaches are also possible, and
an extrapolation of this can be viewed as occurring when such services are provided in
a “cloud based” mode. Provision of Security Information and Event Management ser-
vices for customers is a valuable complement to the management which an outsourcer
or service provider can deliver. The purpose of including a managed enterprise service
infrastructure scenario was to consider just such cases: where the services of large en-
terprises are managed, and a SIEM service is used to collect, inspect and react to large
scale security events from member systems and devices.

Advanced SIEM system contribution. There are a number of limitations of SIEM
systems, encountered by managed security service providers, that are not adequately
addressed by current SIEM solutions. For this reason, such a SIEM deployment is in-
teresting to consider when looking at next-generation SIEM requirements. Some of the

www.manaraa.com

issues that can be identified in particular are: (i) insufficient resilience of the SIEM
infrastructure itself to withstand large scale attacks; (ii) inadequate trustworthiness of
source data within the SIEM; and (iii) inadequate disaster recovery capabilities of SIEM
systems. Solutions to the limitations that current SIEM systems present will improve
the resilience and business continuity capabilities of large companies, through enabling
managed service providers to detect and address security events more proactively. It
is considered that work on next-generation SIEM systems could address some of the
identified problems through the following focus areas:

1. Providing guidelines on the minimum requirements for event data to enable suc-
cessful event correlation.

2. Providing guidelines on the impact of the unavailability of certain event data on
successful event correlation and management.

3. Guaranteeing the trustworthiness of event sources.
4. Improving correlation modelling for better analysis of complex environments (and

for better automated correlation processing in complex environments).
5. Improving the resilience and business continuity capabilities for large enterprises.

2.4 Scenario 4: Critical Infrastructure Process Control (Dam)

The features of dam infrastructures are strictly related to the aims they are conceived
for. Dams are mostly used for water supply, hydroelectric power generation, irrigation,
water activities and wildlife habitat granting. Dams represent fundamental assets for
the economy and the safety of a country, such as they are counted among critical infras-
tructures. So, monitoring of a dam is essential since an accident would have dramatic
consequences. The amount of parameters to be monitored to assess the safety of a dam
and foresee possible failures or anomalies is enormous, and this huge data flow must
be analyzed under real time constraints. Each of these parameters is measured using
different sensors, such as inclinometers and tiltmeters, crackmeters, jointmeters, earth
pressure cells, turbidimeters, and thermometers. In addition to the above mentioned pa-
rameters measured by the sensors, other components are necessary for the full control
of dam. Some essential elements are: data collectors, human machine interaction inter-
faces, data storing units, command and data gateways and signal buses. In other cases
there is the need also to integrate different subsystems existing.

Advanced SIEM system contribution. The current SIEM solutions hardly facili-
tate the introduction of new technologies to improve the efficiency of the security event
detection. At the same time, they usually lack in the capability to support heterogeneous
systems and technologies. Introducing SIEMs to jointly manage all different aspects re-
lated to the security in the monitoring of a dam can be a very powerful mechanism to
increase the overall security of such critical infrastructures. However, currently avail-
able SIEMs solutions are focused on the management of digital and information secu-
rity related events and are designed specifically for this type of applications. This may
make complex or even impossible the development of applications targeting security of
critical infrastructures in a wider sense. For instance, creating an application capable
of correlating network and host events that may indicate a cyber-attack with suspicious
activities detected by the dam surveillance system may greatly improve the security

www.manaraa.com

of the whole monitoring process but may introduce some implementation difficulties.
SIEMs are not designed to deal with this kind of scenarios and so, encompassing se-
curity events coming from different application domains within the same application
may be troublesome. In particular, the current technologies usually neglect the possibil-
ity to correlate physical and logical events, which can improve the effectiveness of the
detection process.

In order to secure the dam control system, today recognized as a critical infrastruc-
ture and hence of public interest, regulations must be considered. Indeed, any activity of
the dam operators strictly follows well-known rigid procedures. For example, the open-
ing of a gate without alerting the control center is not admitted. Unfortunately, the cur-
rent SIEM technologies insufficiently exploit regularities characterizing dam systems.
In particular, procedures could be encoded in patterns and they could be exploited for
detecting anomalies in control system. All this information could contribute to make
the security system aware of the context in order to correctly interpret the meaning of
some evidences. Introducing such features in a SIEM solution moves the focus of the
analysis from a system level view to the business process model of the system.

3 Consolidated Guidelines for Next Generation SIEM

Based on the four scenarios described, and the diverse set of circumstances that they
cover between them, a set of consolidated recommendations, to guide the design and
development of next generation SIEM platforms, is identified and grouped in five topics.

3.1 Guidelines Concerning Advanced Security Services

Besides issues like dependability, redundancy and fault tolerance, analysis of the four
scenarios considered reveals the need for enhanced security-related features of future
SIEM platforms. These features go beyond what is currently supported by existing so-
lutions. Overall a lack of capability to model incidents at an abstract level is perceived.
From the scenarios investigated, and the current SIEM limitations observed, the follow-
ing guidelines have been identified for next-generation SIEMs with respect to security:

Correlation across layers of security events. Advanced SIEM systems needs to sup-
port enhanced correlation across layers, from network and security devices as well
as from the service infrastructure such as correlation of physical and logical event
sources. This is due to the variety of systems issuing inputs that can give insights to
security only when combined. An example is the off-site monitoring and the on-site
management of the dam’s configuration.

Multi-level security event modelling. Multi-level security event modelling will en-
able provision of more holistic solutions to protect the respective infrastructures.
The Olympic Games Scenario stipulates that it would be of interest to understand
the effects of technical events on the user or process level of the system.

Analysis of malicious behaviour using attack graphs. Many of the security issues men-
tioned in this document originate from complex malicious actions or patterns of
actions (e.g., the laundering of money in the mobile money transfer scenario or the
misuse case of Low and Slow attacks in the Olympic Games infrastructure).

www.manaraa.com

Predictive security monitoring. Predictive security monitoring allows to counter neg-
ative future actions, proactively. There is a crucial demand for early warning capa-
bilities. Moreover, the limitations with regards to the Managed Enterprise Service
point to the fact that dealing with unknown or unpredictable behaviour patterns is
not sufficient in current SIEM solutions.

Modeling of the events and their relation to other, possibly external, knowledge. A
basic precondition of prediction and simulation as well as of attack analysis is the
proper representation of the security requirements and any relevant information
about the system as well as any knowledge about the actual and possible behaviour.
When reasoning under incomplete information it is not only decisive to properly
gather and describe the information available, but it is also required to develop
novel methods based on discernibility, probability or plausibility in order to reason
about uncertainty.

Securing the evidence progressed by the SIEM components. The misuse case of a
sensor compromise, showing that it is vital to be able to trust the information that is
received, when using events from sensors like those deployed to monitor the dam
or other critical infrastructures.

3.2 Guidelines Concerning Event Processing

Similar to the limitations noted for security, recommendations for event processing are
also made, based on limitations in current SIEM implementations. The guidelines for a
next generation event correlation engine are as follows:

Real-time. The system must process input data at a high rate and provide meaningful
results with soft real-time requirements.

Scalability and elasticity. The engine should be capable of handling high input rate
and should optimize the quantity of resources required based on the actual load.
In other words, the system should monitor both input loads and vital parameters,
such as CPU utilization, in order to adjust the amount of resources, i.e., provision
more resources during peak load times and decommission them during valley load
periods.

Handling streaming and stored data. The engine should allow processing and corre-
lation both of streams of events and stored relations (i.e., information stored in a
database).

Multiple-sources. The engine should be able to aggregate, abstract and correlate het-
erogeneous events from multiple sources at different levels of the system stack.

Pre-defined correlation rules and rule augmentation capability. The engine should
be shipped with a set of predefined correlation rules to identify well-known attacks.
However, it should also support easy and intuitive creation of user-defined rules.

3.3 Guidelines Concerning Advanced SIEM Trustworthiness

Trustworthiness is the ability to provide a service in a way it is expected in terms of
safety, security, reliability, availability, and timeliness. The analysis of the input sce-
narios has resulted in the following guidelines, to improve the general resilience and
trustworthiness aspects of a next generation SIEM:

www.manaraa.com

Resilience of the infrastructure. The infrastructure should be highly resilient under
attack, concurrent component failures, and unpredictable network operation condi-
tions.

Security of event flows. The event flows should be protected, from the collection points
through their distribution, processing and archival.

Protection of the nodes. The designed mechanisms should offer flexible and incre-
mental solutions for node resilience, providing for seamless deployment of nec-
essary functions and protocols. These mechanisms should take into consideration
particular aspects of the infrastructure, such as edge-side and core-side node imple-
mentations.

Timeliness of the infrastructure. The infrastructure should provide for (near) real-
time collection, transmission and processing of events, and ensure the correspond-
ing reliable and timeliness generation of alarms and countermeasures when needed.
Similarly, features for forensic support should adhere to the following guidelines:

Data authenticity. Security event data contents, as well as additional/added informa-
tion related to data origin and destination, must be the reliably stored.

Fault and intrusion-tolerant stable storage. The stable storage system on which data
for forensic use will persist must be tolerant both to faults and to intrusions.

Least persistence principle. With respect to sensitive data, only information which is
actually needed should be retained to stable storage (much of the data could be
processed in real-time and potentially discarded).

Privacy of forensic records. Forensic evidence related to security breaches should be
made available only to authorized parties.

3.4 Guidelines Concerning Compiler Technologies

In terms of data acquisition functionality, it has been noted that next generation SIEM
systems should exhibit efficient implementation and/or support for various Features
relating to data collection and parsing. Specific guidelines are as follows:

Heterogeneity support. The data acquisition element must have the ability to deal
with a large number of highly heterogeneous data feeds.

High degree of adaptability. Seamless integration of new types of security tools/probes
should be possible, to improve the capabilities of the SIEM on an ongoing basis.

Peak handling. The volume of events, to be collected and processed per unit of time,
can occasionally increase, resulting in load peaks. The data collection layer should
be able to handle such peaks and propagate relevant events to the SIEM core plat-
form without loss of information.

High degree of expressiveness. The parsing logic, and related Languages, must allow
effective processing of virtually any type of security relevant event.

Support for fast and reliable development. Simple Development and configuration
techniques and tools must be available. These will make it possible to implement,
deploy, and integrate new parsers and collectors in a relatively short time and at a
relatively low cost.

Generality and platform independence. The parsing/processing logic (and code) should
as far as possible be decoupled from the specific characteristics of the data format
and related technologies.

www.manaraa.com

Distributed processing. Whenever possible (and feasible), the data collection and pars-
ing layer should implement parsing, filtering, and correlation functions at the edges
and/or at intermediate nodes, i.e. nodes located along the path to the core SIEM
correlation engine.

3.5 Guidelines Concerning Legal Aspects

In terms of legal considerations, SIEM systems themselves need to be viewed as data
processing entities with consideration being given to issues like data retention, data
privacy and so on. From the scenarios considered, the following guidelines in terms of
legal aspects have been identified:

Data Retention. Data must be retained for a period of time not more than that nec-
essary to the activities for which they were collected. If the data are required for
detection and suppression of crime they can be stored for a longer period of time.

Cross-Border Data Transmission. It must be possible to limit the transmission of
data outside of certain borders. It should be possible to process data within such
a border. If personal data must be transferred to another country, it must be ensured
that the level of data protection in the country of destination is adequate.

Minimum and Appropriate Security Measures. Considering state of the art technol-
ogy, a minimum (but sufficient) set of measures must be taken to preserve integrity,
confidentiality, and availability of personal data. More sensitive data require in-
creased security measures.

Data Minimization and Anonymization. Only data strictly needed for security guar-
antee must be kept, while unnecessary details must be deleted or made anonymous.

4 Related Work

The development of new security relevant systems requires the integration of a secu-
rity engineering process in the earliest stages of the development life-cycle. This is
specifically important in the development of systems, where security is the enabling
technology, as in advanced SIEM systems. There are several common approaches to
security requirements engineering that may be taken. An overview of such processes is
given in [5] and also in [9]. A comprehensive concept for an overall security require-
ments engineering process is described in detail in [8]. The authors propose a 9 step
approach called SQUARE (Security Quality Engineering Methodology). A similar ap-
proach based on the integration of Common Criteria (ISO/IEC 15408) called SREP (Se-
curity Requirements Engineering Process) is described in [10]. In [6], different kinds of
security requirements are identified and informal guidelines are listed that have proven
useful when eliciting concrete security requirements. The author emphasises that there
has to be a clear distinction between security requirements and security mechanisms.
In [7], Hatebur et al. describe a security engineering process based on security problem
frames and concretised security problem frames. The two kinds of frames constitute
patterns for analysing security problems and associated solution approaches. [7] specif-
ically addresses accountability by logging.

www.manaraa.com

Though all of the above mentioned approaches may lead to a sufficient level of se-
curity for the designed architecture, there is no obvious means by which they can be
compared regarding the security requirements that they fulfil. In this paper, we address
the first step in every security engineering procces, namely the identification of artifacts,
such as functional descriptions, dependencies and information flows, the identification
of use cases and misuse cases, and stakeholders’ information on assets, safety and se-
curity requirements. Additionally, we consider state-of-the-art information on existing
SIEM systems and challenges identified by other work such as the following:

Security information and event management technology provides log management
and compliance reporting as well as real-time monitoring and incident management for
security events from networks, systems, and applications. A concise overview of current
SIEM systems functionalities is presented in [11]. In [1], current threats are identified
and advanced monitoring techniques such as file integrity monitoring, database activity
monitoring, application monitoring, identity monitoring, and user activity monitoring
are discussed. In [2], some challenges with respect to collecting and analyzing a multi-
gigabit network stream are outlined. SIEM systems manage security events but are not
primarily concerned with the trustworthiness of the event sources. Compared to tradi-
tional IT systems, securing SCADA systems (e.g., in the dam scenario) poses unique
challenges. In order to understand these challenges and potential dangers, [13] provides
a taxonomy of possible cyber attacks – including cyber-induced cyber-physical attacks
on SCADA systems.

5 Conclusion and Future Work

This paper has described requirements in terms of security and reliability for advanced
security information and event management. The approach used to identify require-
ments is scenario-driven: scenarios relating to a real-time, high profile sporting event
infrastructure; a mobile payment system; an enterprise service provider deployment and
a cyber-physical environment has been used as catalyst for requirements identification
and elaboration.

Based on the key elements and attributes of each scenario, guidelines for secu-
rity, event processing, trustworthiness, and compiler technologies in next-generation
SIEM systems have been elaborated. To consolidate the approach, a conceptual model
showing the progression from business process / application / infrastructure to elements
of SIEM design and implementation has been introduced. It is considered to be quite
unique and beneficial to have such a comprehensive and rigorous set of scenarios to
draw upon, and studying and analysing the scenarios presented provides a sound foun-
dation from which to make recommendations for next-generation SIEM systems.

We cannot necessarily claim that the set of recommendations is “complete”, but
by developing (and ultimately testing) the proposed items against such a diverse set of
scenarios, there is a high probability of addressing a wide range of SIEM requirements.
The benefit of multiple scenarios is that associated characteristics which include diverse
requirements including mobility, scalability, real-time processing, potentially hostile
device environments and so on. In this light, the security and reliability requirements

www.manaraa.com

are considered to be applicable to a wide range of advanced security event management
contexts.

Acknowledgements. The authors developed this work in the context of the project
MASSIF (ID 257475) being co-funded by the European Commission within FP7.

References

1. Monitoring up the Stack: Adding Value to SIEM. White paper, Securo-
sis L.L.C., Phoenix, AZ (2010), https://securosis.com/research/publication/
monitoring-up-the-stack-adding-value-to-siem

2. Applied Network Security Analysis: Moving from Data to Information. White pa-
per, Securosis L.L.C., Phoenix, AZ (2011), https://securosis.com/research/publication/
applied-network-security-analysis-moving-from-data-to-information

3. Project MASSIF website (2012), http://www.massif-project.eu/
4. Coppolino, L., D’Antonio, S., Formicola, V., Romano, L.: Integration of a System for Critical

Infrastructure Protection with the OSSIM SIEM Platform: A dam case study. In: Flammini,
F., Bologna, S., Vittorini, V. (eds.) SAFECOMP. Lecture Notes in Computer Science, vol.
6894, pp. 199–212. Springer (2011)

5. Fabian, B., Gürses, S., Heisel, M., Santen, T., Schmidt, H.: A comparison of security require-
ments engineering methods. Requirements engineering 15(1), 7–40 (2010)

6. Firesmith, D.: Engineering security requirements. Journal of Object Technology 2(1), 53–68
(2003)

7. Hatebur, D., Heisel, M., Schmidt, H.: Analysis and component-based realization of security
requirements. In: Proceedings of the International Conference on Availability, Reliability and
Security (AReS). pp. 195–203. IEEE Computer Society (2008), http://www.ieee.org/

8. Mead, N.R., Hough, E.D.: Security requirements engineering for software systems: Case
studies in support of software engineering education. In: CSEET ’06: Proceedings of the 19th
Conference on Software Engineering Education & Training. pp. 149–158. IEEE Computer
Society, Washington, DC, USA (2006)

9. Mellado, D., Blanco, C., SÃ¡nchez, L.E., FernÃ¡ndez-Medina, E.: A systematic review of
security requirements engineering. Computer Standards & Interfaces 32(4), 153–165 (2010)

10. Mellado, D., Fernández-Medina, E., Piattini, M.: A common criteria based security require-
ments engineering process for the development of secure information systems. Comput.
Stand. Interfaces 29(2), 244–253 (2007)

11. Nicolett, M., Kavanagh, K.M.: Magic Quadrant for Security Information and Event Manage-
ment. Gartner Reasearch (May 2010)

12. Prieto, E., Diaz, R., Romano, L., Rieke, R., Achemlal, M.: MASSIF: A promising solution to
enhance olympic games IT security. In: International Conference on Global Security, Safety
and Sustainability (ICGS3 2011) (2011)

13. Zhu, B., Joseph, A., Sastry, S.: Taxonomy of Cyber Attacks on SCADA Systems. In: Pro-
ceedings of CPSCom 2011: The 4th IEEE International Conference on Cyber, Physical and
Social Computing, Dalian, China (2011)

www.manaraa.com

P18
F R A U D D E T E C T I O N I N M O B I L E PAY M E N T
U T I L I Z I N G P R O C E S S B E H AV I O R A N A LY S I S

Title Fraud Detection in Mobile Payment Utiliz-
ing Process Behavior Analysis

Authors Roland Rieke, Maria Zhdanova, Jürgen
Repp, Romain Giot, and Chystel Gaber

Publication Proceedings of 2013 International Confer-
ence on Availability, Reliability and Security,
ARES 2013, pages 662–669.

ISBN/ISSN ISBN-13: 978-0-7695-5008-4

DOI http://dx.doi.org/10.1109/ARES.2013.87

Status Published

Publisher IEEE

Publication Type Conference Proceedings

Copyright 2013, IEEE

Contribution of
Roland Rieke

Co-Author with significant contribution, ed-
itor, and presenter at the 2nd international
workshop on Recent Advances in Secu-
rity Information and Event Management
(RaSIEM 2013).
Specific contributions are: (a) development
of the overall concept of Predictive Security
Analysis at Runtime (PSA@R), and (b) lead of
the MASSIF workpackages which developed
the Predictive Security Analyser (PSA).
Related contributions: Roland Rieke is Co-
Chair of this workshop. He also presented
the same topic in a joined talk with Co-
Author Romain Giot titled “Predictive Se-
curity Analysis - Concepts, Implementation,
first Results in Industrial Scenario” at the
Cyber Security & Privacy EU Forum 2013

[Rieke & Giot, 2013].

Table 23: Fact Sheet Publication P18

Publication P18 [Rieke, Zhdanova, Repp, Giot & Gaber, 2013] ad-
dresses the following research questions:

433

http://dx.doi.org/10.1109/ARES.2013.87

www.manaraa.com

fraud detection in mobile payment

RQ9b How can operational process models be used for early detection of
and reaction to deviations of process execution from its specification?

This paper describes the control flow of model learning and uncer-
tainty reasoning for anomaly detection in PSA@R. This is exemplified
by detection of money laundering patterns in synthetic process be-
haviour composed of simulated logs based on properties captured
from real world money transaction events.

In the initial learning phase, the normal behaviour pattern with
regard to the transaction characteristics is learned by processing an
event log without malicious content. A mapping to classify the trans-
actions with regard to the amount of money transferred and the order
of such abstract events in the event log is used for this purpose. This
mapping is created empirically using real operational logs of the Mo-
bile Money Transfer (MMT) system and can change if different training
sets are used. An overview of the event processing steps of PSA@R in
the learning phase is given.

In the anomaly detection phase PSA@R is used to identify deviations
from the normal characteristics based on the values from a transac-
tion monitor. In an experimental setup, the transaction monitor has
been replaced by synthetic process behaviour composed of simulated
logs based on properties captured from real logs.

RQ12a Can the developed methods and tools be successfully adapted to
large scale industrial scenarios?

RQ12b What are the performance effects of the number of events, processes,
security requirements, predicted steps, and of event abstraction?

In this paper the applicability of the PSA@R approach is exemplified
by a MMT scenario. MMT systems are systems where electronic money
is issued to different roles in order to perform various types of trans-
actions. As with any payment system, this service can be an attrac-
tive target for attackers and fraudsters. For legal and service security
issues it is mandatory to observe the transactions for potential abnor-
mal activities. The work presented in this paper utilises alerts gen-
erated by the uncertainty reasoning component of the PSA prototype
to detect money laundering patterns in synthetic process behaviour
composed of simulated logs based on properties captured from real
world transaction events. In particular, it is shown that the PSA is
able to raise alerts in a simulated scenario of fraud with mules. For
this simulated scenario, the detection is efficient, but show that such
system could be sensitive to noise in a real world system. It would
be necessary to improve the resistance to noise through a correlation
of the generated alerts or by an application of specific evaluation of
the process states when an alert is generated. The applicability of
the proposed approach is evaluated and provides measurements on
computational and recognition performance of the tool.

434

www.manaraa.com

c© 2013 IEEE. Reprinted, with permission, from Roland Rieke, Maria Zhdanova, Jürgen Repp, Romain Giot, and Chrystel Gaber, Fraud Detection in Mobile
Payments Utilizing Process Behavior Analysis, Proceedings of 2013 International Conference on Availability, Reliability and Security, ARES 2013, 2013.
Original IEEE publication: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6657303

Fraud Detection in Mobile Payments Utilizing
Process Behavior Analysis

Roland Rieke∗†, Maria Zhdanova†, Jürgen Repp†, Romain Giot‡ and Chrystel Gaber‡
∗Philipps-Universität Marburg, Germany
†Fraunhofer SIT, Darmstadt, Germany

Email:{roland.rieke,maria.zhdanova,juergen.repp}@sit.fraunhofer.de
‡France Télécom-Orange Labs,

Caen, France
Email:{romain.giot,chrystel.gaber}@orange.com

Abstract—Generally, fraud risk implies any intentional decep-
tion made for financial gain. In this paper, we consider this
risk in the field of services which support transactions with
electronic money. Specifically, we apply a tool for predictive
security analysis at runtime which observes process behavior with
respect to transactions within a money transfer service and tries
to match it with expected behavior given by a process model.
We analyze deviations from the given behavior specification for
anomalies that indicate a possible misuse of the service related to
money laundering activities. We evaluate the applicability of the
proposed approach and provide measurements on computational
and recognition performance of the tool – Predictive Security
Analyzer – produced using real operational and simulated logs.
The goal of the experiments is to detect misuse patterns reflecting
a given money laundering scheme in synthetic process behavior
based on properties captured from real world transaction events.

Keywords—money laundering; predictive security analysis;
analysis of business process behavior; security modeling and
simulation; security monitoring.

I. INTRODUCTION

The field of Mobile Money Transfer (MMT) is a growing
market segment, particularly in developing countries where
banking systems may not be as dense or available as in
developed countries. For example, M-Pesa, which was launched
in 2007 in Kenya, displayed in December 2011 about 19 million
subscribers, namely 70% of all mobile subscribers in Kenya [1].
Orange Money is deployed in 10 countries and gathers around
14% of the mobile subscribers of these countries [2]. In such
services, transactions are made with electronic money, called
mMoney. The users can convert cash to mMoney through
distributors and use it to purchase goods at merchants, pay
bills or transfer it to other users [3]. Like any other money
transfer service, this service is exposed to the risk of money
laundering, i.e., misuse through disguising illegally obtained
funds to make them seem legal, and more generally fraud
risk that implies any intentional deception made for financial
gain [3].

In this paper, we apply a tool – the Predictive Security
Analyzer (PSA) – that implements predictive security analysis
at runtime [4], [5] in order to identify misuse patterns in event
streams of MMT transactions that can be concerned with money
laundering activity. Predictive security analysis at runtime is an
advanced method for the evaluation of security-related events

and their interpretation with respect to: (1) the known control-
flow of the processes involved, and (2) the required security
properties. With respect to (1), deviations of observed process
behavior from the given process specification are analyzed.
These deviations can be the result of an evolution in the process
specification, problems with the measurement (e.g., lost events),
or anomalies caused by attacker’s interventions. Regarding (2),
continuous monitoring of security properties specified for the
process in question is performed to detect potential security
violations.

The PSA takes as an input real-time events from the
process execution environment, a process model and its security
requirements. For informal modeling of MMT processes (at the
business logic level) we employ the Event-driven Process Chain
(EPC) language [6]. Security analysis of event-driven processes
uses a formal process model encompassing the incoming events.
If a critical state, i.e., a process anomaly or a security require-
ment violation, is detected the PSA provides a semi-automatic
treatment by visualization and inspection of the problem (un-
certainty management) or performs automatic generation and
dissemination of alerts for further processing depending on the
selected option. Due to the advanced security analysis method
the PSA can enhance evaluation and correlation capabilities of
Security Information and Event Management (SIEM) systems,
as shown for MASSIF SIEM [7].

In this paper we evaluate the applicability of the approach
and the performance of the PSA in this context. In particular,
we show that: (1) the PSA is able to manipulate an event
stream of operational systems in real time; (2) the PSA is
able to raise alerts on most fraudulent transactions related to
money laundering. The results of the experiments on real and
simulated events for several money laundering scenarios will
allow us to determine sensitivity and specificity of the PSA
and refine the detection scheme.

The paper is organized as follows: Section II introduces the
MMT scenario and a misuse case related to money laundering
and Section III gives an overview of the PSA and its application
in the experiment. Section IV introduces the experimental
setup, while Section V discusses the results of the experiments.
Section VI reviews related work and Section VII presents
conclusions and directions for further research.

www.manaraa.com

Figure 1. Economical environment of Mobile Money Transfer services

II. FRAUD DETECTION IN MOBILE MONEY TRANSFER
SYSTEM

A. Mobile Money Transfer

This article is based on the MMT use case detailed in [8].
This section sums up the major points to understand the use
case. MMT systems are systems where electronic money, called
mMoney (or m), is issued to different roles (e.g., regular users,
retailer, merchant, etc), in order to perform various types of
transactions (e.g., mobile recharge, cash in, cash out, national
or international transfer, bill payments, etc). Figure 1, which
is adapted from [9], shows the economic principle of mMoney
and the roles of the various actors. As depicted, the Mobile
Network Operator (MNO) emits mMoney in partnership with a
private bank. The MNO regularly produces compliancy reports
to the Central Bank, responsible for the country’s monetary
policy. In particular, it is the MNO’s responsibility to detect
suspicious money laundering activities and to report them to
the Central Bank, hence the importance of SIEM systems for
MMT systems. The emitted mMoney can only be used among
the MNO’s clients who subscribe to the MMT service. The
subscribers are end-users, service providers or retailers. They
hold a prepaid account stored on a platform and accessible
via the MNO’s network and an application on their mobile
device. Some users, such as retailers or service providers, can
use computers to access their account. This account contains
mMoney which can be acquired from the retailers. End-users
can either transfer money to other end-users or purchase goods.

B. Misuse case

We are interested in a misuse case related to money
laundering using MMT (see Figure 2). A malicious user
(fraudster) transfers small amounts of money to several mules.
These mules can optionally receive the money at the end of
a chain of mules. Then the mules of the final chain make a
final transfer to a second malicious user. Each mule may keep
a small percentage of the transfer as a salary. Also, these mule
transfers can be manually operated by a mule or automatically
transfered by a malicious software installed on the mobile
phone and exploiting a flaw in the mobile money application.
This way, the first malicious user has transfered money to the

Figure 2. Description of the money laundering scenario: several mules receive
mMoney from a malicious user and transfer a high percentage of this mMoney
to another malicious user. The first malicious user does not want to be directly
linked with the second malicious user

second malicious user, but there is no direct transfer traces
between them.

Many schemes of money laundering are known and crimi-
nals struggle to invent new ones [10], [11]. In this paper we
consider a money laundering scheme involving the following
assumptions: (i) there is only one mule in the chain of mules;
(ii) the amount of a fraudulent transaction is much smaller then
the average on the system; (iii) along with fraudulent actions
the mules perform regular mMoney transfers; (iv) normal
behavior of a MMT user (as observed in the operational logs)
is persistent in regard to transaction amounts used, i.e. sudden
changes in transferred mMoney amounts indicate an anomaly.
These limitations do not restrict the proposed approach to fraud
detection as far as one is able to model a process workflow
related to a chosen (any other) money laundering scheme.

III. PREDICTIVE SECURITY ANALYSIS AT RUNTIME

The PSA provides support for the whole cycle of event-
driven process security analysis.

a) Event pre-processing: Events come from an Exten-
sible Markup Language (XML) stream or a database based
on a pre-defined event schema, which is necessary in order to
filter out data containing information not relevant to security
analysis. Therefore, the PSA supports the creation of an event
abstraction and mapping of events to the corresponding process
instance (cf. Figure 3).

b) Process specification, adaptation, and close-future
behavior analysis: The PSA uses Asynchronous Product Au-
tomata (APA) for formal process representation [12]. Process
specifications given in EPC can be modeled by APA. EPCs are
used in business process engineering, deployment and runtime
control and supported by such leading products as SAP R/3
and ARIS [13]. The EPC language is intended to be easy
to understand and use by people who are not familiar with
formal specification methods. Therefore, the PSA assists the
user not only in generation of a EPC, but also in transformation
of this informal process model into an operational formal
model. Existing EPC models can be adapted step-by-step,
using archived event logs for replay and also interactively

www.manaraa.com

Figure 3. Feature selection. Few fields of the events are used, and the
concatenation of two of them provides the process id

Predict process behaviour

Get next event

Map event to process state

Discard event

Predict process behaviour

Adjust process model

Generate alert

Event fits to
event model

Event
expected

Learning
phase

[true] [false]

[true]
[false (uncertainty mgmt.)]

[true]

[false]

Figure 4. Runtime behavior of the PSA

during runtime. The uncertainty management supports semi-
automatic adaptation of process models according to the
context conditions. Uncertainty situations can occur during
synchronization of the state of a running process instance and
the state of the model if the process model is not accurate
enough or outdated, or when unknown events are received or
expected events are missing. Beside APA models, Petri Net
Markup Language (PNML) specifications [14] generated by
process discovery tools (e.g., ProM [15]) can be imported. For
all specification methods the computation of the close-future
behavior is supported.

c) Security requirements specification and evaluation:
The PSA allows for specification of the required security
properties that the monitored process should fulfill (a security
model in form of monitor automata), on-the-fly check of
security requirements with respect to current process behavior
(detection of critical process states), as well as techniques for
on-the-fly check of security requirements with respect to close-
future process behavior (prediction of critical process states).

d) Situational awareness and alarm generation: The
PSA provides visualization of current process states with
respect to security requirements by means of security monitors,
and generation of alarms on detection of critical states.

In the work presented in this paper the PSA has been used in
two phases, namely, a learning phase and an anomaly detection
phase.

medium

��

EPC_medium

��

normal big

��

EPC_big

��

EPC_normal

����

tiny

��

EPC_tiny

��

��

Figure 5. Subgraph of EPC for MMTS

In the initial learning phase, the normal behavior pattern
with regard to the transaction characteristics is learned by
processing an event log without malicious content. A mapping
to classify the transactions with regard to the amount of money
transferred (cf. Table I) and the order of such abstract events
in the event log is used for this purpose. For example, an event
from the MMT system where the amount of transferred money
is greater than 500 but less or equal 1000 is mapped to the
abstract event medium. This mapping is created empirically
using real operational logs of the MMT system and can
change if different training sets are used. Figure 4 shows an
overview of the PSA event processing steps in the learning
phase. The dashed action “Adjust process model” is done
semi-automatically and requires the user’s involvement during
runtime. All other actions are performed automatically.

Figure 5 shows a subgraph of an EPC which was learned for
the MMT model. The graph shows the control flow structure
of a process as a chain of events and functions. Rectangles
with rounded corners denote EPC functions and hexagons
denote EPC events. Functions represent active components,
i.e., activities, tasks or process steps, which are triggered
by events. Events are passive, they represent the occurrence
of a state which describes the situation before, or after, a
function is executed. Logical and , or , and xor (exclusive
or) operators are used to connect the basic constructs, in
this way the control flow is specified. For example, after an
event medium the function EPC_medium is triggered. The
expected “normal” events after execution of EPC_medium
are {normal,medium, big}.

In the anomaly detection phase the PSA identifies devia-
tions from the normal characteristics based on the values from
a transaction monitor and generates alerts. In our experimental
setup, the transaction monitor has been replaced by synthetic
process behavior composed of simulated logs based on proper-
ties captured from real logs. In the anomaly detection phase the
dashed action “Adjust process model” in Figure 4 is not used.
Instead, an alert is generated automatically by the uncertainty
management components of the PSA.

In order to reduce the number of alarms, it is necessary
to configure the normal behavior model with the help of a
real world dataset with annotated transactions (suspicious/not
suspicious) or to use an additional component which filters the
alerts generated by the PSA. Fraud analysis with additional
components is beyond the scope of this paper.

www.manaraa.com

IV. EXPERIMENTAL PROTOCOL

A. PSA Configuration

The PSA is used in a non-interactive way: when it detects
an unexpected event, an alert is automatically generated.

1) Definition of a mapping: The amount of a transaction is
a continuous variable in R, therefore discretization is necessary
to get computable abstractions of the behavior. For this reason,
we have empirically created various classes of transfer amounts
(see Table I).

2) Definition of an EPC: In order to use the PSA it is
necessary to define an EPC which models the MMT process.
However, the events generation does not come from the control
flow of the mobile money system, but from the behavior of
its users. For this reason, the EPC must model the workflow
of the user and not the workflow of the system. It is possible
to define several processes in one PSA model. The PSA also
provides the capability to investigate parallel running process
instances with the same behavior. This capability was used to
specify a general behavior which is followed by every user.

We found out that it is challenging to define a workflow
of transactions because every user is free to use the system
as he wants (i.e., he can choose own amounts, frequencies,
communities of interests, etc.). There is one process instance
for each pair of active users and type of transaction (i.e.,
(user1, CASHIN)), because we make the assumption that the
amount of transactions of the same type (i.e., only CASHIN ,
only TRANSFER, etc.) are similar, while amounts of trans-
actions of different kinds are not [16].

For this reason we have to create a more general process. A
process behavior representation which is generated by the PSA
from the respective EPC (cf. Figure 5) is shown in Figure 6.
Each node is a state, each edge is a transition labeled with the
event source. For each state, only the following transactions
are authorized: do a transfer in the same amount family, do
a transfer with the previous amount family, or do a transfer
with the next amount family. The very first transition allows
to go to any state. All the other possible transactions which
are not present in the graph raise an alarm and are considered
as being potentially malicious.

B. Logs at our disposal

1) Operational logs: Although different kinds of logs
(access, transfer, etc.) can exist in the mobile money transfer
system, we only have at our disposal the transactions log.
The transactions log contains the sender and receiver of the
transaction, its amount, its success, the type of transaction and
the type of the sender and of the receiver as well as other fields
specifics to the system. These logs are driven by the behavior
of the users: indeed the events are propagated only when the
user do some transactions. We have more than 4.5 millions of
correct events (accepted transactions) acquired on a period of
9 months.

However, as we have no ground truth (i.e., fraudulent or
not fraudulent) on these events, we cannot use them directly to
detect fraud. They are nevertheless very useful to analyze the
ability of the PSA to manage real life events in real time. For
detection evaluation (in terms of error rates), we use simulated
logs.

start

minuscule
minuscule

tiny
tiny

small

small

normal

normal

medium

medium

big

big

large

large

huge

huge

minuscule
tinyminusculetiny

small

tiny

small

normal

small

normal

medium

normal

medium

big

medium

big

large

big
large

huge

large

huge

Figure 6. Process behavior representation of the EPC defined for MMTS

2) Simulated Events: As real world transactions have no
ground truth we have implemented the misuse case in a
simulator [17]. This simulated world is based on properties
captured from real world transaction events. We are interested
in a money laundering scenario (see Figure 2).

We have configured 3 scenarios with different number of
users of the following categories:

a) Regular users: They make regular transfers (mean
amount of 4000, standard deviation of 500), withdrawal and
deposits.

b) Malicious users: (within the group of regular users).
They want to exchange money without leaving direct traces in
the system.

c) Mules: (within the group of regular users). They
receive an amount (min amount of 20, max amount of 100)
from a malicious user and transfer it later to another one after
keeping 10% of interest.

d) Merchants: They correspond to shops where regular
users can buy goods with mMoney.

e) Retailers: They allow end user to exchange mMoney
with real money (and vice versa).

The parameters of the three scenarios are:

S1 No money laundering: 50 regular users, 8 merchants,
4 retailers. This set serves to verify if normal transfers
are detected as being fraudulent (False Positive).

S2 Money laundering: 50 regular users, 5 mules, 8 mer-
chants, 4 retailers. This set serves to verify if the PSA
is able to detect frauds.

S3 Money laundering with more individuals: 500 regular
users, 10 mules, 16 merchants, 4 retailers This set
serves to verify if the PSA can detect frauds when
there are more non-fraudulent events.

www.manaraa.com

Table I. MAPPING FOR DISCRETIZATION OF THE TRANSACTIONS’ AMOUNTS

Class minuscule tiny small normal medium big large huge
Amount condition ≤ 5 ≤ 50 ≤ 200 ≤ 500 ≤ 1000 ≤ 2000 ≤ 5000 other

Note that, we have used a slightly different mapping for
the simulated logs in comparison to the real logs.

C. Experiment

Our analysis tackles the computational and recognition
performance of the PSA. We seek to ascertain how long it takes
to process an event or spread an alert and whether it is possible
to treat in real time the stream of events of an operational MMT
system. The computations were done with a personal computer
(2 cores CPU at 2.70GHz, 4Gb RAM). Finally, we will measure
the error rates of the PSA. Any potential errors in detection
will be taken advantage of in order to learn and improve the
detection scheme.

D. Evaluation metrics

The computational performance of the PSA is evaluated
by counting the number of events per second successfully
processed by the PSA. For the recognition performance we
use several metrics: (a) False Positive, not fraudulent event is
detected as being fraudulent; (b) False Negative, fraudulent
event is detected as being not fraudulent; (c) True Positive,
fraudulent event is detected as being fraudulent; (d) True Neg-
ative, not fraudulent event is detected as being not fraudulent.

V. EXPERIMENTAL RESULTS

A. Real events analysis

For the real events, we are interested in the computational
performances. Figure 8a represents the number of transactions
between the different states (only the transactions present in the
events log are displayed). Most transactions are not considered
as suspicious and most suspicious transactions are between the
state “tiny” and “normal” (so a more accurate process model
would allow such kind of transitions).

We found out that there was one process per pair of users
and transaction type. With the real log, the PSA was able to
manage 640,000 instances without any problem. 40 minutes
were enough to process 4.5 millions of events, with the process
behavior presented in Figure 8a, and produce 0.5 millions of
alerts. 33 minutes were enough for a complete run which does
not generate alerts. Set X as the time to process an event
and Y the additional time to process an alert. They can be
found by solving these two equations: X ∗ 4.5M = 33 ∗ 60
and X ∗ 4.5M + Y ∗ 0.5M = 40 ∗ 60, which gives X =
0.00044 and Y = 0.00480. Thus, in the best theoretical case
(no alerts are generated), the PSA is able to process more
than 2200 events/second (1/X), while in the worst theoretical
case (all events raise an alert), the number is reduced to 191
events/second (1/(X + Y)). We can summarize these results
by saying that the PSA is able to manage an average of 100
millions of events per day on a standard computer ((2200 +
191)/2 ∗ 60 ∗ 60 ∗ 24).

Figure 7. Histogram of the transactions amount of scenario S3

B. Simulated events analysis

In case of the simulated events, we are interested in the
recognition performances. As the simulation is stochastic, the
evaluation has been repeated several times. However, the results
are very similar for each run.

Figure 7 presents the histogram of the transactions amounts
depending on their type in scenario S3. We can see that the
distribution of the mule transfer is a bit translated to lower
amounts in comparison to the distribution of initial fraudster’s
transfers (because of the interest kept by the mule) and overlaps
with the distribution of withdrawal and deposits.

Figure 8b represents the number of transactions between the
different states in scenario S2. For the simulated logs, we can
see that 9 (4+5) transactions have been detected as suspicious.
However, most of the transactions are in the range of authorized
transactions according to the EPC.

Table II gives the recognition performance of the PSA on
the selected example of each scenario, and Figure 9 presents the
transactions of the participants involved in the fraud of S2 (the
other users which made no transactions with the fraudsters
are not displayed for clarity reasons). Each node represents
a user, each edge represents a transaction, the label of an
edge represents the index of the transaction in the sequence.
Small gray edges represent True Negative, orange (gray for
printed version) edges represent False Positive, green (dark
gray) edges represent True Positive, red (black) edges represent
False Negative. For scenario S1, the ratio of False Positive is
null. For scenario S2, the ratio of False Positive is equal to
5/655 ' 1%, while the ratio of False Negative is of 6/10 '
60% if we consider the whole set of irregular transactions (first
fraudster to mules and mules to last fraudster), or 1/5 ' 20%
if we consider the subset of irregular transactions detectable by
the PSA (mules to last fraudster). For scenario S3, the ratio of
False Positive is of 3/5297 ' 0.05%, while the ratio of False

www.manaraa.com

big 439637

medium

98532

large
70719

huge

691

normal

37194

minuscule

48703

tiny

42204

small

36566

99543

360754

15131

224

152345

26332

38490

23208

73843

14387

60684

1090

11319

10988
11120

9022

702

560

1048

1785

672

219
238

200

43919

156699

11756

827

1096991

80693 416837

9762

4038

1168

1126

19

921

39903

16582

1572

5168

2166

1837

66

1888

18527
229296

2643

7303

2667

2136

51

2559

4127

5059

17137

start

135934

66447

39224

707

311465

13315

67514

4999

(a) Real events

huge

large
4

3167

small

4
5

105

tiny
105
111

103

start

1

48

23

33

(b) Simulated events on scenario S2

Figure 8. Transactions obtained on a simulated run with a limited amount
of users. Width of an edge is proportional to the number of transactions and
red color corresponds to generated alerts

Negative is of 11/20 ' 55% if we consider the whole set of
irregular transactions, or 1/20 ' 5% if we consider the subset
of irregular transactions detected by the PSA.

The fraudulent transactions made from the initial fraudster
to the mules are not detected as being suspicious, which is
correct as the EPC has not been constructed to detect these
transactions. The transactions of all mules, except EU0 , to
the fraudster are correctly detected as being suspicious. All
the non-suspicious transactions of mule EU0 are detected as
being suspicious.

C. Discussion

As we have no ground truth on the real world events, we
cannot verify the recognition performance of the PSA. However
we can notice that the number of alarms is quite important,
and obviously superior to the real quantity of suspicious
transactions. In order to reduce the number of alarms, it would
be necessary to fine-tune the EPC with the help of a real world
dataset with annotated transactions (suspicious/not suspicious)

Table II. SENSITIVITY AND SPECIFICITY OF THE PSA ON DETECTION
OF ANOMALIES IN TRANSACTIONS

Fraudulent Normal Total
Alarm raised 0 0 0
Alarm not raised 0 1077 1077

Total 0 1077 1077

(a) Scenario S1

Fraudulent Normal Total
Alarm raised 5-1 5 9
Alarm not raised 1+5 650 656

Total 10 655 665

(b) Scenario S2

Fraudulent Normal Total
Alarm raised 10-1 3 12
Alarm not raised 1+10 5294 5305

Total 20 5297 5317

(c) Scenario S3

or to use an additional component which filters the alerts
generated by the PSA.

The PSA shows the correct behavior in all scenarios. The
detection errors with user EU0 come from the fact that the
very first transaction of the user is the fraudulent one. The
respective process state component is then set to this amount.
Thus all his next transactions are detected as being suspicious
as there is no transition in the process behavior representation
to the state related to this amount. As a matter of fact, the
other transactions of this user will be indefinitely detected as
being suspicious in the future.

Usually, the evaluation of anomaly detection tools is done
using a ROC curve [18] (sensitivity and specificity obtained
for various configuration thresholds τ ∈ R). The PSA cannot
be configured with such a simple threshold. Instead, there is a
complex configuration (ρ = (ρEPC , ρmapping)) composed of
an EPC configuration (ρEPC ∈ E, E is the set of possible
EPCs) associated with a discretization scheme for transfer
amounts (ρmapping ∈ M, M is the set of possible mapping
functions). It is thus difficult to automatically run through the
possible choices of EPCs and discretization schemes in order
to obtain several configurations giving the ROC curve. For this
reason, we provide only one performance point.

VI. RELATED WORK

With respect to the exhaustive survey of approaches in
the field of business process management given in [19], the
functionality the PSA prototype [4], [5] used in this work
could be classified as “check conformance using event data”
approach. In this approach, information is used both from
the process model and the event data in order to identify
deviations of runtime behavior from expected behavior. The
trend for this specific aspect of business process management,
as presented in [19], shows a growing interest in the last
three years. A similar approach is described in [20] but the
focus is on quantification of inconsistencies by the formation
of metrics. We consider the framework presented in [15]
on runtime compliance verification for business processes as
complementary to our work.

Many data-mining algorithms have been adapted for fraud
detection in the banking field. Filters, decision trees and logistic

www.manaraa.com

FR1

EU1
97

EU0

12

EU4

285

EU2

132

EU3

213

Ret1

Ret4

FR2

143

Ret2

EU37

EU38

EU23

274426

64

Ret3

EU6

204

EU27

611

EU49

370

EU44

EU19

233

EU42

299

EU11
EU10

EU40

EU30

EU28

EU31

EU18

EU43

EU21

EU26

EU41

Figure 9. Representation of the users involved in the fraud and their transactions in scenario S2. The transfers of the mules, except those of EU0 , have been
detected. Various transfers from EU0 raised false alarms

regression are the most used because they can be easily
interpreted. As a result, it is easier for an operator to explain
to a client why a specific transaction is considered as being
fraudulent. Other methods involving automated model learning
are more rarely used because of the difficulty to interpret results
and of the need for training data. However, there are some
industrial solutions based on such methods. VISA, for example,
implements neural networks in their fraud detection tool, RST
(Real-Time Scoring) [21]. This tool associates a score to a
transaction and raises an alert if the score exceeds a threshold
chosen by the bank. However, it is the bank’s responsibility to
find out the reasons why a transaction which raised an alert

should be blocked.

Bhattacharya et.al. [22] and Delamaire et.al. [23] published
a state-of-the-art of the data-mining algorithms used for de-
tecting frauds among credit card transactions. They show that
several attempts were undertaken to adapt neural networks,
SVMs, Bayesian networks, decision trees, expert systems and
Hidden Markov Models to the field of credit card transactions.
In [24], a separate change detection model for each cell in
a multi-dimensional data cube is used for a change detection
system for VISA. To our knowledge, not all mobile payment
services include automated fraud detection solutions. The
surveillance can be manual or based on business rules. However,

www.manaraa.com

the M-PESA service, which is one of the most well known
MMT services, has deployed MinotaurTM Fraud Management
Solution in 2012 [25]. This fraud management system is based
on the use of business rules and neural networks [26]. To our
knowledge, there are no public works concerning the study and
the adaptation of fraud detection methods to mobile payment
systems. Therefore, we cannot easily compare our work to
existing systems.

VII. CONCLUSION

The work presented in this paper utilizes alerts generated
by the uncertainty reasoning component of the PSA to detect
money laundering patterns in synthetic process behavior com-
posed of simulated logs based on properties captured from real
world transaction events.

We have shown that the PSA is able to raise alerts in a
simulated scenario of fraud with mules. For this simulated
scenario, the detection is efficient, but show that such system
could be sensitive to noise in a real world system. It would
be necessary to improve the resistance to noise through a
correlation of the generated alerts or by an application of
specific evaluation of the process states when an alert is
generated (for example, move to the critical state if the same
alert has been raised several times).

Results of the PSA should be associated with decision and
reaction systems in order to modify the security rules of the
MMT system to automatically block the fraud [3]. In order to
ease the evaluation of the system, it could be interesting to
develop methods able to automatically produce a huge quantity
of EPCs to provide several evaluation points.

ACKNOWLEDGMENT

The presented work was developed in context of the
project MASSIF (ID 257475) being co-funded by the European
Commission within the Seventh Framework Programme.

REFERENCES

[1] CCK, “Quarterly sector statistics report,” Communications Commission
of Kenya, Tech. Rep., 2012.

[2] Orange, “Orange money,” http://www.orange.com/en/press/press-
releases/press-releases-2012/Orange-Money-reaches-4-million-
customers-and-launches-in-Jordan-and-Mauritius, June 2012, last
visit on 12/04/2013.

[3] R. Rieke, L. Coppolino, A. Hutchison, E. Prieto, and C. Gaber, “Security
and reliability requirements for advanced security event management,”
in Computer Network Security, ser. LNCS, I. Kotenko and V. Skormin,
Eds., 2012, vol. 7531, pp. 171–180.

[4] R. Rieke and Z. Stoynova, “Predictive security analysis for event-driven
processes,” in Computer Network Security, ser. LNCS. Springer, 2010,
vol. 6258, pp. 321–328.

[5] J. Eichler and R. Rieke, “Model-based Situational Security Analysis,”
in Workshop on Models@run.time. CEUR, 2011, vol. 794, pp. 25–36.

[6] G. Keller, M. Nüttgens, and A.-W. Scheer, “Semantische Prozeß-
modellierung auf der Grundlage "Ereignisgesteuerter Prozessketten
(EPK)",” Veröffentlichungen des Instituts für Wirtschaftsinformatik (IWi),
Universität des Saarlandes, vol. 89, 1992.

[7] R. Rieke, E. Prieto, R. Diaz, H. Debar, and A. Hutchison,
“Challenges for advanced security monitoring – the MASSIF
project,” in Trust, Privacy and Security in Digital Business,
ser. LNCS, S. Fischer-Hübner, S. Katsikas, and G. Quirchmayr,
Eds. Springer, 2012, vol. 7449, pp. 222–223. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-32287-7_23

[8] M. Achemlal, S. Gharout, C. Gaber, M. Llanes, E. Prieto, R. Diaz,
L. Coppolino, A. Sergio, R. Cristaldi, A. Hutchison, and K. Dennie,
“Scenario requirements,” MASSIF FP7-257475, Tech. Rep., 2011.

[9] W. Jack, S. Tavneet, and R. Townsend, “Monetary theory and electronic
money: Reflections on the kenyan experience,” Economic Quarterly,
no. 96, First Quarter 2010 2010.

[10] FINTRAC Typologies and Trends Reports, “Money laundering and
terrorist financing trends in fintrac cases disclosed between 2007 and
2011,” http://www.fintrac-canafe.gc.ca/publications/typologies/2012-04-
eng.asp#s1-1, April 2012, last visit on 21/05/2013.

[11] Internal Revenue Service (IRS), “Examples of money laundering
investigations - fiscal year 2012,” http://www.irs.gov/uac/Examples-of-
Money-Laundering-Investigations-Fiscal-Year-2012, October 2012, last
visit on 21/05/2013.

[12] P. Ochsenschläger, J. Repp, R. Rieke, and U. Nitsche, “The
sh-verification tool – abstraction-based verification of co-operating
systems,” Formal Aspects of Computing, The International Journal
of Formal Method, vol. 10, pp. 381–404, 1998. [Online]. Available:
http://sit.sit.fraunhofer.de/smv/publications/download/FormAsp.ps

[13] W. M. P. van der Aalst, “Formalization and verification of event-driven
process chains,” Information & Software Technology, vol. 41, no. 10,
pp. 639–650, 1999.

[14] M. Weber and E. Kindler, “The petri net markup language,” in Petri Net
Technology for Communication-Based Systems, ser. LNCS. Springer,
2003, vol. 2472, pp. 124–144.

[15] F. M. Maggi, M. Montali, M. Westergaard, and W. M. P. van der Aalst,
“Monitoring business constraints with linear temporal logic: An approach
based on colored automata,” in Business Process Management (BPM
2011), ser. LNCS, vol. 6896. Springer, 2011, pp. 132–147.

[16] R. Rieke, R. Giot, and C. Gaber, “Predictive security analysis - concepts,
implementation, first results in industrial scenario,” 2013, talk at CYBER
SECURITY & PRIVACY EU FORUM 2013. [Online]. Available:
http://www.cspforum.eu/uploads/Presentation-Roland_Rieke.pdf

[17] C. Gaber, B. Hemery, M. Achemlal, M. Pasquet, and P. Urien, “Synthetic
logs generator for fraud detection in mobile transfer services,” in
Proceedings of the 2013 International Conference on Collaboration
Technologies and Systems (CTS2013), 2013.

[18] T. Fawcett, “Roc graphs: Notes and practical considerations for re-
searchers,” Pattern Recognition Letters, vol. 27, no. 8, pp. 882–891,
2004.

[19] W. M. P. van der Aalst, “Business process management: A comprehen-
sive survey,” ISRN Software Engineering, p. 37, 2013.

[20] A. Rozinat and W. van der Aalst, “Conformance checking of processes
based on monitoring real behavior,” Information Systems, vol. 33, no. 1,
pp. 64 – 95, 2008.

[21] VISA, “Security and trust at every level,” http://www.visaeurope.com/
en/about_us/security.aspx, last visit on 22/03/2013.

[22] S. Bhattacharyya, S. Jha, K. Tharakunnel, and J. C. Westland, “Data
mining for credit card fraud: A comparative study,” Decision Support
Systems, vol. 50, 2011.

[23] L. Delamaire, H. Abdou, and J. Pointon, “Credti card fraud and detection
techniques : a review,” Banks and Bank systems, vol. 4, 2009.

[24] C. Curry, R. L. Grossman, D. Locke, S. Vejcik, and J. Bugajski,
“Detecting changes in large data sets of payment card data: a case study,”
in Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, ser. KDD ’07, 2007, pp. 1018–
1022.

[25] E. Okutyi, “Safaricom tightens security on m-pesa with fraud
management system,” http://www.humanipo.com/news/1341/Safaricom-
tightens-security-on-M-Pesa-with-Fraud-Management-system, August
2012, last visited on 22/03/2013.

[26] Neural technologies, “Minotaurtm fraud detection software - finance sec-
tor,” http://www.neuralt.com/fraud_detection_software.html, last visited
on 23/03/2013.

www.manaraa.com

P19
M O N I T O R I N G S E C U R I T Y C O M P L I A N C E O F
C R I T I C A L P R O C E S S E S

Title Monitoring Security Compliance of Critical
Processes

Authors Roland Rieke, Jürgen Repp, Maria Zh-
danova, and Jörn Eichler

Publication Parallel, Distributed, and Network-Based Pro-
cessing, Euromicro Conference on, 0:525–560.

ISBN/ISSN ISBN-13: 978-1-4799-2728-9

DOI http://dx.doi.org/10.1109/PDP.2014.106

Status Published

Publisher IEEE

Publication Type Conference Proceedings

Copyright 2014, IEEE

Contribution of
Roland Rieke

Main Author, editor, and presenter at the
special session on “Security in Networked
and Distributed Systems” at the 22th Eu-
romicro Conference on Parallel, Distributed
and Network-Based Processing.

Table 24: Fact Sheet Publication P19

Publication P19 [Rieke, Repp, Zhdanova & Eichler, 2014] addresses
the following research questions:

RQ10 How can security analysis at runtime exploit process models to iden-
tify current and close-future violations of security requirements?

With respect to RQ10, this paper presents an approach to support
evaluation of the security status of processes at runtime. The ap-
proach is based on operational formal models derived from process
specifications and security policies comprising technical, organisa-
tional, regulatory and cross-layer aspects. A process behaviour model
is synchronised by events from the running process and utilises pre-
diction of expected close-future states to find possible security viola-
tions and allow early decisions on countermeasures.

In particular, the algorithm for the evaluation of security require-
ments at runtime is described.

RQ11 How can security analysis at runtime be integrated in a security
management strategy?

443

http://dx.doi.org/10.1109/PDP.2014.106

www.manaraa.com

monitoring security compliance of critical processes

In this paper, the implementation of the PSA@R approach by the
prototype, the PSA, is described and results of evaluation of specific
aspects, such as effects of the number of security requirements, dif-
ferent abstraction levels and the variation of prediction depths are
provided.

RQ12a Can the developed methods and tools be successfully adapted to
large scale industrial scenarios?

RQ12b What are the performance effects of the number of events, processes,
security requirements, predicted steps, and of event abstraction?

In this paper, the applicability of the PSA@R approach is exempli-
fied by a misuse case scenario from a hydroelectric power plant that
was analysed in the European research project MASSIF. Security re-
quirements are taken from a combined technical and organisational
process from a hydroelectric power plant in a dam [Romano et al.,
2012]. Since dams are complex infrastructures, a huge number of pa-
rameters must be monitored to guarantee safety and security. Which
parameters are actually monitored, depends on the dam’s structure,
design, purpose and function [Coppolino et al., 2012].

In particular, the algorithm for the evaluation of security require-
ments at runtime is described and an extensive example concerning
safety critical actions in the control room is given.

In the project MASSIF [Rieke et al., 2012] PSA@R is currently ap-
plied to check security requirements in four industrial domains: (i)
the management of the Olympic Games IT infrastructure [Vianello
et al., 2013]; (ii) a mobile phone based Mobile Money Transfer Ser-
vice (MMTS) [Gaber et al., 2013], facing high-level threats such as
money laundering; (iii) managed IT outsource services for large dis-
tributed enterprises and (iv) an IT system supporting a critical infras-
tructure (dam) [Romano et al., 2012]. The hydroelectric power plant
scenario (iv) has been used to demonstrate the capability of the PSA

prototype to process and correlate events from heterogeneous sources.
To evaluate the PSA prototype with respect to performance issues,
however, event logs from scenario (ii) have been used as a resource
intensive application which requires high throughput.

The measurements presented evaluate the execution time and the
number of events received by the PSA. Four aspects important from
the application perspective have been examined: (i) effects of the num-
ber of security requirements to the execution time; (ii) effects of the
abstraction level to analysis; (iii) effects of cycle reduction in a Reach-
ability Graph (RG); (iv) effects of changing prediction depths.

During the experiment the security requirements were successfully
checked in all combinations.

444

www.manaraa.com

c© 2014 IEEE. Reprinted, with permission, from Roland Rieke, Jürgen Repp, Maria Zhdanova, and Jörn Eichler, Monitoring Security Compliance of Critical
Processes, Parallel, Distributed, and Network-Based Processing, Euromicro Conference on, PDP 2014, 2014. Original IEEE publication: http://ieeexplore.ieee.
org/xpl/articleDetails.jsp?arnumber=6787328

Monitoring Security Compliance of Critical
Processes

Roland Rieke∗†, Jürgen Repp†, Maria Zhdanova†, and Jörn Eichler‡

∗Philipps-Universität Marburg, Germany
†Fraunhofer SIT, Darmstadt, Germany

Email:{roland.rieke,juergen.repp,maria.zhdanova}@sit.fraunhofer.de
‡Fraunhofer AISEC, Munich, Germany
Email: joern.eichler@aisec.fraunhofer.de

Abstract—Enforcing security in process-aware information
systems at runtime requires the monitoring of systems’ operation
using process information. Analysis of this information with re-
spect to security and compliance aspects is growing in complexity
with the increase in functionality, connectivity, and dynamics
of process evolution. To tackle this complexity, the application
of models is becoming standard practice. Considering today’s
frequent changes to processes, model-based support for security
and compliance analysis is not only needed in pre-operational
phases but also at runtime.

This paper presents an approach to support evaluation of the
security status of processes at runtime. The approach is based
on operational formal models derived from process specifications
and security policies comprising technical, organizational, reg-
ulatory and cross-layer aspects. A process behavior model is
synchronized by events from the running process and utilizes
prediction of expected close-future states to find possible security
violations and allow early decisions on countermeasures. The
applicability of the approach is exemplified by a misuse case
scenario from a hydroelectric power plant.

Keywords-predictive security analysis; process behavior analysis;
security modeling and simulation; security monitoring; critical
infrastructures; security information and event management.

I. INTRODUCTION

Electronic business processes contribute significantly to the
performance of today’s enterprises and their correct execution
is vital for many companies. Automated enactment of business
processes applying Information Technology (IT) does not
only bring competitive advantages but induces higher security
risks. A new Internet security threat report [1] states a more
than 81% surge in malicious attacks including sophisticated
targeted attacks. Yet, existing Business Process Management
(BPM) methodologies often neglect security and dependability
objectives [2]. At the same time, business processes become
more complex encompassing a wide range of heterogeneous
systems and applications and undergo continuous changes
to sustain business competitiveness [3]. Another dimension
is added by the inter-connection of business processes with
modern automated management systems that support remote
control of multiple infrastructures. Thus, cross-layer connec-
tions between high-level business processes, organizational
processes, and low-level technical processes controlling sensors
and actuators in cyber-physical systems emerge. Increasing
complexity and changeability complicates analysis of distinctive

process properties demanding frequent adjustments of process
models to address changing business needs [4]. This involves
not only functional correctness of a process model, but also
related compliance and security features. Hard-coded controls
can restrain flexibility required to ensure adequate formal
representation of evolving processes [5], [6].

We present an approach for predictive security analysis at
runtime, which allows to add security requirements regarding
process behavior during execution without the need to modify
the corresponding process model. In doing so, we do not
intend to diminish the significance of security-by-design. Our
work is aimed as a critical add-on in order to address the
dynamics of electronic business processes. Based on close-
future behavior models computed on-the-fly from process
specifications, we demonstrate early detection of deviations of
process execution from expected behavior which can be caused
by attacker intervention. We propose a new method for security
analysis at runtime exploiting process behavior models, which
enables on-the-fly security compliance checks and prediction of
close-future violations of security requirements. The proposed
integration of simulation and runtime monitoring allows for
early security warnings and predictive alarms on possible
security critical states in close future. In order to demonstrate
how our model-based runtime analysis is applied, we have
chosen processes from a hydroelectric power plant in a dam
that was analyzed in a European research project [7]. We
describe an implementation of our approach and provide results
of evaluation of specific aspects, such as effects of the number
of security requirements, different abstraction levels and the
variation of prediction depths.

Section II of this paper gives an overview of our approach for
predictive security analysis at runtime. Section III introduces
the operational process model, the close-future behavior model,
and the synchronization with the running process. Section IV
presents the security model applied at runtime to identify
security relevant states. Section V provides an example for the
runtime analysis of security requirements from a hydroelectric
power plant. Section VI describes the prototype implementation
and evaluation results. Section VII reviews related work and
Section VIII presents conclusions and further research.

1

www.manaraa.com

II. PREDICTIVE SECURITY ANALYSIS AT RUNTIME

In this section we introduce a new model-based approach
for Predictive Security Analysis at Runtime (PSA@R). Our
approach integrates formal process modeling with simulation
of (close-future) process behavior triggered by real-time data.
Process behavior models are used to identify and predict
violations of security requirements during process execution.

In PSA@R the operation of a system or a system of
systems is observed analyzing events received from this system.
PSA@R is not executed by this observed system but rather
by an observing system such as a Security Information and
Event Management (SIEM) system. It is presupposed here that
the observing system itself is trustworthy. A SIEM system
can be easier protected against attacks than the system under
observation. Regarding the observed system it is assumed that
its purpose is given by technical, organizational, and business
processes and that the intended behavior can be specified by
process models. The behavior of the observed system is then
a composition of the behaviors of the running processes.

PSA@R operates with formalized views on the control flow
and security properties of a business process that can exist
in any common or application-specific technical workflow
notation [8], [9], [10]. A process model, which provides a
formal representation of the controlled process, and an event
model, an abstraction defining the internal mapping for input
event streams, need to be created at the preliminary stage of
PSA@R. Security requirements to be satisfied during process
execution are formalized by a security model, which must be
derived systematically [11], [12] at the initialization time.

At the analysis stage of PSA@R, the formal models are
applied to monitor and predict process behavior and identify
security relevant states on-the-fly. Figure 1 illustrates steps
of predictive security analysis at runtime. Given the process
model and the current state of the running process, a process
behavior model representing the adjacent expected future
states of the process can be computed. The process behavior
model is synchronized with the running process through events
received from the execution environment. Incoming events are
interpreted using the event model and mapped to the process
behavior model. Compliance of the predicted states with the
established security policy is evaluated against the security
model. To identify security relevant states on-the-fly PSA@R
uses a new method described in Section IV, which enables
detection of (close-future) requirements violation.

Fig. 1: Analysis stage of PSA@R

III. PROCESS MODEL

This section introduces the formal process model, which is
utilized to reflect the current state of the system and provides the
basis for the prediction of close-future actions. PSA@R uses
a process model given by an Asynchronous Product Automata
(APA) representation that provides a flexible operational
specification concept for cooperating systems [13]. An APA
consists of a family of elementary automata communicating
by common components of their state (shared memory).

Definition 1: An Asynchronous Product Automaton consists
of

• a family of state sets Zs,s ∈ S,
• a family of elementary automata (Φe,∆e),e ∈ E and
• a neighbourhood relation N : E→ P(S).

S and E are index sets with the names of state components
and of elementary automata and P(S) is the power set of S.
For each elementary automaton (Φe,∆e) with Alphabet Φe, its
state transition relation is

∆e ⊆��s∈N(e)(Zs)×Φe×��s∈N(e)(Zs).

For each element of Φe the state transition relation ∆e defines
state transitions that change only the state components in N(e).
An APA’s (global) states are elements of ��s∈S(Zs).
To avoid pathological cases it is generally assumed that S=⋃

e∈E(N(e)) and N(e) 6= /0 for all e ∈ E.
Each APA has one initial state q0 = (q0s)s∈S ∈��s∈S(Zs). In
total, an APA A is defined by

A= ((Zs)s∈S,(Φe,∆e)e∈E,N,q0).

Definition 2: An elementary automaton (Φe,∆e) is acti-
vated in a state q = (qs)s∈S ∈ ��s∈S(Zs) as to an inter-
pretation i ∈ Φe, if there are (ps)s∈N(e) ∈ ��s∈N(e)(Zs) with
((qs)s∈N(e), i,(ps)s∈N(e))∈ ∆e. An activated elementary automa-
ton (Φe,∆e) can execute a state transition and produce a suc-
cessor state p= (ps)s∈S ∈��s∈S(Zs), if qr = pr for r ∈ S\N(e)
and ((qs)s∈N(e), i,(ps)s∈N(e)) ∈ ∆e. The corresponding state
transition is (q,(e, i), p).

However, PSA@R does not depend on the formal method
chosen for model representation. The only requirement is, that
it must be possible to compute the process behavior from
the process model (cf. Section III-C). For example, Petri nets
[9] also meet this requirement and models produced in Petri
Net Markup Language (PNML) [14] by process mining and
discovery tools [15] can be used instead of APA specifications.

A. Process Behavior Model

Formally, the behavior of an operational APA model of a
business process is described by a Reachability Graph (RG),
also referred to as Labeled Transition System (LTS) [16].

Definition 3: The behavior of an APA is represented by all
possible coherent sequences of state transitions starting with
initial state q0. The sequence

(q0,(e1, i1),q1)(q1,(e2, i2),q2) . . .(qn−1,(en, in),qn)

2

www.manaraa.com

with ik ∈ Φek , where Φek is the alphabet of the elementary
automaton ek, represents one possible sequence of actions of
an APA.

State transitions (p,(e, i),q) may be interpreted as labelled
edges of a directed graph whose nodes are the states of an
APA: (p,(e, i),q) is the edge leading from p to q and labelled
by (e, i). The subgraph reachable from the node q0 is called
Reachability Graph of an APA.

Example 1: A process specification provides the control
flow structure of a process as a sequence of events and
functions. In an APA model that is derived from a process
specification, the set of possible output events of a process
function can be used as the alphabet of the elementary
automaton representing the function [17]. So the interpretation
i is the output event. An example for a state transition is:
(p,(transfer,event = ′critical′),q). The parameters of this state
transition are the state p, the tuple composed of the elementary
automaton transfer and its interpretation event = ′critical′, and
the follow-up state q.

B. Event Model

A stream of events characterizes one specific execution trace
of the observed system. This trace is a shuffle of the traces of
the executed process instances. The event model determines
the internal mapping for the runtime events defined by an event
schema. To reduce the complexity only data required for the
analysis or in generated alarms should be used in the model.

Formally, it is assumed that an event represents a letter of
the alphabet that denotes the possible actions in the system.
Different formal models of the same system are partially
ordered with respect to different levels of abstraction.

Definition 4: Abstractions are described by so-called al-
phabetic language homomorphisms. These are mappings h∗ :
Σ∗ −→ Σ′∗ with h∗(xy) = h∗(x)h∗(y) , h∗(ε) = ε and h∗(Σ)⊂
Σ′ ∪ {ε}. So they are uniquely defined by corresponding
mappings h : Σ−→ Σ′∪{ε}. In the following both the mapping
h and the homomorphism h∗ is denoted by h. In general, let
Ľ ⊂ Σ̌∗ and L ⊂ Σ∗ be prefix closed languages. Ľ is called
finer than L and L is called coarser than Ľ iff an alphabetic
homomorphism ν : Σ̌∗→ Σ∗ exists with ν(Ľ) = L.

Let now P denote a finite set of process instances i of some
process with i ∈ P and let Σi denote pairwise disjoint copies
of Σ. The elements of Σi are denoted by ei and ΣP :=

⋃̇
i∈P

Σi.

The index i describes the bijection e↔ ei for e ∈ Σ and ei ∈ Σi.
Now the projection π identifies events from a specific process
instance i.

Definition 5: For i ∈ P, let πP
i : Σ∗P→ Σ∗ with

πP
i (er) =

{
e | er ∈ Σi
ε | er ∈ ΣP \Σi

.

This is similar to the notion of a correlation condition [18]
that defines which sets of events in the service log belong to
the same instance of a process.

Remark 1: For effective use of PSA@R it is assumed that
a process instance projection is possible for each event. In
many applications, a process instance identification is directly

available as an attribute of the event. Sometimes a set of
attributes identifies the process instance. In some cases the
assumption about pairwise disjoint alphabets is not true.

If the event data contain redundant or irrelevant attributes, a
proper subset of attributes for use in model construction has to
be selected. In order to avoid state space explosion problems,
the coarsest abstraction that still contains all security relevant
information should be used.

Example 2: Let us assume that Σ is the alphabet of events
from the measured system and for a given event e the term
#(e) denotes the value of an attribute involved in a transaction.

Let h2,h3 : Σ∗ → {′high′, ′medium′, ′low′}∗ the homomor-
phisms given by

h2(e) =
{ ′high′ | 105 < #(e)

′low′ | #(e)≤ 105

h3(e) =

′high′ | 105 < #(e)
′medium′ | 103 < #(e)≤ 105

′low′ | #(e)≤ 103
.

Then h3 and h2 can be used to differentiate process control flow
with respect to events with different attribute values. h3 is finer
than h2 because ν : {′high′, ′medium′, ′low′}∗→{′high′, ′low′}∗
exists.

C. Prediction of Close-future Process Actions

At runtime, the current state of the process behavior model of
the process instance i is synchronized with the running process
using the projection of the measured events to the respective
state transitions (p,(e, i),q) of the RG. PSA@R uses the RG
to predict the close-future behavior of the process instance. As
the process description is formalized in the process model, a
subgraph of the RG can always be computed on-the-fly starting
with the current state of the process instance. The prediction
depth is the depth of this subgraph starting from the current
state.

Example 3: The approach taken for the prediction of close-
future behavior within a process is illustrated by Fig. 2.
The ellipses in the event stream pane denote the observed
events, whereby the filled ellipses e0, e1, e2, and e3 denote
the events that belong to the specific process instance i, i.e.,

event
stream

e0

e1

e2

e3

process
behavior
model

q0
q1

q2

q3 q′3

q′2qx

process
model

e′0

f1

e′1

f2 f3

e′2 f4

e′3

past time future time

Fig. 2: Predict close-future process behavior

3

www.manaraa.com

e0,e1,e2,e3 ∈ Σi. The ellipses in the process model pane
denote abstract events with respect to the event model, e.g.,
e′1 = h(πP

i (e1)). The dotted arrows denote this mapping. The
rectangles in the process specification pane denote the process
functions and the solid lines denote the transitions. If in
Fig. 2 the function f2 is modeled by the elementary automaton
transfer and e′3 = h(πP

i (e3)) =
′high′ and the depicted process

instance i is in the state q1 and the event e3 is received, then
the transition (q1,(transfer,event = ′high′),q3) will match the
current situation. The process specification contains possible
close-future functions f3 and f4 and associated events to be
predicted. The dashed arrows in Fig. 2 denote the predicted
close-future process behavior.

IV. ON-THE-FLY IDENTIFICATION OF CRITICAL STATES

In addition to the predicted process behavior, the security
model is needed to identify security relevant states of the
current state of the business process. As a notation for the
security model we use monitor automata.

Definition 6: A monitor automaton M consists of a set M
of labeled states, an alphabet Λ of predicates on RG state
transitions, a transition relation TM ⊆M ×Λ×M , a set
of initial states /0 6= M0 ⊂M , and a set of accepting states
M f ⊂M .

Predicates ofM are applied to state transitions (pi,(e j, ik),ql)
of the RG.

Example 4: The predicate (,(,event = ′high′),) is true if
′high′ is bound to the interpretation variable event of the
interpretation ik. No condition for the predecessor state pi,
successor states ql and the elementary automaton e j is given.

With a monitor automaton it is possible to express security
requirements with respect to current and close-future behavior
of a process represented by a RG. In this case accepting states
refer to security critical states. Each state of the RG has an
associated state set of M, which is computed during simulation.
Security critical states are reached whenever an accepting state
of M becomes a member of such state set.

State sets of M are successively assigned to RG states during
simulation as follows: M0 is assigned to the initial state q0 of
the given RG. Each predicate λ ∈ Λ of M is of the form λ (x),
where x is a state transition (p,(e, i),q) of the RG. Each λ ∈Λ
is associated with one of the transitions TM of M. During
the run of the simulation, for each transition (qi,(e j, ik),qx) of
the RG, the monitor automaton state set for the RG state qx is
computed as follows:
Let Ai ⊆M be the state set of M assigned to the current RG
state qi. The set TAi of transitions to be checked is now given
by:

TAi = {(mm,λo,mn) ∈TM | mm ∈Ai}.
All predicates λo have to be checked for the current transitions
(qi,(e j, ik),qx) of the RG. Based on the monitored transitions
MT x new states Bx of M and the changed states Cx of M
are computed as follows:

MT x := {(mm,mn) ∈M ×M | (mm,λo,mn) ∈ TAi ∧
λo((pi,(e j, ik),qx))}

Bx := {mn ∈MT x|(mm,mn) ∈MT x}
Cx := {mm ∈MT x|(mm,mn) ∈MT x}

The computation of Bx and Cx will be implicitly assumed
when used in Algorithm 1 and 2. The set RS n includes
possible states in the RG which represents the current state of
the real system. After the occurrence of a certain event and
extension of the RG if necessary, the new set RS n+1 and
the corresponding monitor automaton state set A r

i has to be
computed for every state qi ∈RS n+1 by Algorithm 1.

Algorithm 1 (Security compliance check):
SP := /0
for (pi,(e j, ik),ql) ∈ {pi|pi ∈RS n}∧λe((pi,(e j, ik),ql)) do

SP := SP∪{pi}
if Bl = /0 then

if ql ∈ SP then
A r

l := A r
l ∪A r

i
else

Al := Ai
else

if ql ∈ SP then
A r

l := A r
i ∪Bl

else
A r

l := Bl ∪ (A r
i \Cl)

RS n+1 := SP
For the RG state set RS n+1 new state sets A p

i of M have
to be computed for every predicted RG state qi. The function
visit sets a mark to a certain state which can be checked by
the predicate visited. The predicate closer indicates that the
current path to elements of the state set RS n+1 to the node
given as a parameter is shorter than the paths to this node
processed before. The monitor automaton state sets of the
predicted states which can be reached from states of the set
RS are computed by Algorithm 2.

Algorithm 2 (Predict security violations):
S := /0
for ql ∈RS n+1 do

S := S∪{ql)}
while S 6= /0 do

S := S\{qi2}
for (qi2 ,(e j2 , ik2),ql2) ∈ RG do

A :=
{

Ar
i2 | ¬visited(qi2)∧A p

i2 = /0
A p

i2 | else
visit(qi2)
if Bl2 = /0 then

if visited(ql2) then
A p

l2
:= A p

l2
∪A p

i2
if closer(ql2 ,RS n+1) then

S := S∪{ql2)}
else

A p
l2

:= A p
i2

S := S∪{ql2}
else

if visited(ql2) then
A p

l2
:= A p

i2 ∪Bl2
else

A p
l2

:= Bl2 ∪ (A
p

i \Cl2)

S := S∪{ql2)}
In this algorithm we do not analyze the consequences

of reaching security critical states. Trigger actions such as
generating alerts, which are executed when accepting monitor

4

www.manaraa.com

Fig. 3: Attribute selection and mapping

automaton states become members of a state set, can be defined.
Different security properties might be monitored simultaneously
by allowing more than one transition of the monitor automaton
to be triggered at the same time.

V. HYDROELECTRIC POWER PLANT SECURITY

In order to demonstrate what kind of security requirements
we consider and how our model-based runtime analysis is
applied, we use a combined technical and organizational process
from a hydroelectric power plant in a dam [7] and explain the
evaluation of security requirements for this process at runtime.
Since dams are complex infrastructures, a huge number of
parameters must be monitored to guarantee safety and security.
Which parameters are actually monitored, depends on the dam’s
structure, design, purpose and function [19].

Figure 3 shows a mapping (an event model) with regard to
the events from dam sensors, cameras, RFID scanners, and
syslog.

Here, we examine a misuse case related to the insider threat
that is still prevalent and posing a serious risk to critical
infrastructures [20]. We assume that the respective security goal
is given as: All safety critical actions in the control room are
carried out by a dam operator with administrative rights. Other
types of security requirements, which could be supervised by
PSA@R, are typical authenticity and integrity requirements like
the following example: Whenever a certain control decision
is made, the input information that presumably led to it must
be authentic [19]. Specifically, authenticity can be seen as the
assurance that a particular action has occurred in the past.

A. Misuse Case Scenario

The storage dam of the hydroelectric power plant is remotely
controlled by a Supervisory Control And Data Acquisition

not_supvervised_other

not_supervised_empty

both

other_staff

operator

CR_empty

 Gate_actions),);
(,(event ?

 other_staff’),);
(,(event=no_ ’operator),);

(,(event=

 ’operator’),);
(,(event=

 ’other_staff’),);
(,(event=

 Gate_actions),);
(,(event ?

 ’no_operator’),);
(,(event=

 ’no_other_staff’),);
(,(event=

 ’no_other_staff’),);
(,(event=

 ’operator’),);
(,(event=

 ’other_staff’),);
(,(event=

 ’other_staff’),);
(,(event=

 ’no_operator’),);
(,(event=

 ’operator’),);
(,(event=

Fig. 4: Monitor automaton for hydroelectric power plant

(SCADA) system from the control station located in the
control room. Physical (Radio Frequency Identification (RFID)
based) and logical access controls are deployed. A disgruntled
employee of the dam with a non-administrative role (i.e.,
cleaning staff) but who is enabled to access the control room
uses stolen administrator credentials to open dam gates.

There are several attack steps. First, the disgruntled employee
uses his RFID badge to enter the control room while an
administrator is inside. The disgruntled employee waits until
the administrator leaves the control room and uses the stolen
administrator credentials to log in into the control system. Then
he issues the open gate command from the control station.
The water gates open discharging the dam’s reservoir. The
decrease of the water level endangers the people using the
dam’s reservoir for recreational activities.

Note, that this attack can be discovered if the system is able
to detect that the administrator command was issued while no
employee with the administrator role had accessed the control
room with her badge.

B. Specification of a Monitor Automaton

The security requirements that certain actions of the dam
workflows have to be supervised will be controlled by a monitor
automaton M as introduced in the previous section. Figure 4
shows a specification of M.

The initial state of M CR empty (control room is
empty) is marked by the filled circle. The critical states
not supervised empty and not supervised other are marked
by the circle with the small filled circle inside. These states
reflect the situation that an action from the set Gate actions
has been executed while the control room is either empty or
only manned with non-administrative staff. If one of these
states is reached during prediction an alarm will be generated.
The predicates attached to the arcs of M define predicates for
transitions of the RG. This automaton is scheduled according
to the algorithm presented in the previous section during
the computation of the RG in the prediction process. The

5

www.manaraa.com

t1 t2 t1 + ∆ t2 + ∆ t3 t4 t3 + ∆

timeline

gate event other staff no operator open Gate

predictive
alert

security
alert

(a) Alert situation

t1 t2 t1 + ∆ t2 + ∆ t3 t4 t3 + ∆

timeline

gate event other staff no operator operator

predictive
alert

corrective
action

(b) Predicted situation not occurred

Fig. 5: Security reasoning

λ predicates in Section IV correspond to the predicates of the
arcs in this automaton.

Predicates of the monitor automaton are applied to state
transitions of the RG (pi,(e j, ik),ql), for example, the predicate
(,(,event = ′no other staff ′),) is true if ′no other staff ′ is
bound to the interpretation variable event of the interpretation
ik. No condition for the predecessor and successor state pi,
ql and the elementary automaton e j is given in this example.
The event ′no other staff ′ (all non-administrative staff left the
control room) referenced in the above predicate is a higher level
event generated by preprocessing the low-level events from
the RFID scanners and events from cameras which capture the
motion of staff at the entrance of the control room.

C. Evaluation of State Transitions

In order to exemplify the security analysis at runtime, let
us assume that the system is in a state where an operator
is present in the control room, there is only one monitor
automaton as shown in Fig. 4 defined, and the current state
of the monitor automaton is operator. We now describe the
reasoning process at runtime. Figure 5a shows a possible
timeline of events. A security warning indicates a situation
where a security requirement is broken but has no negative
impact at creation time. A predictive alert is raised when a
broken security requirement might lead to a security critical
situation in the close future. A security alert is raised if a
security critical situation has been detected. These warnings
and alerts are mapped to corresponding events and fed into
the runtime environment.

If at time t1 an event from a gate function is received, then
the state component of the process model representing the
status of the gate will be changed but the state of the monitor
automaton will not change. The reachability analysis does not
“see” an upcoming security violation within the scope ∆, so no
alarm has to be triggered.

If at time t2 > t1 the event ′other staff ′ produced by the
RFID scanners of the control room is received, then the state
component of the process model representing the manning of

O
b

se
rv

ed

Sy
st

em

PSA Modeler

Security
Modeler

Process
Modeler

Predictive Security Analyzer (PSA)

PSA Core

Security Model

Process Model

PSA
Alerts

[Correlated]
Events

Events
Modeler

Process
Monitor

Security
Monitor

Events
Monitor

Event Model I

O

Event
Schema

Security
Requirements

Process
Specification

I

I

I

D
ec

is
io

n
 S

u
p

p
o

rt

&
 R

ea
ct

io
n

Process State

Security State

Fig. 6: Architecture of the PSA

the control room will be changed and the monitor automaton
changes the state to both. No security violations is “seen”
within the scope ∆.

If at time t3 > t2 the event ′no operator′ is received which
indicates that the last operator has left the control room, then
the state component of the process model representing the
manning of the control room will be changed and the monitor
automaton also changes the state to other staff . Now in one
possible process execution sequence, an event from a gate
function such as open Gate is reachable within ∆. In this
situation the reachability analysis shows that this function
would violate an associated security requirement. Therefore, a
predictive alert is raised because a broken security requirement
might lead to a security critical situation in the close future.

If at time t4 > t3 an event from a gate function such as
open Gate is received, then the monitor automaton changes to
the critical state not supervised other. As a security critical
situation has now been detected, a security alert is raised.

Now let us assume that at time t3 +∆ an event is received
which indicates that an operator is back in the control room and
the critical state was not reached as predicted. In this case, we
know that the issued predictive alert did not lead to a security
alert (cf. Fig. 5b). Therefore, a corrective action such as the
reduction of the security warning level or lifting of restrictions
on the business process may be necessary.

VI. EVALUATION OF SECURITY ANALYSIS AT RUNTIME

To evaluate the performance of different modeling strategies
in the scope of PSA@R, we have implemented a prototype, the
PSA, that supports the complete life-cycle of security analysis
at runtime from formal process specification to exhaustive
validation, including visualization and inspection of computed
RGs and monitor automata. Our implementation is based on
Common LISP [21] and technical specifications from [13].

A. Prototype Architecture

Figure 6 shows the architecture of the PSA consisting of two
main parts: the PSA Modeler that provides functionality for
process formalization and the PSA Core that performs process
security analysis. “I” and “O” are input and output interfaces.

During initialization an operator uses the PSA Modeler
components to formalize input required for process simulation.
The Event Modeler supports the derivation of an event model
from given event schemata (cf. Fig. 3) and stores the respective

6

www.manaraa.com

0 0.5 1 1.5 2 2.5 3

·105

0

100

200

300

400

500

events

se
co
n
d
s

r = 0, s = 5
r = 1, s = 5
r = 2, s = 5
r = 3, s = 5
r = 4, s = 5

(a) Execution time depending on number r of security
requirements

0 0.5 1 1.5 2 2.5 3

·105

0

100

200

300

400

500

events

se
co
n
d
s

s = 2, r = 4
s = 3, r = 4
s = 4, r = 4
s = 5, r = 4

(b) Execution time depending on number s of successor
states

Fig. 7: Execution time measurements

mapping for interpretation of runtime events. The Process
Modeler allows to formalize process specifications using
methods introduced in Section III. The Security Modeler
provides means for graphical specification of monitor automata
representing security models (cf. Section IV).

To launch the security analysis the PSA models with initial
configurations such as the initial state of a process model
and an active security model need to be loaded into the PSA
Core in the form of compiled code. During the monitoring
and analysis stage the PSA Core components receive runtime
events from the observed system, for example, events from
dam’s SCADA system and RFID scanners. The Event Monitor
interprets these events in accordance with the defined event
model. The normalized events are fed to the Process Monitor
that performs behavior prediction based on the process model.
If a legitimate event does not comply with the model, the
PSA supports an adjustment of the model on-the-fly within
the process modeler utilizing backward references from the
compiled process model. To detect security violations the
information about predicted state transitions is forwarded to
the Security Monitor. By executing the security model the
Security Monitor identifies process states critical from the
security perspective and issues alerts that are forwarded to
decision support and reaction for further processing. Backward
references within the compiled security model allow to show
the current state within the security modeler.

B. Evaluation

In the project MASSIF [22] PSA@R is currently applied
to check security requirements in four industrial domains:
(i) the management of the Olympic Games IT infrastruc-
ture [23]; (ii) a mobile phone based Mobile Money Transfer
System (MMTS) [24], facing high-level threats such as money
laundering; (iii) managed IT outsource services for large
distributed enterprises and (iv) an IT system supporting a
critical infrastructure (dam) [7]. We used the hydroelectric
power plant scenario (iv) to demonstrate the capability of
the PSA prototype to process and correlate events from
heterogeneous sources (cf. Section V). To evaluate the PSA

prototype with respect to performance issues, however, we used
event logs from scenario (ii) as a resource intensive application
which requires high throughput. In this case, events referred to
transactions conducted in an MMTS and processes represented
user behaviors observed from transaction logs [25]. To achieve
high load a recorded event stream was sent directly to the PSA
socket interface. Measurements were produced on a personal
computer with Intel Core 6700 CPU and 4GB memory.

The measurements presented evaluate the execution time and
the number of events received by the PSA. We have examined
four aspects important from the application perspective: (i)
effects of the number of security requirements to the execution
time; (ii) effects of the abstraction level to analysis; (iii) effects
of cycle reduction in a RG; (iv) effects of changing prediction
depths. The prediction depth p = 4 was used in (i)–(iii), but
did not effect the performance of the simulation because
the complete RG could be computed in advance. Figure 7a
shows that the execution time depends linearly on the number
of received events and the gradient of this linear slope is
determined by the number of security requirements. In order
to investigate effects of the abstraction level we have evaluated
finer and coarser process models. A coarser model results
in less successor states and thus reduces the effort for the
monitoring algorithm. The abstraction level can be adjusted,
for instance, as shown in Example 2. In [8] Mendling presented
an extensive metrics analysis on four collections of 2003 Event-
driven Process Chain (EPC) process specifications. In this study,
the number of nodes a connector is in average connected to
resulted in 3.56 for the mean value µ and 2.40 for the standard
deviation σ . Therefore, for our performance measurements we
used a number s ∈ {2,3,4,5} of successor states. Figure 7b
shows that the execution time depends linearly on the number
of received events. The moderate increase of gradients of the
corresponding linear slopes was caused by the optimization of
the monitoring algorithm related to cycles in the RG. These
experiments show that one month of data logged in an MMTS
(285.619 events from 50.265 processes) is analyzed by the PSA
within two to eight minutes depending on the model abstraction.
In order to simulate the possible worst case for five successor

7

www.manaraa.com

0 0.5 1 1.5 2 2.5 3

·105

0

2,000

4,000

6,000

events

se
co
n
d
s

s = 5, r = 4 (worst case)

s = 5, r = 4 (use case)

(a) Comparison of MMTS use case with worst case

0 0.5 1 1.5 2 2.5 3

·105

0

2,000

4,000

6,000

events

se
co
n
d
s

p = 1, s = 5, r = 4
p = 2, s = 5, r = 4
p = 3, s = 5, r = 4
p = 4, s = 5, r = 4

(b) Execution time depending on prediction depth p

Fig. 8: Worst case behavior and influence of prediction depth

states (four requirements) we produced a synthetic model.
Figure 8a displays the comparison between the MMTS model
and the worst case model. The worst case performance can be
improved by reasonably limiting the number of predicted steps.
Figure 8b illustrates the effects of reduced prediction depth
in the worst case model. During the experiment the security
requirements were successfully checked in all combinations.

VII. RELATED WORK

The work presented here combines specific aspects of
security analysis with generic aspects of process monitoring,
simulation, and analysis. The background of these aspects is
given by the utilization of models at runtime [26]. The proposed
approach is similar to the approaches described in [17], [27]
in terms of event-driven process analysis. However, in our
work we focus on an integrated algorithm for computation
of reachability graphs with evaluation of security properties
given by monitor automata. Recently, runtime monitoring of
concurrent distributed systems based on Linear Temporal Logic
(LTL), state-charts, and related formalisms has also received
attention [28]. However, these works are mainly focused on
error detection, e.g., concurrency related bugs.

Approaches focusing on security models at runtime are given
in [29], [30]. The first work proposes a novel methodology to
synchronize an architectural model reflecting access control
policies with the running system. Therefore, the methodology
emphasizes policy enforcement rather than security analysis.
The integration of runtime and development-time information
on the basis of an ontology to engineer industrial automation
systems is discussed in [30]. Schneider [31] analyzed a class
of safety properties and related enforcement mechanisms that
work by monitoring execution steps of some target system,
and terminating the target’s execution, whenever it is about to
execute an operation, which would violate the security policy.
Extensions of this approach are discussed in [32]. However,
security automata as defined in [31] are related to a specific
trace of execution, whereas in the monitor automata concept
proposed here, the whole RG is used as a reference to the
possible system’s behavior. Patterns and methods to allow for
monitoring security properties are developed in [33], [34], [35].

Diverse categories of tools applicable for modeling and
simulation of business processes are based on different semi-
formal or formal methods such as EPCs [8] or Petri nets
[9]. Likewise, some general-purpose simulation tools such
as CPNTools [36] were proven to be suitable for simulating
business processes. The process mining framework ProM [15]
supports plug-ins for different types of models and process
mining techniques. However, independently from the tools and
methods used, such simulation tools concentrate on statistical
aspects, redesign, and commercial optimization of the business
process. On the contrary, we propose an approach for on-the-fly
dynamic simulation and analysis on the basis of operational
formal models. This includes consideration of the current
process state and the event information combined with the
corresponding steps in the process model. We consider the
framework presented in [37] on runtime compliance verification
for business processes as complementary to our work.

VIII. CONCLUSIONS AND FURTHER WORK

In this paper, we presented an integrated approach called
PSA@R to analyze the security status of a process and to
identify possible violations of the security policy in close
future. The approach also provides early awareness about
deviations of a running process from expected behavior as
specified by the model. When such anomalies refer to process
misbehavior or disruption, alarms will be raised for decision
support and reaction. Moreover, we described how to extend
process behavior computation with algorithms for on-the-fly
security compliance checks and prediction of close-future
security violations. Thus, our integrated security analysis
approach identifies current and close-future violations of the
security policy. As security relies on the compliance of actual
behavior with the given specifications this early detection
of changes and reaction elevates security of the process in
question. In combination with other novel applications PSA@R
enables anticipatory impact analysis, decision support and
impact mitigation by adaptive configuration of countermeasures.
Moreover, we assume that our results can also be applied to on-
the-fly analysis of compliance and dependability requirements.
In further work, we consider to integrate methods, such as the

8

www.manaraa.com

one described in [38] using metrics to quantify deviations from
process specifications.

ACKNOWLEDGMENT

The presented work was developed in context of the project
MASSIF (ID 257475) being co-funded by the European
Commission within the Seventh Framework Programme and
the project ACCEPT (ID 01BY1206D) being funded by the
German Federal Ministry of Education and Research.

REFERENCES

[1] P. Wood, “Internet Security Threat Report, 2011 Trends, Vol. 17,”
Symantec Corporation, Technical Report, April 2012.

[2] M. Klemen, S. Biffl, and T. Neubauer, “Secure business process
management: A roadmap,” in Proceedings of the First International
Conference on Availability, Reliability and Security (ARES). IEEE, 1
2006, pp. 457–464.

[3] P. H. C. Wolf, “The state of business process management,”
http://www.bptrends.com/, BPTrends Report, 2012.

[4] P. Tallon, “Inside the adaptive enterprise: an information technology capa-
bilities perspective on business process agility,” Information Technology
and Management, vol. 9, no. 1, pp. 21–36, 2008.

[5] S. Rinderle-Ma, M. Reichert, and B. Weber, “Relaxed compliance notions
in adaptive process management systems,” in Proceedings 27th Int’l
Conference on Conceptual Modeling (ER’08), ser. LNCS, no. 5231.
Springer, October 2008, pp. 232–247.

[6] D. Schumm, F. Leymann, Z. Ma, T. Scheibler, and S. Strauch, “Integrating
compliance into business processes: Process fragments as reusable compli-
ance controls,” in Proceedings of the Multikonferenz Wirtschaftsinformatik,
(MKWI 2010). Universitätsverlag Göttingen, 2010.

[7] L. Romano, S. D. Antonio, V. Formicola, and L. Coppolino, “Enhancing
SIEM technology to protect critical infrastructures,” in CRITIS 2012,
the seventh CRITIS Conference on Critical Information Infrastructures
Security, September 2012.

[8] J. Mendling, Metrics for Process Models: Empirical Foundations of
Verification, Error Prediction, and Guidelines for Correctness, ser. LNBIP.
Springer, 2008, vol. 6.

[9] R. M. Dijkman, M. Dumas, and C. Ouyang, “Semantics and analysis
of business process models in BPMN,” Information and Software
Technology, vol. 50, no. 12, pp. 1281–1294, 2008.

[10] W. Arsac, L. Compagna, G. Pellegrino, and S. Ponta, “Security Validation
of Business Processes via Model-Checking,” in Engineering Secure
Software and Systems (ESSoS 2011), ser. LNCS. Springer, 2011, vol.
6542, pp. 29–42.

[11] B. Fabian, S. Gürses, M. Heisel, T. Santen, and H. Schmidt, “A
comparison of security requirements engineering methods,” Requirements
engineering, vol. 15, no. 1, pp. 7–40, 2010.

[12] D. Mellado, C. Blanco, L. E. Sánchez, and E. Fernández-Medina, “A
systematic review of security requirements engineering,” Comput. Stand.
Interfaces, vol. 32, no. 4, 2010.

[13] P. Ochsenschläger, J. Repp, R. Rieke, and U. Nitsche, “The SH-
Verification Tool Abstraction-Based Verification of Co-operating Sys-
tems,” Formal Aspects of Computing, vol. 10, no. 4, pp. 381–404, 1998.

[14] M. Weber and E. Kindler, “The petri net markup language,” in Petri Net
Technology for Communication-Based Systems, ser. LNCS. Springer,
2003, vol. 2472, pp. 124–144.

[15] W. M. P. van der Aalst, B. F. van Dongen, C. Günther, A. Rozinat,
H. M. W. Verbeek, and A. J. M. M. Weijters, “ProM: The Process
Mining Toolkit,” in BPM 2009 Demonstration Track, vol. 489. CEUR,
2009, pp. 1–4.

[16] D. A. Peled, Software Reliability Methods, 1st ed. Springer, 2001.
[17] J. Eichler and R. Rieke, “Model-based Situational Security Analysis,” in

Workshop on Models@run.time. CEUR, 2011, vol. 794, pp. 25–36.
[18] H. R. Motahari-Nezhad, R. Saint-Paul, F. Casati, and B. Benatallah,

“Event correlation for process discovery from web service interaction
logs,” The VLDB Journal, vol. 20, no. 3, pp. 417–444, Jun. 2011.

[19] L. Coppolino, M. Jäger, N. Kuntze, and R. Rieke, “A Trusted Information
Agent for Security Information and Event Management,” in ICONS 2012,
The Seventh International Conference on Systems. IARIA, 2012, pp.
6–12.

[20] M. E. Luallen, “Managing Insiders in Utility Control Environments,”
SANS, A SANS Whitepaper in Association with SANS SCADA Summits,
Q1, 2011, March 2011.

[21] G. L. Steele, Jr., Common LISP: the language (2nd ed.). Newton, MA,
USA: Digital Press, 1990.

[22] R. Rieke, E. Prieto, R. Diaz, H. Debar, and A. Hutchison, “Challenges
for advanced security monitoring – the MASSIF project,” in Trust,
Privacy and Security in Digital Business, ser. LNCS, S. Fischer-Hübner,
S. Katsikas, and G. Quirchmayr, Eds. Springer, 2012, vol. 7449, pp.
222–223.

[23] E. Prieto, R. Diaz, L. Romano, R. Rieke, and M. Achemlal, “MASSIF:
A promising solution to enhance olympic games it security,” in Global
Security, Safety and Sustainability & e-Democracy, ser. LNICST, C. K.
Georgiadis et al., Eds. Springer, 2012, vol. 99.

[24] C. Gaber, B. Hemery, M. Achemlal, M. Pasquet, and P. Urien, “Synthetic
logs generator for fraud detection in mobile transfer services,” in
Proceedings of the 2013 International Conference on Collaboration
Technologies and Systems (CTS2013), 2013.

[25] R. Rieke, M. Zhdanova, J. Repp, R. Giot, and C. Gaber, “Fraud detection
in mobile payment utilizing process behavior analysis,” in Proceedings
of 2013 International Conference on Availability, Reliability and Security,
ARES 2013. IEEE Computer Society, 2013, pp. 662–669.

[26] R. France and B. Rumpe, “Model-driven development of complex
software: A research roadmap,” in Future of Software Engineering. IEEE,
2007, pp. 37–54.

[27] R. Rieke and Z. Stoynova, “Predictive security analysis for event-driven
processes,” in Computer Network Security, ser. LNCS. Springer, 2010,
vol. 6258, pp. 321–328.

[28] T. Massart and C. Meuter, “Efficient online monitoring of LTL properties
for asynchronous distributed systems,” Université Libre de Bruxelles,
Tech. Rep., 2006.

[29] B. Morin, T. Mouelhi, F. Fleurey, Y. Le Traon, O. Barais, and J.-
M. Jézéquel, “Security-driven model-based dynamic adaptation,” in
Automated Software Engineering (ASE 2010). ACM, 2010, pp. 205–214.

[30] M. Melik-Merkumians, T. Moser, A. Schatten, A. Zoitl, and S. Biffl,
“Knowledge-based runtime failure detection for industrial automation
systems,” in Workshop Models@run.time. CEUR, 2010, pp. 108–119.

[31] F. B. Schneider, “Enforceable security policies,” ACM Transactions on
Information and System Security, vol. 3, no. 1, pp. 30–50, 2000.

[32] F. Martinelli, I. Matteucci, and C. Morisset, “From qualitative to
quantitative enforcement of security policy,” in MMM-ACNS, ser. LNCS,
I. V. Kotenko and V. A. Skormin, Eds., vol. 7531. Springer, 2012, pp.
22–35.

[33] C. Serban and B. McMillin, “Run-time security evaluation (RTSE) for
distributed applications,” in Symposion on Security and Privacy. IEEE,
1996, pp. 222–232.

[34] T. Tsigritis and G. Spanoudakis, “Diagnosing runtime violations of
security & dependability properties,” in Software Engineering and
Knowledge Engineering (SEKE 2008). KSI, 2008, pp. 661–666.

[35] A. Evesti, E. Ovaska, and R. Savola, “From security modelling to run-
time security monitoring,” in European Workshop on Security in Model
Driven Architecture (SECMDA 2009). CTIT, 2009, pp. 33–41.

[36] A. Rozinat, M. T. Wynn, W. M. P. van der Aalst, A. H. M. ter Hofstede,
and C. J. Fidge, “Workflow simulation for operational decision support,”
Data & Knowledge Engineering, vol. 68, no. 9, pp. 834–850, 2009.

[37] F. M. Maggi, M. Montali, M. Westergaard, and W. M. P. van der Aalst,
“Monitoring business constraints with linear temporal logic: An approach
based on colored automata,” in Business Process Management (BPM
2011), ser. LNCS, vol. 6896. Springer, 2011, pp. 132–147.

[38] S. Banescu and N. Zannone, “Measuring privacy compliance with process
specifications,” in Workshop on Security Measurements and Metrics
(MetriSec 2011). IEEE, 2011.

9

www.manaraa.com

www.manaraa.com

Part IV

A P P E N D I X

Count what is countable, measure what is measurable, and what
is not measurable, make measurable.

— Galileo Galilei

www.manaraa.com

www.manaraa.com

A
D E C L A R AT I O N

Ich versichere, dass ich meine Dissertation “Security Analysis of Sys-
tem Behaviour – From ’Security by Design’ to ’Security at Runtime’ –”
selbständig, ohne unerlaubte Hilfe angefertigt und mich dabei keiner
anderen als der von mir ausdrücklich bezeichneten Quellen und Hil-
fen bedient habe. Die Dissertation wurde in der jetzigen oder einer
ähnlichen Form noch bei keiner anderen Hochschule eingereicht und
hat noch keinen sonstigen Prüfungszwecken gedient.

Griesheim,

Roland Rieke

	Dedication
	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of figures
	List of tables
	Acronyms
	Preliminaries
	1 Thesis overview
	1.1 Motivation and key research issues
	1.1.1 Objectives with respect to security of cooperating system design
	1.1.2 Objectives with respect to security of system configurations
	1.1.3 Objectives with respect to predictive security analysis at runtime
	1.1.4 Security topics in practice

	1.2 Research contributions
	1.2.1 Results with respect to security of cooperating system design
	1.2.2 Results with respect to security of system configurations
	1.2.3 Results with respect to predictive security analysis at runtime

	1.3 Thesis organisation

	Introduction to the subject matter and summary of the results
	2 Security of cooperating system design
	2.1 Introduction
	2.2 Operational modelling approach
	2.2.1 Modelling the dynamic behaviour of a system
	2.2.2 Model checking
	2.2.3 Abstraction based verification concept
	2.2.4 Simple homomorphism verification tool

	2.3 Scalable verification of properties
	2.4 Security requirements elicitation
	2.5 Scalability for large-scale
	2.5.1 Parameterised cooperations
	2.5.2 Self-similarity

	2.6 Related work
	2.6.1 Formal methods and model checking
	2.6.2 Characterisation of system properties
	2.6.3 Security requirements engineering
	2.6.4 Verification approaches for parameterised systems

	2.7 Summary of results
	2.7.1 APA, TL and verification tool
	2.7.2 Abstraction based verification
	2.7.3 Authenticity requirements identification
	2.7.4 Parameterised verification problem reduced to finite state
	2.7.5 Conclusion

	3 Security of system configurations
	3.1 Introduction
	3.2 Configuration analysis approach
	3.2.1 Network and vulnerability model
	3.2.2 Attacker model
	3.2.3 Behaviour and properties of the model
	3.2.4 Cost benefit analysis

	3.3 Systematic risk identification
	3.3.1 Countermeasure model and liveness properties

	3.4 Zero-day exploit assessment
	3.5 Security policy validation
	3.6 Related work
	3.6.1 Attack trees
	3.6.2 Attack graphs
	3.6.3 Security configuration metrics
	3.6.4 Administration and validation of security policies

	3.7 Summary of results
	3.7.1 Attack graph model
	3.7.2 Abstraction based analysis method
	3.7.3 Model of unknown vulnerabilities
	3.7.4 Policy validation concept and tool
	3.7.5 Conclusion

	4 Predictive security analysis at runtime
	4.1 Introduction
	4.2 Process monitoring and uncertainty management
	4.2.1 Process model
	4.2.2 Event model
	4.2.3 Prediction of close-future process actions
	4.2.4 Observing system operation

	4.3 Security compliance at runtime
	4.4 Tool architecture and integration approach
	4.4.1 The Predictive Security Analyser (PSA) prototype
	4.4.2 Integration into security management architecture

	4.5 Applicability and performance
	4.5.1 Adaptation and evaluation in industrial scenarios
	4.5.2 Adaptation to mobile money transfer scenario
	4.5.3 Adaptation to critical infrastructure scenario

	4.6 Related work
	4.6.1 Process security analysis at runtime
	4.6.2 Information security management
	4.6.3 Security information and event management

	4.7 Summary of results
	4.7.1 Process monitoring and uncertainty management
	4.7.2 Close-future security violation prediction
	4.7.3 Security strategy management
	4.7.4 Industrial use cases
	4.7.5 Conclusion

	5 Conclusion
	5.1 Summary
	5.2 Application domains
	5.3 Lessons learnt

	Bibliography

	Peer-reviewed publications
	P1 The SH-Verification Tool – Abstraction-Based Verification
	P2 The SH-Verification Tool
	P3 Development of formal models for secure e-services
	P4 Abstraction Based Verification
	P5 Identification of Security Requirements
	P6 A Trusted Information Agent for Security Information and Event Management
	P7 Security Properties of Uniformly Parameterised Cooperations
	P8 Reliability Aspects of Uniformly Parameterised Cooperations
	P9 Analysis of Enterprise Network Vulnerabilities
	P10 Analysing Network Security Policies
	P11 Abstraction-based analysis of known and unknown vulnerabilities of critical information infrastructures
	P12 A Holistic Approach to Security Policies
	P13 Predictive Security Analysis for Event-Driven Processes
	P14 Model-based Situational Security Analysis
	P15 Architecting a Security Strategy Measurement and Management System
	P16 MASSIF: A Promising Solution to Enhance Olympic Games IT Security
	P17 Security and Reliability Requirements for Advanced Security Event Management
	P18 Fraud Detection in Mobile Payment
	P19 Monitoring Security Compliance of Critical Processes

	Appendix
	A Declaration

